Pub Date : 2023-01-01Epub Date: 2023-09-15DOI: 10.1016/bs.aivir.2023.07.001
Kristiina Mäkinen, William Aspelin, Maija Pollari, Linping Wang
{"title":"How do they do it? The infection biology of potyviruses.","authors":"Kristiina Mäkinen, William Aspelin, Maija Pollari, Linping Wang","doi":"10.1016/bs.aivir.2023.07.001","DOIUrl":"10.1016/bs.aivir.2023.07.001","url":null,"abstract":"","PeriodicalId":50977,"journal":{"name":"Advances in Virus Research","volume":"117 ","pages":"1-79"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41219530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-09-07DOI: 10.1016/bs.aivir.2023.08.001
Pedro Soares Porto, Andres Rivera, Rootjikarn Moonrinta, Christiane E Wobus
Astroviruses encapsidate a positive-sense, single-stranded RNA genome into ∼30nm icosahedral particles that infect a wide range of mammalian and avian species, but their biology is not well understood. Human astroviruses (HAstV) are divided into three clades: classical HAstV serotypes 1-8, and novel or non-classical HAstV of the MLB and VA clades. These viruses are part of two genogroups and phylogenetically cluster with other mammalian astroviruses, highlighting their zoonotic potential. HAstV are a highly prevalent cause of nonbacterial gastroenteritis, primarily in children, the elderly and immunocompromised. Additionally, asymptomatic infections and extraintestinal disease (e.g., encephalitis), are also observed, mostly in immunocompetent or immunocompromised individuals, respectively. While these viruses are highly prevalent, no approved vaccines or antivirals are available to prevent or treat infections. This is in large part due to their understudied nature and the limited understanding of even very basic features of their life cycle and pathogenesis at the cellular and organismal level. This review will summarize molecular features of human astrovirus biology, pathogenesis, and tropism, and then focus on two stages of the viral life cycle, namely entry and egress, since these are proven targets for therapeutic interventions. We will further highlight gaps in knowledge in hopes of stimulating future research into these understudied viruses.
{"title":"Entry and egress of human astroviruses.","authors":"Pedro Soares Porto, Andres Rivera, Rootjikarn Moonrinta, Christiane E Wobus","doi":"10.1016/bs.aivir.2023.08.001","DOIUrl":"10.1016/bs.aivir.2023.08.001","url":null,"abstract":"<p><p>Astroviruses encapsidate a positive-sense, single-stranded RNA genome into ∼30nm icosahedral particles that infect a wide range of mammalian and avian species, but their biology is not well understood. Human astroviruses (HAstV) are divided into three clades: classical HAstV serotypes 1-8, and novel or non-classical HAstV of the MLB and VA clades. These viruses are part of two genogroups and phylogenetically cluster with other mammalian astroviruses, highlighting their zoonotic potential. HAstV are a highly prevalent cause of nonbacterial gastroenteritis, primarily in children, the elderly and immunocompromised. Additionally, asymptomatic infections and extraintestinal disease (e.g., encephalitis), are also observed, mostly in immunocompetent or immunocompromised individuals, respectively. While these viruses are highly prevalent, no approved vaccines or antivirals are available to prevent or treat infections. This is in large part due to their understudied nature and the limited understanding of even very basic features of their life cycle and pathogenesis at the cellular and organismal level. This review will summarize molecular features of human astrovirus biology, pathogenesis, and tropism, and then focus on two stages of the viral life cycle, namely entry and egress, since these are proven targets for therapeutic interventions. We will further highlight gaps in knowledge in hopes of stimulating future research into these understudied viruses.</p>","PeriodicalId":50977,"journal":{"name":"Advances in Virus Research","volume":"117 ","pages":"81-119"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41219528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-04-03DOI: 10.1016/bs.aivir.2023.03.001
Chika Fujii, David Wang
Viruses continue to pose a public health threat raising the need for effective management strategies. Currently existing antiviral therapeutics are often specific to only a single viral species, and resistance to the therapeutic can often arise, and therefore new therapeutics are needed. The C. elegans-Orsay virus system offers a powerful platform for studying RNA virus-host interactions that could ultimately lead to novel targets for antiviral therapy. The relative simplicity of C. elegans, the well-established experimental tools, and its extensive evolutionary conservation of genes and pathways with mammals are key features of this model. Orsay virus, a bisegmented positive sense RNA virus, is a natural pathogen of C. elegans. Orsay virus infection can be studied in a multicellular organismal context, overcoming some of the limitations inherent to tissue culture-based systems. Moreover, compared to mice, the rapid generation time of C. elegans enables robust and facile forward genetics. This review aims to summarize studies that have laid the foundation for the C. elegans-Orsay virus experimental system, experimental tools, and key examples of C. elegans host factors that impact Orsay virus infection that have evolutionarily conserved function in mammalian virus infection.
{"title":"Novel insights into virus-host interactions using the model organism C. elegans.","authors":"Chika Fujii, David Wang","doi":"10.1016/bs.aivir.2023.03.001","DOIUrl":"10.1016/bs.aivir.2023.03.001","url":null,"abstract":"<p><p>Viruses continue to pose a public health threat raising the need for effective management strategies. Currently existing antiviral therapeutics are often specific to only a single viral species, and resistance to the therapeutic can often arise, and therefore new therapeutics are needed. The C. elegans-Orsay virus system offers a powerful platform for studying RNA virus-host interactions that could ultimately lead to novel targets for antiviral therapy. The relative simplicity of C. elegans, the well-established experimental tools, and its extensive evolutionary conservation of genes and pathways with mammals are key features of this model. Orsay virus, a bisegmented positive sense RNA virus, is a natural pathogen of C. elegans. Orsay virus infection can be studied in a multicellular organismal context, overcoming some of the limitations inherent to tissue culture-based systems. Moreover, compared to mice, the rapid generation time of C. elegans enables robust and facile forward genetics. This review aims to summarize studies that have laid the foundation for the C. elegans-Orsay virus experimental system, experimental tools, and key examples of C. elegans host factors that impact Orsay virus infection that have evolutionarily conserved function in mammalian virus infection.</p>","PeriodicalId":50977,"journal":{"name":"Advances in Virus Research","volume":"115 ","pages":"135-158"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9460225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/bs.aivir.2023.06.002
Eva Durinova, Peter Mojzes, Tomas Bily, Zdenek Franta, Tomas Fessl, Alexander Borodavka, Roman Tuma
Avian (ortho)reovirus (ARV), which belongs to Reoviridae family, is a major domestic fowl pathogen and is the causative agent of viral tenosynovitis and chronic respiratory disease in chicken. ARV replicates within cytoplasmic inclusions, so-called viral factories, that form by phase separation and thus belong to a wider class of biological condensates. Here, we evaluate different optical imaging methods that have been developed or adapted to follow formation, fluidity and composition of viral factories and compare them with the complementary structural information obtained by well-established transmission electron microscopy and electron tomography. The molecular and cellular biology aspects for setting up and following virus infection in cells by imaging are described first. We then demonstrate that a wide-field version of fluorescence recovery after photobleaching is an effective tool to measure fluidity of mobile viral factories. A new technique, holotomographic phase microscopy, is then used for imaging of viral factory formation in live cells in three dimensions. Confocal Raman microscopy of infected cells provides "chemical" contrast for label-free segmentation of images and addresses important questions about biomolecular concentrations within viral factories and other biological condensates. Optical imaging is complemented by electron microscopy and tomography which supply higher resolution structural detail, including visualization of individual virions within the three-dimensional cellular context.
{"title":"Shedding light on reovirus assembly-Multimodal imaging of viral factories.","authors":"Eva Durinova, Peter Mojzes, Tomas Bily, Zdenek Franta, Tomas Fessl, Alexander Borodavka, Roman Tuma","doi":"10.1016/bs.aivir.2023.06.002","DOIUrl":"https://doi.org/10.1016/bs.aivir.2023.06.002","url":null,"abstract":"<p><p>Avian (ortho)reovirus (ARV), which belongs to Reoviridae family, is a major domestic fowl pathogen and is the causative agent of viral tenosynovitis and chronic respiratory disease in chicken. ARV replicates within cytoplasmic inclusions, so-called viral factories, that form by phase separation and thus belong to a wider class of biological condensates. Here, we evaluate different optical imaging methods that have been developed or adapted to follow formation, fluidity and composition of viral factories and compare them with the complementary structural information obtained by well-established transmission electron microscopy and electron tomography. The molecular and cellular biology aspects for setting up and following virus infection in cells by imaging are described first. We then demonstrate that a wide-field version of fluorescence recovery after photobleaching is an effective tool to measure fluidity of mobile viral factories. A new technique, holotomographic phase microscopy, is then used for imaging of viral factory formation in live cells in three dimensions. Confocal Raman microscopy of infected cells provides \"chemical\" contrast for label-free segmentation of images and addresses important questions about biomolecular concentrations within viral factories and other biological condensates. Optical imaging is complemented by electron microscopy and tomography which supply higher resolution structural detail, including visualization of individual virions within the three-dimensional cellular context.</p>","PeriodicalId":50977,"journal":{"name":"Advances in Virus Research","volume":"116 ","pages":"173-213"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10277151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/bs.aivir.2023.05.001
Saskia Sanders, Yannick Jensen, Rudolph Reimer, Jens B Bosse
Individual functional viral morphogenesis events are often dynamic, short, and infrequent and might be obscured by other pathways and dead-end products. Volumetric live cell imaging has become an essential tool for studying viral morphogenesis events. It allows following entire dynamic processes while providing functional evidence that the imaged process is involved in viral production. Moreover, it allows to capture many individual events and allows quantitative analysis. Finally, the correlation of volumetric live-cell data with volumetric electron microscopy (EM) can provide crucial insights into the ultrastructure and mechanisms of viral morphogenesis events. Here, we provide an overview and discussion of suitable imaging methods for volumetric correlative imaging of viral morphogenesis and frame them in a historical summary of their development.
{"title":"From the beginnings to multidimensional light and electron microscopy of virus morphogenesis.","authors":"Saskia Sanders, Yannick Jensen, Rudolph Reimer, Jens B Bosse","doi":"10.1016/bs.aivir.2023.05.001","DOIUrl":"https://doi.org/10.1016/bs.aivir.2023.05.001","url":null,"abstract":"<p><p>Individual functional viral morphogenesis events are often dynamic, short, and infrequent and might be obscured by other pathways and dead-end products. Volumetric live cell imaging has become an essential tool for studying viral morphogenesis events. It allows following entire dynamic processes while providing functional evidence that the imaged process is involved in viral production. Moreover, it allows to capture many individual events and allows quantitative analysis. Finally, the correlation of volumetric live-cell data with volumetric electron microscopy (EM) can provide crucial insights into the ultrastructure and mechanisms of viral morphogenesis events. Here, we provide an overview and discussion of suitable imaging methods for volumetric correlative imaging of viral morphogenesis and frame them in a historical summary of their development.</p>","PeriodicalId":50977,"journal":{"name":"Advances in Virus Research","volume":"116 ","pages":"45-88"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9974166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-04-03DOI: 10.1016/bs.aivir.2023.02.003
Eveline Santos da Silva, Mojgan H Naghavi
Microtubules (MTs) form rapidly adaptable, complex intracellular networks of filaments that not only provide structural support, but also form the tracks along which motors traffic macromolecular cargos to specific sub-cellular sites. These dynamic arrays play a central role in regulating various cellular processes including cell shape and motility as well as cell division and polarization. Given their complex organization and functional importance, MT arrays are carefully controlled by many highly specialized proteins that regulate the nucleation of MT filaments at distinct sites, their dynamic growth and stability, and their engagement with other subcellular structures and cargoes destined for transport. This review focuses on recent advances in our understanding of how MTs and their regulatory proteins function, including their active targeting and exploitation, during infection by viruses that utilize a wide variety of replication strategies that occur within different cellular sub-compartments or regions of the cell.
{"title":"Microtubules and viral infection.","authors":"Eveline Santos da Silva, Mojgan H Naghavi","doi":"10.1016/bs.aivir.2023.02.003","DOIUrl":"10.1016/bs.aivir.2023.02.003","url":null,"abstract":"<p><p>Microtubules (MTs) form rapidly adaptable, complex intracellular networks of filaments that not only provide structural support, but also form the tracks along which motors traffic macromolecular cargos to specific sub-cellular sites. These dynamic arrays play a central role in regulating various cellular processes including cell shape and motility as well as cell division and polarization. Given their complex organization and functional importance, MT arrays are carefully controlled by many highly specialized proteins that regulate the nucleation of MT filaments at distinct sites, their dynamic growth and stability, and their engagement with other subcellular structures and cargoes destined for transport. This review focuses on recent advances in our understanding of how MTs and their regulatory proteins function, including their active targeting and exploitation, during infection by viruses that utilize a wide variety of replication strategies that occur within different cellular sub-compartments or regions of the cell.</p>","PeriodicalId":50977,"journal":{"name":"Advances in Virus Research","volume":"115 ","pages":"87-134"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9513333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/bs.aivir.2023.05.002
Enyu Xie, Shazeb Ahmad, Redmond P Smyth, Christian Sieben
Respiratory viruses are a major public health burden across all age groups around the globe, and are associated with high morbidity and mortality rates. They can be transmitted by multiple routes, including physical contact or droplets and aerosols, resulting in efficient spreading within the human population. Investigations of the cell biology of virus replication are thus of utmost importance to gain a better understanding of virus-induced pathogenicity and the development of antiviral countermeasures. Light and fluorescence microscopy techniques have revolutionized investigations of the cell biology of virus infection by allowing the study of the localization and dynamics of viral or cellular components directly in infected cells. Advanced microscopy including high- and super-resolution microscopy techniques available today can visualize biological processes at the single-virus and even single-molecule level, thus opening a unique view on virus infection. We will highlight how fluorescence microscopy has supported investigations on virus cell biology by focusing on three major respiratory viruses: respiratory syncytial virus (RSV), Influenza A virus (IAV) and SARS-CoV-2. We will review our current knowledge of virus replication and highlight how fluorescence microscopy has helped to improve our state of understanding. We will start by introducing major imaging and labeling modalities and conclude the chapter with a perspective discussion on remaining challenges and potential opportunities.
{"title":"Advanced fluorescence microscopy in respiratory virus cell biology.","authors":"Enyu Xie, Shazeb Ahmad, Redmond P Smyth, Christian Sieben","doi":"10.1016/bs.aivir.2023.05.002","DOIUrl":"https://doi.org/10.1016/bs.aivir.2023.05.002","url":null,"abstract":"<p><p>Respiratory viruses are a major public health burden across all age groups around the globe, and are associated with high morbidity and mortality rates. They can be transmitted by multiple routes, including physical contact or droplets and aerosols, resulting in efficient spreading within the human population. Investigations of the cell biology of virus replication are thus of utmost importance to gain a better understanding of virus-induced pathogenicity and the development of antiviral countermeasures. Light and fluorescence microscopy techniques have revolutionized investigations of the cell biology of virus infection by allowing the study of the localization and dynamics of viral or cellular components directly in infected cells. Advanced microscopy including high- and super-resolution microscopy techniques available today can visualize biological processes at the single-virus and even single-molecule level, thus opening a unique view on virus infection. We will highlight how fluorescence microscopy has supported investigations on virus cell biology by focusing on three major respiratory viruses: respiratory syncytial virus (RSV), Influenza A virus (IAV) and SARS-CoV-2. We will review our current knowledge of virus replication and highlight how fluorescence microscopy has helped to improve our state of understanding. We will start by introducing major imaging and labeling modalities and conclude the chapter with a perspective discussion on remaining challenges and potential opportunities.</p>","PeriodicalId":50977,"journal":{"name":"Advances in Virus Research","volume":"116 ","pages":"123-172"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10295161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/bs.aivir.2023.06.001
Jennifer Risso-Ballester, Marie-Anne Rameix-Welti
Respiratory Syncytial Virus (RSV) is a major cause of respiratory illness in young children, elderly and immunocompromised individuals worldwide representing a severe burden for health systems. The urgent development of vaccines or specific antivirals against RSV is impaired by the lack of knowledge regarding its replication mechanisms. RSV is a negative-sense single-stranded RNA (ssRNA) virus belonging to the Mononegavirales order (MNV) which includes other viruses pathogenic to humans as Rabies (RabV), Ebola (EBOV), or measles (MeV) viruses. Transcription and replication of viral genomes occur within cytoplasmatic virus-induced spherical inclusions, commonly referred as inclusion bodies (IBs). Recently IBs were shown to exhibit properties of membrane-less organelles (MLO) arising by liquid-liquid phase separation (LLPS). Compartmentalization of viral RNA synthesis steps in viral-induced MLO is indeed a common feature of MNV. Strikingly these key compartments still remain mysterious. Most of our current knowledge on IBs relies on the use of fluorescence microscopy. The ability to fluorescently label IBs in cells has been key to uncover their dynamics and nature. The generation of recombinant viruses expressing a fluorescently-labeled viral protein and the immunolabeling or the expression of viral fusion proteins known to be recruited in IBs are some of the tools used to visualize IBs in infected cells. In this chapter, microscope techniques and the most relevant studies that have shed light on RSV IBs fundamental aspects, including biogenesis, organization and dynamics are being discussed and brought to light with the investigations carried out on other MNV.
{"title":"Spatial resolution of virus replication: RSV and cytoplasmic inclusion bodies.","authors":"Jennifer Risso-Ballester, Marie-Anne Rameix-Welti","doi":"10.1016/bs.aivir.2023.06.001","DOIUrl":"https://doi.org/10.1016/bs.aivir.2023.06.001","url":null,"abstract":"<p><p>Respiratory Syncytial Virus (RSV) is a major cause of respiratory illness in young children, elderly and immunocompromised individuals worldwide representing a severe burden for health systems. The urgent development of vaccines or specific antivirals against RSV is impaired by the lack of knowledge regarding its replication mechanisms. RSV is a negative-sense single-stranded RNA (ssRNA) virus belonging to the Mononegavirales order (MNV) which includes other viruses pathogenic to humans as Rabies (RabV), Ebola (EBOV), or measles (MeV) viruses. Transcription and replication of viral genomes occur within cytoplasmatic virus-induced spherical inclusions, commonly referred as inclusion bodies (IBs). Recently IBs were shown to exhibit properties of membrane-less organelles (MLO) arising by liquid-liquid phase separation (LLPS). Compartmentalization of viral RNA synthesis steps in viral-induced MLO is indeed a common feature of MNV. Strikingly these key compartments still remain mysterious. Most of our current knowledge on IBs relies on the use of fluorescence microscopy. The ability to fluorescently label IBs in cells has been key to uncover their dynamics and nature. The generation of recombinant viruses expressing a fluorescently-labeled viral protein and the immunolabeling or the expression of viral fusion proteins known to be recruited in IBs are some of the tools used to visualize IBs in infected cells. In this chapter, microscope techniques and the most relevant studies that have shed light on RSV IBs fundamental aspects, including biogenesis, organization and dynamics are being discussed and brought to light with the investigations carried out on other MNV.</p>","PeriodicalId":50977,"journal":{"name":"Advances in Virus Research","volume":"116 ","pages":"1-43"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10603229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/bs.aivir.2023.02.002
María A Ayllón, Eeva J Vainio
Knowledge of mycovirus diversity, evolution, horizontal gene transfer and shared ancestry with viruses infecting distantly related hosts, such as plants and arthropods, has increased vastly during the last few years due to advances in the high throughput sequencing methodologies. This also has enabled the discovery of novel mycoviruses with previously unknown genome types, mainly new positive and negative single-stranded RNA mycoviruses ((+) ssRNA and (-) ssRNA) and single-stranded DNA mycoviruses (ssDNA), and has increased our knowledge of double-stranded RNA mycoviruses (dsRNA), which in the past were thought to be the most common viruses infecting fungi. Fungi and oomycetes (Stramenopila) share similar lifestyles and also have similar viromes. Hypothesis about the origin and cross-kingdom transmission events of viruses have been raised and are supported by phylogenetic analysis and by the discovery of natural exchange of viruses between different hosts during virus-fungus coinfection in planta. In this review we make a compilation of the current information on the genome organization, diversity and taxonomy of mycoviruses, discussing their possible origins. Our focus is in recent findings suggesting the expansion of the host range of many viral taxa previously considered to be exclusively fungal, but we also address factors affecting virus transmissibility and coexistence in single fungal or oomycete isolates, as well as the development of synthetic mycoviruses and their use in investigating mycovirus replication cycles and pathogenicity.
{"title":"Mycoviruses as a part of the global virome: Diversity, evolutionary links and lifestyle.","authors":"María A Ayllón, Eeva J Vainio","doi":"10.1016/bs.aivir.2023.02.002","DOIUrl":"https://doi.org/10.1016/bs.aivir.2023.02.002","url":null,"abstract":"<p><p>Knowledge of mycovirus diversity, evolution, horizontal gene transfer and shared ancestry with viruses infecting distantly related hosts, such as plants and arthropods, has increased vastly during the last few years due to advances in the high throughput sequencing methodologies. This also has enabled the discovery of novel mycoviruses with previously unknown genome types, mainly new positive and negative single-stranded RNA mycoviruses ((+) ssRNA and (-) ssRNA) and single-stranded DNA mycoviruses (ssDNA), and has increased our knowledge of double-stranded RNA mycoviruses (dsRNA), which in the past were thought to be the most common viruses infecting fungi. Fungi and oomycetes (Stramenopila) share similar lifestyles and also have similar viromes. Hypothesis about the origin and cross-kingdom transmission events of viruses have been raised and are supported by phylogenetic analysis and by the discovery of natural exchange of viruses between different hosts during virus-fungus coinfection in planta. In this review we make a compilation of the current information on the genome organization, diversity and taxonomy of mycoviruses, discussing their possible origins. Our focus is in recent findings suggesting the expansion of the host range of many viral taxa previously considered to be exclusively fungal, but we also address factors affecting virus transmissibility and coexistence in single fungal or oomycete isolates, as well as the development of synthetic mycoviruses and their use in investigating mycovirus replication cycles and pathogenicity.</p>","PeriodicalId":50977,"journal":{"name":"Advances in Virus Research","volume":"115 ","pages":"1-86"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9460223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-07-05DOI: 10.1016/bs.aivir.2023.06.003
Dmitry S Ushakov, Stefan Finke
Imaging pathogens within 3D environment of biological tissues provides spatial information about their localization and interactions with the host. Technological advances in fluorescence microscopy and 3D image analysis now permit visualization and quantification of pathogens directly in large tissue volumes and in great detail. In recent years large volume imaging became an important tool in virology research helping to understand the properties of viruses and the host response to infection. In this chapter we give a review of fluorescence microscopy modalities and tissue optical clearing methods used for large volume tissue imaging. A summary of recent applications for virus research is provided with particular emphasis on studies using light sheet fluorescence microscopy. We describe the challenges and approaches for volumetric image analysis. Practical examples of volumetric imaging implemented in virology laboratories and addressing specialized research questions, such as virus tropism and immune host response are described. We conclude with an overview of the emerging technologies and their potential for virus research.
{"title":"Tissue optical clearing and 3D imaging of virus infections.","authors":"Dmitry S Ushakov, Stefan Finke","doi":"10.1016/bs.aivir.2023.06.003","DOIUrl":"10.1016/bs.aivir.2023.06.003","url":null,"abstract":"<p><p>Imaging pathogens within 3D environment of biological tissues provides spatial information about their localization and interactions with the host. Technological advances in fluorescence microscopy and 3D image analysis now permit visualization and quantification of pathogens directly in large tissue volumes and in great detail. In recent years large volume imaging became an important tool in virology research helping to understand the properties of viruses and the host response to infection. In this chapter we give a review of fluorescence microscopy modalities and tissue optical clearing methods used for large volume tissue imaging. A summary of recent applications for virus research is provided with particular emphasis on studies using light sheet fluorescence microscopy. We describe the challenges and approaches for volumetric image analysis. Practical examples of volumetric imaging implemented in virology laboratories and addressing specialized research questions, such as virus tropism and immune host response are described. We conclude with an overview of the emerging technologies and their potential for virus research.</p>","PeriodicalId":50977,"journal":{"name":"Advances in Virus Research","volume":"116 ","pages":"89-121"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9908281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}