Pub Date : 2023-11-22DOI: 10.3390/resources12120138
Fricelle Song, B. Nlend, S. Boum-Nkot, F. Huneau, Gustave Nkoue Ndondo, É. Garel, Thomas Leydier, H. Celle, Boris Djieugoue, M. Ntamak-Nida, Jacques Etame
A multi-tracer approach has been implemented in the southwestern part of the Lake Chad Basin to depict the functioning of aquifers in terms of recharge, relationship with surface water bodies, flow paths and contamination. The results are of interest for sustainable water management in the region. The multi-layered structure of the regional aquifer was highlighted with shallower and intermediate to deep flow paths. The shallower aquifer is recharged with rainwater and interconnected with surface water. The groundwater chemistry indicates geogenic influences in addition to a strong anthropogenic fingerprint. The intermediate to deep aquifer shows a longer residence time of groundwater, less connection with the surface and no to only a little anthropogenic influence. Ambient Background Levels (ABLs) and Threshold Values (TVs) show the qualitative status of the groundwater bodies and provide helpful information for water resources protection and the implementation of new directives for efficient and more sustainable groundwater exploitation.
{"title":"Groundwater Resources of the Transboundary Quaternary Aquifer of the Lake Chad Basin: Towards a Better Management via Isotope Hydrology","authors":"Fricelle Song, B. Nlend, S. Boum-Nkot, F. Huneau, Gustave Nkoue Ndondo, É. Garel, Thomas Leydier, H. Celle, Boris Djieugoue, M. Ntamak-Nida, Jacques Etame","doi":"10.3390/resources12120138","DOIUrl":"https://doi.org/10.3390/resources12120138","url":null,"abstract":"A multi-tracer approach has been implemented in the southwestern part of the Lake Chad Basin to depict the functioning of aquifers in terms of recharge, relationship with surface water bodies, flow paths and contamination. The results are of interest for sustainable water management in the region. The multi-layered structure of the regional aquifer was highlighted with shallower and intermediate to deep flow paths. The shallower aquifer is recharged with rainwater and interconnected with surface water. The groundwater chemistry indicates geogenic influences in addition to a strong anthropogenic fingerprint. The intermediate to deep aquifer shows a longer residence time of groundwater, less connection with the surface and no to only a little anthropogenic influence. Ambient Background Levels (ABLs) and Threshold Values (TVs) show the qualitative status of the groundwater bodies and provide helpful information for water resources protection and the implementation of new directives for efficient and more sustainable groundwater exploitation.","PeriodicalId":509483,"journal":{"name":"Resources","volume":"79 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139247402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-22DOI: 10.3390/resources12120139
Inês Ferreira, Teresa Dias, Juliana Melo, A. M. Mouazen, Cristina Cruz
Wild mushrooms and truffles (MT) are important resources, which can contribute to the socioeconomic sustainability of forestry ecosystems. However, not all wild MT are edible. Fast, cheap, and reliable methods that distinguish wild MT species (including the deadly ones) can contribute to valuing these important forest resources. Here, we tested if wild MT species, and their edibility, could be distinguished based on their aroma profiles (i.e., smellprints). For that, we combined the use of the electronic nose with classification models (linear discriminant analysis (LDA) and partial least squares discriminant analysis (PLS-DA)) to distinguish between 14 wild MT species (including edible and non-edible species) collected in Portugal. The 14 wild MT species could be accurately distinguished using LDA (93% accuracy), while the edible and non-edible species could be accurately distinguished using both LDA and PLS-DA (97% and 99% accuracy, respectively). Keeping in mind that our methodological design’s feasibility was verified using a small sample, the data show the potential of the combined use of the electronic nose with discriminant analysis to distinguish wild MT species and their edibility based on their aromatic profile. Although a larger dataset will be necessary to develop a quick and reliable identification method, it shows potential to be as accurate as the identification performed by mycologists and molecular biology, yet requiring less technical training, and the analyses are cheaper and faster.
{"title":"First Steps in Developing a Fast, Cheap, and Reliable Method to Distinguish Wild Mushroom and Truffle Species","authors":"Inês Ferreira, Teresa Dias, Juliana Melo, A. M. Mouazen, Cristina Cruz","doi":"10.3390/resources12120139","DOIUrl":"https://doi.org/10.3390/resources12120139","url":null,"abstract":"Wild mushrooms and truffles (MT) are important resources, which can contribute to the socioeconomic sustainability of forestry ecosystems. However, not all wild MT are edible. Fast, cheap, and reliable methods that distinguish wild MT species (including the deadly ones) can contribute to valuing these important forest resources. Here, we tested if wild MT species, and their edibility, could be distinguished based on their aroma profiles (i.e., smellprints). For that, we combined the use of the electronic nose with classification models (linear discriminant analysis (LDA) and partial least squares discriminant analysis (PLS-DA)) to distinguish between 14 wild MT species (including edible and non-edible species) collected in Portugal. The 14 wild MT species could be accurately distinguished using LDA (93% accuracy), while the edible and non-edible species could be accurately distinguished using both LDA and PLS-DA (97% and 99% accuracy, respectively). Keeping in mind that our methodological design’s feasibility was verified using a small sample, the data show the potential of the combined use of the electronic nose with discriminant analysis to distinguish wild MT species and their edibility based on their aromatic profile. Although a larger dataset will be necessary to develop a quick and reliable identification method, it shows potential to be as accurate as the identification performed by mycologists and molecular biology, yet requiring less technical training, and the analyses are cheaper and faster.","PeriodicalId":509483,"journal":{"name":"Resources","volume":"95 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139248023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-21DOI: 10.3390/resources12120137
M. Ptak, S. Heddam, Senlin Zhu, M. Sojka
Over the centuries, extensive changes have occurred in the functioning of the hydrosphere. In the case of Poland, the hydrographic network has been significantly transformed, and many of its elements have ceased to exist. The aim of this study was to investigate renaturalised lakes and to determine their original volume, which is a fundamental parameter in the context of stabilising water relationships. Based on archival cartographic materials, the locations of 15 such lakes were determined, with their volume totaling 11.7 million m3. This indicates a significant potential for renaturalised lakes in the context of increasing water resources. In the long term, the methodology adopted in this work may complement water-management efforts aimed at increasing retention and offering new ecosystem services. Such an approach is less invasive to the natural environment and more economically justified compared to new investments in artificial hydrotechnical infrastructure.
{"title":"Return to Nature: Renaturisation of Dried-Out Lakes in Poland","authors":"M. Ptak, S. Heddam, Senlin Zhu, M. Sojka","doi":"10.3390/resources12120137","DOIUrl":"https://doi.org/10.3390/resources12120137","url":null,"abstract":"Over the centuries, extensive changes have occurred in the functioning of the hydrosphere. In the case of Poland, the hydrographic network has been significantly transformed, and many of its elements have ceased to exist. The aim of this study was to investigate renaturalised lakes and to determine their original volume, which is a fundamental parameter in the context of stabilising water relationships. Based on archival cartographic materials, the locations of 15 such lakes were determined, with their volume totaling 11.7 million m3. This indicates a significant potential for renaturalised lakes in the context of increasing water resources. In the long term, the methodology adopted in this work may complement water-management efforts aimed at increasing retention and offering new ecosystem services. Such an approach is less invasive to the natural environment and more economically justified compared to new investments in artificial hydrotechnical infrastructure.","PeriodicalId":509483,"journal":{"name":"Resources","volume":"234 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139251189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}