首页 > 最新文献

Research in Astronomy and Astrophysics最新文献

英文 中文
Development of a Front End Array for Broadband Phased Array Receiver 为宽带相控阵接收器开发前端阵列
Pub Date : 2024-02-01 DOI: 10.1088/1674-4527/ad24f6
Kai Wang, Liang Cao, Jun Ma, X. Duan, Hao Yan, Mao-zheng Chen, Yun-Wei Ning
The receiver is a signal receiving device placed at the focus of the telescope. In order to improve the observation efficiency, the concept of phased array receiver has been proposed in recent years, which places a small phased array at the focal plane of the reflector, and flexible pattern and beam scanning functions can be achieved through a beamforming network. If combined with the element multiplexing, all beams within the entire field of view can be observed simultaneously to achieve continuous sky coverage. This article focuses on the front-end array of phased array receiver at 0.7-1.8 GHz for QiTai Telescope, and designs a Vivaldi antenna array of PCB structure with dual line polarization. Each polarization antenna is designed to arrange in a rectangle manner by 11 × 10. Based on the simulation results of the focal field, 32, 18 and 8 elements were selected to form one beam at 0.7, 1.25 and 1.8 GHz. A analog beamforming network was constructed, and the measured gains of axial beam under uniform weighting were 19.32, 13.72 and 15.22 dBi. Combining the beam scanning method of reflector antenna, the pattern test of different position element sets required for PAF beam scanning was carried out under independent array. The pattern optimization at 1.25 GHz was carried out by weighting method of conjugate field matching. Compared with uniform weighting, the gain, sidelobe level, and main beam direction under conjugate field matching have been improved. Although the above test and simulation results are slightly different, which is related to the passive array and laboratory testing condition, the relevant work has accumulated experience in the development of front-end array for phased array receiver, and has good guiding significance for future performance verification after the array is installed on the telescope.
接收器是置于望远镜焦点的信号接收装置。为了提高观测效率,近年来提出了相控阵接收器的概念,即在反射镜焦平面上放置一个小型相控阵,通过波束成形网络实现灵活的模式和波束扫描功能。如果与元素复用相结合,就能同时观测整个视场内的所有波束,实现连续天空覆盖。本文主要针对奇台望远镜 0.7-1.8 GHz 相控阵接收机的前端阵列,设计了一种双线极化 PCB 结构的 Vivaldi 天线阵列。每个极化天线设计成 11 × 10 的矩形排列。根据焦场的模拟结果,分别选择了 32、18 和 8 个元素,在 0.7、1.25 和 1.8 GHz 频率下形成一个波束。构建了模拟波束成形网络,在均匀加权条件下测得的轴向波束增益分别为 19.32、13.72 和 15.22 dBi。结合反射天线的波束扫描方法,在独立阵列下对 PAF 波束扫描所需的不同位置元件组进行了图案测试。在 1.25 GHz 频率下,采用共轭场匹配加权法进行了模式优化。与均匀加权法相比,共轭场匹配法的增益、侧瓣电平和主波束方向都得到了改善。虽然上述测试结果与仿真结果略有不同,这与无源阵和实验室测试条件有关,但相关工作为相控阵接收机前端阵列的研制积累了经验,对今后阵列安装在望远镜上后的性能验证具有很好的指导意义。
{"title":"Development of a Front End Array for Broadband Phased Array Receiver","authors":"Kai Wang, Liang Cao, Jun Ma, X. Duan, Hao Yan, Mao-zheng Chen, Yun-Wei Ning","doi":"10.1088/1674-4527/ad24f6","DOIUrl":"https://doi.org/10.1088/1674-4527/ad24f6","url":null,"abstract":"\u0000 The receiver is a signal receiving device placed at the focus of the telescope. In order to improve the observation efficiency, the concept of phased array receiver has been proposed in recent years, which places a small phased array at the focal plane of the reflector, and flexible pattern and beam scanning functions can be achieved through a beamforming network. If combined with the element multiplexing, all beams within the entire field of view can be observed simultaneously to achieve continuous sky coverage. This article focuses on the front-end array of phased array receiver at 0.7-1.8 GHz for QiTai Telescope, and designs a Vivaldi antenna array of PCB structure with dual line polarization. Each polarization antenna is designed to arrange in a rectangle manner by 11 × 10. Based on the simulation results of the focal field, 32, 18 and 8 elements were selected to form one beam at 0.7, 1.25 and 1.8 GHz. A analog beamforming network was constructed, and the measured gains of axial beam under uniform weighting were 19.32, 13.72 and 15.22 dBi. Combining the beam scanning method of reflector antenna, the pattern test of different position element sets required for PAF beam scanning was carried out under independent array. The pattern optimization at 1.25 GHz was carried out by weighting method of conjugate field matching. Compared with uniform weighting, the gain, sidelobe level, and main beam direction under conjugate field matching have been improved. Although the above test and simulation results are slightly different, which is related to the passive array and laboratory testing condition, the relevant work has accumulated experience in the development of front-end array for phased array receiver, and has good guiding significance for future performance verification after the array is installed on the telescope.","PeriodicalId":509923,"journal":{"name":"Research in Astronomy and Astrophysics","volume":"336 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139876928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term evolution of solar activity and prediction of the followingsolar cycles 太阳活动的长期演变和对后续太阳周期的预测
Pub Date : 2024-01-15 DOI: 10.1088/1674-4527/ad1ed2
Peixin Luo, Baolin Tan
Solar activities have a great impact on modern high-tech systems, such as human aerospace, satellite communication and navigation, deep space exploration, and related scientific research. Therefore, studying the long - term evolution trend of solar activity and accurately predicting the future solar cycles is highly anticipated. Through wavelet transform and empirical function fitting of the longest recorded data of the annual average relative sunspot number (ASN) series of 323 years to date, this work decisively verified the existence of the solar century cycles and confirmed that its length is about 104.0 years, and the magnitude has a slightly increasing trend on the time scale of several hundreds of years. Based on this long-term evolutionary trend, we predicted solar cycle 25 and 26 by using phase similar prediction methods. As for the solar cycle 25, its maximum ASN will be about 146.7 ± 33.40, obviously stronger than solar cycle 24. The peak year will occur approximately in 2024, and the cycle length is about 11 ± 1 years. As for the solar cycle 26, it will start around 2030, reach the maximum between 2035 and 2036, with maximum ASN of about 133.0 ± 3.200, and the cycle length is about 10 years.
太阳活动对人类航空航天、卫星通信与导航、深空探测及相关科学研究等现代高科技系统具有重大影响。因此,研究太阳活动的长期演变趋势,准确预测未来的太阳周期备受期待。这项工作通过对迄今为止记录最长的 323 年太阳黑子年平均相对数(ASN)序列数据进行小波变换和经验函数拟合,果断地验证了太阳世纪周期的存在,并确认其长度约为 104.0 年,且其幅度在数百年的时间尺度上呈小幅上升趋势。根据这一长期演变趋势,我们用相近的预测方法预测了太阳周期 25 和 26。太阳周期 25 的最大 ASN 约为 146.7 ± 33.40,明显强于太阳周期 24。峰值年大约出现在 2024 年,周期长度约为 11 ± 1 年。至于太阳周期 26,它将于 2030 年左右开始,在 2035 至 2036 年之间达到最大值,最大 ASN 约为 133.0 ± 3.200,周期长度约为 10 年。
{"title":"Long-term evolution of solar activity and prediction of the followingsolar cycles","authors":"Peixin Luo, Baolin Tan","doi":"10.1088/1674-4527/ad1ed2","DOIUrl":"https://doi.org/10.1088/1674-4527/ad1ed2","url":null,"abstract":"\u0000 Solar activities have a great impact on modern high-tech systems, such as human aerospace, satellite communication and navigation, deep space exploration, and related scientific research. Therefore, studying the long - term evolution trend of solar activity and accurately predicting the future solar cycles is highly anticipated. Through wavelet transform and empirical function fitting of the longest recorded data of the annual average relative sunspot number (ASN) series of 323 years to date, this work decisively verified the existence of the solar century cycles and confirmed that its length is about 104.0 years, and the magnitude has a slightly increasing trend on the time scale of several hundreds of years. Based on this long-term evolutionary trend, we predicted solar cycle 25 and 26 by using phase similar prediction methods. As for the solar cycle 25, its maximum ASN will be about 146.7 ± 33.40, obviously stronger than solar cycle 24. The peak year will occur approximately in 2024, and the cycle length is about 11 ± 1 years. As for the solar cycle 26, it will start around 2030, reach the maximum between 2035 and 2036, with maximum ASN of about 133.0 ± 3.200, and the cycle length is about 10 years.","PeriodicalId":509923,"journal":{"name":"Research in Astronomy and Astrophysics","volume":"7 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139529465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Research in Astronomy and Astrophysics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1