首页 > 最新文献

Mechanical Engineering Advances最新文献

英文 中文
Theoretical analysis using thermal efficiency concept in straight micro channel printed circuit heat exchanger 利用热效率概念对直式微通道印刷电路热交换器进行理论分析
Pub Date : 2023-08-21 DOI: 10.59400/mea.v1i1.66
Élcio Nogueira, Humberto Araújo Machado
The objective is to analyze the thermal and hydraulic performance in a Micro Channel Straight Printed Circuit Heat Exchanger. Counterflow and parallel flow configurations were analyzed for water cooling using ethylene glycol-based fluid and platelet-shaped non-spherical Boehmite alumina nanoparticles. The work presents results from applying a dimensionless theory that uses the concepts of thermal efficiency of heat exchangers and quantities associated with the second law of thermodynamics. Thermal efficiency, thermal effectiveness, thermal and viscous irreversibilities, thermodynamic Bejan number, and outlet water temperatures are presented in graph form. The data obtained allow us to conclude that the heat exchanger can work in a range of water and refrigerant flow rates below the design parameters. With the inclusion of nanoparticles with a volume fraction equal to 5.0%, the flow rates of the refrigerant fluid can be significantly reduced. The analysis performed shows that the use of nanoparticles improves the operational cost-benefit of the heat exchanger with a significant reduction in the hot water outlet temperature.
目的是分析微通道直印制电路热交换器的热性能和水力性能。分析了使用乙二醇基流体和板状非球形波姆氧化铝纳米颗粒进行水冷却的逆流和平行流配置。这项工作介绍了应用无量纲理论得出的结果,该理论使用了热交换器热效率的概念以及与热力学第二定律相关的量。热效率、热效力、热不可逆性和粘性不可逆性、热力学贝扬数和出水温度以图表形式呈现。根据所获得的数据,我们可以得出结论,热交换器可以在低于设计参数的水和制冷剂流速范围内工作。加入体积分数等于 5.0% 的纳米颗粒后,制冷剂流体的流速可以显著降低。分析表明,纳米颗粒的使用提高了热交换器的运行成本效益,显著降低了热水出口温度。
{"title":"Theoretical analysis using thermal efficiency concept in straight micro channel printed circuit heat exchanger","authors":"Élcio Nogueira, Humberto Araújo Machado","doi":"10.59400/mea.v1i1.66","DOIUrl":"https://doi.org/10.59400/mea.v1i1.66","url":null,"abstract":"The objective is to analyze the thermal and hydraulic performance in a Micro Channel Straight Printed Circuit Heat Exchanger. Counterflow and parallel flow configurations were analyzed for water cooling using ethylene glycol-based fluid and platelet-shaped non-spherical Boehmite alumina nanoparticles. The work presents results from applying a dimensionless theory that uses the concepts of thermal efficiency of heat exchangers and quantities associated with the second law of thermodynamics. Thermal efficiency, thermal effectiveness, thermal and viscous irreversibilities, thermodynamic Bejan number, and outlet water temperatures are presented in graph form. The data obtained allow us to conclude that the heat exchanger can work in a range of water and refrigerant flow rates below the design parameters. With the inclusion of nanoparticles with a volume fraction equal to 5.0%, the flow rates of the refrigerant fluid can be significantly reduced. The analysis performed shows that the use of nanoparticles improves the operational cost-benefit of the heat exchanger with a significant reduction in the hot water outlet temperature.","PeriodicalId":509420,"journal":{"name":"Mechanical Engineering Advances","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139349730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A theoretical approach to be applied in heat exchangers by using the thermal efficiency concept and the second law of thermodynamic 利用热效率概念和热力学第二定律在热交换器中应用的理论方法
Pub Date : 2023-08-21 DOI: 10.59400/mea.v1i1.92
Élcio Nogueira
A review of the concepts of thermal efficiency and thermal and hydraulic irreversibilities is presented, applying the second law of thermodynamics and thermodynamic Bejan number. An example problem, typical of thermal heat exchange between two fluids, is given, with a dimensionless solution for parallel and counterflow flows. The quantities of interest presented through the example are thermal efficiency, thermal effectiveness, thermal irreversibility, the relationship between outlet and inlet temperatures versus the number of thermal units, and outlet temperature for hot fluid. The theory presented in this review has been applied to numerous problems related to heat exchangers over the last three years, as per references.
应用热力学第二定律和热力学贝扬数,对热效率、热不可逆性和水力不可逆性的概念进行了回顾。给出了一个典型的双流体热交换示例问题,并给出了平行流和逆流的无量纲解决方案。通过示例介绍的相关量包括热效率、热效能、热不可逆、出口和进口温度与热单位数的关系以及热流体的出口温度。根据参考文献,本综述中介绍的理论在过去三年中被应用于许多与热交换器相关的问题。
{"title":"A theoretical approach to be applied in heat exchangers by using the thermal efficiency concept and the second law of thermodynamic","authors":"Élcio Nogueira","doi":"10.59400/mea.v1i1.92","DOIUrl":"https://doi.org/10.59400/mea.v1i1.92","url":null,"abstract":"A review of the concepts of thermal efficiency and thermal and hydraulic irreversibilities is presented, applying the second law of thermodynamics and thermodynamic Bejan number. An example problem, typical of thermal heat exchange between two fluids, is given, with a dimensionless solution for parallel and counterflow flows. The quantities of interest presented through the example are thermal efficiency, thermal effectiveness, thermal irreversibility, the relationship between outlet and inlet temperatures versus the number of thermal units, and outlet temperature for hot fluid. The theory presented in this review has been applied to numerous problems related to heat exchangers over the last three years, as per references.","PeriodicalId":509420,"journal":{"name":"Mechanical Engineering Advances","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139349711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mechanical Engineering Advances
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1