首页 > 最新文献

Dynamic Systems and Applications最新文献

英文 中文
A Study of Collectively Coincidence Points and Maximal Type Elements 集合重合点与极大型元素的研究
Pub Date : 2021-12-14 DOI: 10.46719/dsa202130.12.01
D. O’Regan
{"title":"A Study of Collectively Coincidence Points and Maximal Type Elements","authors":"D. O’Regan","doi":"10.46719/dsa202130.12.01","DOIUrl":"https://doi.org/10.46719/dsa202130.12.01","url":null,"abstract":"","PeriodicalId":51019,"journal":{"name":"Dynamic Systems and Applications","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46723230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
H-PSO: A Secure Route Optimization Model for Link Fault Detection in Optical Networks H-PSO:一种用于光网络链路故障检测的安全路由优化模型
Pub Date : 2021-11-15 DOI: 10.46719/dsa202130.11.01
J. Kumarnath, K. Batri
{"title":"H-PSO: A Secure Route Optimization Model for Link Fault Detection in Optical Networks","authors":"J. Kumarnath, K. Batri","doi":"10.46719/dsa202130.11.01","DOIUrl":"https://doi.org/10.46719/dsa202130.11.01","url":null,"abstract":"","PeriodicalId":51019,"journal":{"name":"Dynamic Systems and Applications","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45717584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Investigation on the Effects of Ethyl Aceto Acetate (EAA), Diethyl Carbonate (DEC) and Diethylene Glycol (DEG) Blended with Fossil Fuel as Oxygenated Additives in Di Diesel Engines 与化石燃料混合的乙酸乙酯(EAA)、碳酸二乙酯(DEC)和二甘醇(DEG)作为柴油发动机加氧添加剂的实验研究
Pub Date : 2021-11-15 DOI: 10.46719/dsa202130.11.04
B. Parthasarathi, S. S
{"title":"Experimental Investigation on the Effects of Ethyl Aceto Acetate (EAA), Diethyl Carbonate (DEC) and Diethylene Glycol (DEG) Blended with Fossil Fuel as Oxygenated Additives in Di Diesel Engines","authors":"B. Parthasarathi, S. S","doi":"10.46719/dsa202130.11.04","DOIUrl":"https://doi.org/10.46719/dsa202130.11.04","url":null,"abstract":"","PeriodicalId":51019,"journal":{"name":"Dynamic Systems and Applications","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48935564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Clustering in Wireless Sensor Networks using Hybrid Jellyfish Optimization-Leach Protocol 基于混合水母优化-滤出协议的无线传感器网络动态聚类
Pub Date : 2021-11-15 DOI: 10.46719/dsa202130.11.02
M. Gurupriya, A. Sumathi
WSNs are usually equipped with a large number of sensor nodes that are designed and deployed to distribute and distribute the required data. Although sensors are sometimes deployed in remote environments, it is essential to identify a cluster head(CH) with an energy-efficient technique for transferring data in WSN. Cluster head selection algorithm is becoming a significant and challenging problem in WSN. This research presented a hybrid Leach with jellyfish algorithm for cluster head selection and an energy-efficient Heuristic Moth Search Algorithm (HMSA) to find efficient paths for transferring data to base station(BS).This technique avoids congestion with less guaranteed delays and maintain the energy efficiency of WSNs. The cluster head (CH) determines the residual energy on the basis of an optimum fit function assessed on the basis of strategic parameters such as distance between adjacent nodes and the centre. It can significantly reduce the number of dead nodesand reduce energy consumption. The HMSA method has been used to determine the best route for data transfer to the base station once the CH selection is complete. The entire WSN field is divided into several subdivisions, and each section chooses the designated target by measuring the transmission distance. The proposed approach has been assessed analytically, and results are compared with those related to conventional methods, namely HEED, FACER and EACBM, in terms of WSN Quality of service (QoS). The suggested approach demonstrated better performance in the number of live nodes and energy consumption than conventional algorithms.
wsn通常配备大量的传感器节点,这些节点的设计和部署是为了分发和分发所需的数据。虽然传感器有时部署在远程环境中,但在无线传感器网络中,使用节能技术识别簇头(CH)是必不可少的。簇头选择算法是无线传感器网络中一个重要而具有挑战性的问题。提出了一种混合滤出水母算法用于簇头选择,以及一种高效的启发式飞蛾搜索算法(HMSA)用于寻找有效的数据传输路径到基站(BS)。该技术避免了拥塞和低保证延迟,并保持了无线传感器网络的能量效率。簇头(CH)根据邻近节点与中心之间的距离等策略参数评估的最优拟合函数来确定剩余能量。它可以显著减少死节点数量,降低能耗。一旦CH选择完成,HMSA方法已用于确定向基站传输数据的最佳路由。将整个WSN领域划分为几个细分,每个细分通过测量传输距离来选择指定的目标。对该方法进行了分析评估,并将结果与传统方法(即HEED、FACER和EACBM)在无线传感器网络服务质量(QoS)方面的结果进行了比较。与传统算法相比,该方法在活节点数和能耗方面表现出更好的性能。
{"title":"Dynamic Clustering in Wireless Sensor Networks using Hybrid Jellyfish Optimization-Leach Protocol","authors":"M. Gurupriya, A. Sumathi","doi":"10.46719/dsa202130.11.02","DOIUrl":"https://doi.org/10.46719/dsa202130.11.02","url":null,"abstract":"WSNs are usually equipped with a large number of sensor nodes that are designed and deployed to distribute and distribute the required data. Although sensors are sometimes deployed in remote environments, it is essential to identify a cluster head(CH) with an energy-efficient technique for transferring data in WSN. Cluster head selection algorithm is becoming a significant and challenging problem in WSN. This research presented a hybrid Leach with jellyfish algorithm for cluster head selection and an energy-efficient Heuristic Moth Search Algorithm (HMSA) to find efficient paths for transferring data to base station(BS).This technique avoids congestion with less guaranteed delays and maintain the energy efficiency of WSNs. The cluster head (CH) determines the residual energy on the basis of an optimum fit function assessed on the basis of strategic parameters such as distance between adjacent nodes and the centre. It can significantly reduce the number of dead nodesand reduce energy consumption. The HMSA method has been used to determine the best route for data transfer to the base station once the CH selection is complete. The entire WSN field is divided into several subdivisions, and each section chooses the designated target by measuring the transmission distance. The proposed approach has been assessed analytically, and results are compared with those related to conventional methods, namely HEED, FACER and EACBM, in terms of WSN Quality of service (QoS). The suggested approach demonstrated better performance in the number of live nodes and energy consumption than conventional algorithms.","PeriodicalId":51019,"journal":{"name":"Dynamic Systems and Applications","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43681811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Reinforcement Learning Based Handoff Mechanism in Cooperative Cognitive Radio Networks 合作认知无线电网络中基于强化学习的切换机制
Pub Date : 2021-11-15 DOI: 10.46719/dsa202130.11.03
Vineetha Mathai, P. Indumathi
{"title":"Reinforcement Learning Based Handoff Mechanism in Cooperative Cognitive Radio Networks","authors":"Vineetha Mathai, P. Indumathi","doi":"10.46719/dsa202130.11.03","DOIUrl":"https://doi.org/10.46719/dsa202130.11.03","url":null,"abstract":"","PeriodicalId":51019,"journal":{"name":"Dynamic Systems and Applications","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45461192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Efficient Relay Selection Method Based on ANN Channel Estimation Technique for Amplify and Forward Relay in Cooperative Networks 一种基于人工神经网络信道估计的有效中继选择方法
Pub Date : 2021-10-11 DOI: 10.46719/dsa202130.10.06
Dr.EZHILAZHAGAN CHENGUTTUVAN, M. Ramakrishnan
{"title":"An Efficient Relay Selection Method Based on ANN Channel Estimation Technique for Amplify and Forward Relay in Cooperative Networks","authors":"Dr.EZHILAZHAGAN CHENGUTTUVAN, M. Ramakrishnan","doi":"10.46719/dsa202130.10.06","DOIUrl":"https://doi.org/10.46719/dsa202130.10.06","url":null,"abstract":"","PeriodicalId":51019,"journal":{"name":"Dynamic Systems and Applications","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42715832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Time Optimization in Cloud Computing with the Heterogeneous Earliest Finish Time Algorithm 基于异构最早完成时间算法的云计算时间优化
Pub Date : 2021-10-11 DOI: 10.46719/dsa202130.10.08
Lokesh Sivanandam, S. Periyasamy, Uma Maheswari Oorkavalan
{"title":"Time Optimization in Cloud Computing with the Heterogeneous Earliest Finish Time Algorithm","authors":"Lokesh Sivanandam, S. Periyasamy, Uma Maheswari Oorkavalan","doi":"10.46719/dsa202130.10.08","DOIUrl":"https://doi.org/10.46719/dsa202130.10.08","url":null,"abstract":"","PeriodicalId":51019,"journal":{"name":"Dynamic Systems and Applications","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46691060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LULC Image Classifications using K-Means Clustering and KNN Algorithm 基于k -均值聚类和KNN算法的LULC图像分类
Pub Date : 2021-10-11 DOI: 10.46719/dsa202130.10.07
Y. Kalpana, S. Nandhagopal
{"title":"LULC Image Classifications using K-Means Clustering and KNN Algorithm","authors":"Y. Kalpana, S. Nandhagopal","doi":"10.46719/dsa202130.10.07","DOIUrl":"https://doi.org/10.46719/dsa202130.10.07","url":null,"abstract":"","PeriodicalId":51019,"journal":{"name":"Dynamic Systems and Applications","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49068442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Efficient flyback converter with h6 inverter using mathematical modelling of smfo for performance improvement in grid connected pv system 基于smo数学模型的h6逆变器高效反激变换器并网光伏系统性能改进
Pub Date : 2021-10-11 DOI: 10.46719/dsa202130.10.02
S. Saravanakumar, R. Arulmozhiyal
{"title":"Efficient flyback converter with h6 inverter using mathematical modelling of smfo for performance improvement in grid connected pv system","authors":"S. Saravanakumar, R. Arulmozhiyal","doi":"10.46719/dsa202130.10.02","DOIUrl":"https://doi.org/10.46719/dsa202130.10.02","url":null,"abstract":"","PeriodicalId":51019,"journal":{"name":"Dynamic Systems and Applications","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44002338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of Adder Based on Logical Gates for High-Speed Low Power Robotic Applications 基于逻辑门的高速低功耗机器人加法器设计
Pub Date : 2021-10-11 DOI: 10.46719/dsa202130.10.09
S. Vadivel, N. Nithya, S. Sivaprakash
{"title":"Design of Adder Based on Logical Gates for High-Speed Low Power Robotic Applications","authors":"S. Vadivel, N. Nithya, S. Sivaprakash","doi":"10.46719/dsa202130.10.09","DOIUrl":"https://doi.org/10.46719/dsa202130.10.09","url":null,"abstract":"","PeriodicalId":51019,"journal":{"name":"Dynamic Systems and Applications","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43282866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Dynamic Systems and Applications
全部 Geobiology Appl. Clay Sci. Geochim. Cosmochim. Acta J. Hydrol. Org. Geochem. Carbon Balance Manage. Contrib. Mineral. Petrol. Int. J. Biometeorol. IZV-PHYS SOLID EART+ J. Atmos. Chem. Acta Oceanolog. Sin. Acta Geophys. ACTA GEOL POL ACTA PETROL SIN ACTA GEOL SIN-ENGL AAPG Bull. Acta Geochimica Adv. Atmos. Sci. Adv. Meteorol. Am. J. Phys. Anthropol. Am. J. Sci. Am. Mineral. Annu. Rev. Earth Planet. Sci. Appl. Geochem. Aquat. Geochem. Ann. Glaciol. Archaeol. Anthropol. Sci. ARCHAEOMETRY ARCT ANTARCT ALP RES Asia-Pac. J. Atmos. Sci. ATMOSPHERE-BASEL Atmos. Res. Aust. J. Earth Sci. Atmos. Chem. Phys. Atmos. Meas. Tech. Basin Res. Big Earth Data BIOGEOSCIENCES Geostand. Geoanal. Res. GEOLOGY Geosci. J. Geochem. J. Geochem. Trans. Geosci. Front. Geol. Ore Deposits Global Biogeochem. Cycles Gondwana Res. Geochem. Int. Geol. J. Geophys. Prospect. Geosci. Model Dev. GEOL BELG GROUNDWATER Hydrogeol. J. Hydrol. Earth Syst. Sci. Hydrol. Processes Int. J. Climatol. Int. J. Earth Sci. Int. Geol. Rev. Int. J. Disaster Risk Reduct. Int. J. Geomech. Int. J. Geog. Inf. Sci. Isl. Arc J. Afr. Earth. Sci. J. Adv. Model. Earth Syst. J APPL METEOROL CLIM J. Atmos. Oceanic Technol. J. Atmos. Sol. Terr. Phys. J. Clim. J. Earth Sci. J. Earth Syst. Sci. J. Environ. Eng. Geophys. J. Geog. Sci. Mineral. Mag. Miner. Deposita Mon. Weather Rev. Nat. Hazards Earth Syst. Sci. Nat. Clim. Change Nat. Geosci. Ocean Dyn. Ocean and Coastal Research npj Clim. Atmos. Sci. Ocean Modell. Ocean Sci. Ore Geol. Rev. OCEAN SCI J Paleontol. J. PALAEOGEOGR PALAEOCL PERIOD MINERAL PETROLOGY+ Phys. Chem. Miner. Polar Sci. Prog. Oceanogr. Quat. Sci. Rev. Q. J. Eng. Geol. Hydrogeol. RADIOCARBON Pure Appl. Geophys. Resour. Geol. Rev. Geophys. Sediment. Geol.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1