首页 > 最新文献

Stochastics and Dynamics最新文献

英文 中文
The Impact of noise on Burgers equations 噪声对Burgers方程的影响
4区 数学 Q3 Mathematics Pub Date : 2023-10-27 DOI: 10.1142/s0219493723500557
Jinlong Wei, Guangying Lv
{"title":"The Impact of noise on Burgers equations","authors":"Jinlong Wei, Guangying Lv","doi":"10.1142/s0219493723500557","DOIUrl":"https://doi.org/10.1142/s0219493723500557","url":null,"abstract":"","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136312425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic Dynamics and Data Science 随机动力学与数据科学
4区 数学 Q3 Mathematics Pub Date : 2023-10-06 DOI: 10.1142/s0219493723400026
Ting Gao, Jinqiao Duan
{"title":"Stochastic Dynamics and Data Science","authors":"Ting Gao, Jinqiao Duan","doi":"10.1142/s0219493723400026","DOIUrl":"https://doi.org/10.1142/s0219493723400026","url":null,"abstract":"","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135350366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Most Likely Transition Path for a Class of Distribution-Dependent Stochastic Systems 一类分布相关随机系统的最可能转移路径
4区 数学 Q3 Mathematics Pub Date : 2023-10-06 DOI: 10.1142/s0219493723400087
Wei Wei, Jianyu Hu, Jinqiao Duan
Distribution-dependent stochastic dynamical systems arise widely in engineering and science. We consider a class of such systems which model the limit behaviors of interacting particles moving in a vector field with random fluctuations. We aim to examine the most likely transition path between equilibrium stable states of the vector field. In the small noise regime, we find that the rate function (or action functional) does not involve with the solution of the skeleton equation, which describes unperturbed deterministic flow of the vector field shifted by the interaction at zero distance. As a result, we are led to study the most likely transition path for a stochastic differential equation without distribution-dependency. This enables the computation of the most likely transition path for these distribution-dependent stochastic dynamical systems by the adaptive minimum action method and we illustrate our approach in two examples.
分布相关随机动力系统在工程和科学中广泛应用。我们考虑了一类这样的系统,它模拟了在随机波动的矢量场中运动的相互作用粒子的极限行为。我们的目的是研究向量场平衡稳定状态之间最可能的过渡路径。在小噪声条件下,我们发现速率函数(或作用泛函)不涉及描述矢量场在零距离处受相互作用位移的无摄动确定性流的骨架方程的解。因此,我们研究了无分布依赖的随机微分方程的最可能转移路径。这使得通过自适应最小作用方法计算这些分布相关随机动力系统的最可能的过渡路径成为可能,我们用两个例子来说明我们的方法。
{"title":"The Most Likely Transition Path for a Class of Distribution-Dependent Stochastic Systems","authors":"Wei Wei, Jianyu Hu, Jinqiao Duan","doi":"10.1142/s0219493723400087","DOIUrl":"https://doi.org/10.1142/s0219493723400087","url":null,"abstract":"Distribution-dependent stochastic dynamical systems arise widely in engineering and science. We consider a class of such systems which model the limit behaviors of interacting particles moving in a vector field with random fluctuations. We aim to examine the most likely transition path between equilibrium stable states of the vector field. In the small noise regime, we find that the rate function (or action functional) does not involve with the solution of the skeleton equation, which describes unperturbed deterministic flow of the vector field shifted by the interaction at zero distance. As a result, we are led to study the most likely transition path for a stochastic differential equation without distribution-dependency. This enables the computation of the most likely transition path for these distribution-dependent stochastic dynamical systems by the adaptive minimum action method and we illustrate our approach in two examples.","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135302005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying stochastic governing equations from data of the most probable transition trajectories 从最可能的过渡轨迹数据中识别随机控制方程
4区 数学 Q3 Mathematics Pub Date : 2023-10-06 DOI: 10.1142/s0219493723400105
Jian Ren, Jinqiao Duan
Extracting governing stochastic differential equation models from elusive data is crucial to understand and forecast dynamics for complex systems. We devise a method to extract the drift term and estimate the diffusion coefficient of a governing stochastic dynamical system, from its time-series data of the most probable transition trajectory. By the Onsager-Machlup theory, the most probable transition trajectory satisfies the corresponding Euler-Lagrange equation, which is a second order deterministic ordinary differential equation involving the drift term and diffusion coefficient. We first estimate the coefficients of the Euler-Lagrange equation based on the data of the most probable trajectory, and then we calculate the drift and diffusion coefficients of the governing stochastic dynamical system. These two steps involve sparse regression and optimization. Finally, we illustrate our method with an example and some discussions.
从难以捉摸的数据中提取控制随机微分方程模型对于理解和预测复杂系统的动力学是至关重要的。我们设计了一种从控制随机动力系统的最可能转移轨迹的时间序列数据中提取漂移项和估计扩散系数的方法。根据Onsager-Machlup理论,最可能的跃迁轨迹满足相应的Euler-Lagrange方程,该方程是包含漂移项和扩散系数的二阶确定性常微分方程。首先根据最可能轨迹的数据估计欧拉-拉格朗日方程的系数,然后计算控制随机动力系统的漂移系数和扩散系数。这两个步骤涉及稀疏回归和优化。最后,我们用一个例子和一些讨论来说明我们的方法。
{"title":"Identifying stochastic governing equations from data of the most probable transition trajectories","authors":"Jian Ren, Jinqiao Duan","doi":"10.1142/s0219493723400105","DOIUrl":"https://doi.org/10.1142/s0219493723400105","url":null,"abstract":"Extracting governing stochastic differential equation models from elusive data is crucial to understand and forecast dynamics for complex systems. We devise a method to extract the drift term and estimate the diffusion coefficient of a governing stochastic dynamical system, from its time-series data of the most probable transition trajectory. By the Onsager-Machlup theory, the most probable transition trajectory satisfies the corresponding Euler-Lagrange equation, which is a second order deterministic ordinary differential equation involving the drift term and diffusion coefficient. We first estimate the coefficients of the Euler-Lagrange equation based on the data of the most probable trajectory, and then we calculate the drift and diffusion coefficients of the governing stochastic dynamical system. These two steps involve sparse regression and optimization. Finally, we illustrate our method with an example and some discussions.","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135302734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Dynamics of a Stochastic Phytoplankton-Zooplankton System with Defensive and Offensive Effects 具有防御和进攻效应的随机浮游植物-浮游动物系统动力学
4区 数学 Q3 Mathematics Pub Date : 2023-10-06 DOI: 10.1142/s0219493723400099
Yi Wang, Qing Guo, Min Zhao, Chuanjun Dai, He Liu
{"title":"Dynamics of a Stochastic Phytoplankton-Zooplankton System with Defensive and Offensive Effects","authors":"Yi Wang, Qing Guo, Min Zhao, Chuanjun Dai, He Liu","doi":"10.1142/s0219493723400099","DOIUrl":"https://doi.org/10.1142/s0219493723400099","url":null,"abstract":"","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135350536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One Admissible Critical Pair Without Lyapunov Norm Implies a Tempered Exponential Dichotomy for MET-Systems 一个无Lyapunov范数的可容许临界对暗示了met -系统的缓调指数二分法
4区 数学 Q3 Mathematics Pub Date : 2023-10-06 DOI: 10.1142/s0219493723500533
Davor Dragicevic, Weinian Zhang, Linfeng Zhou
{"title":"One Admissible Critical Pair Without Lyapunov Norm Implies a Tempered Exponential Dichotomy for MET-Systems","authors":"Davor Dragicevic, Weinian Zhang, Linfeng Zhou","doi":"10.1142/s0219493723500533","DOIUrl":"https://doi.org/10.1142/s0219493723500533","url":null,"abstract":"","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135350537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large deviation limits of invariant measures 不变测度的大偏差极限
4区 数学 Q3 Mathematics Pub Date : 2023-10-06 DOI: 10.1142/s0219493723500521
Anatolii A. Puhalskii
This paper is concerned with the general theme of relating the Large Deviation Principle (LDP) for the invariant measures of stochastic processes to the associated sample path LDP. It is shown that if the sample path deviation function possesses certain structure and the invariant measures are exponentially tight, then the LDP for the invariant measures is implied by the sample path LDP, no other properties of the stochastic processes in question being material. As an application, we obtain an LDP for the stationary distributions of jump diffusions. Methods of large deviation convergence and idempotent probability play an integral part.
本文讨论了随机过程不变测度的大偏差原理与相关样本路径的大偏差原理之间的关系。结果表明,如果样本路径偏差函数具有一定的结构,且不变测度是指数紧的,则不变测度的LDP由样本路径LDP隐含,而随机过程的其他性质无关紧要。作为应用,我们得到了跳跃扩散平稳分布的LDP。大偏差收敛和幂等概率的方法是其中不可或缺的一部分。
{"title":"Large deviation limits of invariant measures","authors":"Anatolii A. Puhalskii","doi":"10.1142/s0219493723500521","DOIUrl":"https://doi.org/10.1142/s0219493723500521","url":null,"abstract":"This paper is concerned with the general theme of relating the Large Deviation Principle (LDP) for the invariant measures of stochastic processes to the associated sample path LDP. It is shown that if the sample path deviation function possesses certain structure and the invariant measures are exponentially tight, then the LDP for the invariant measures is implied by the sample path LDP, no other properties of the stochastic processes in question being material. As an application, we obtain an LDP for the stationary distributions of jump diffusions. Methods of large deviation convergence and idempotent probability play an integral part.","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135302593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Data-driven method to extract mean exit time and escape probability for dynamical systems driven by Levy noises 基于数据驱动的列维噪声驱动动力系统平均退出时间和逃逸概率提取方法
4区 数学 Q3 Mathematics Pub Date : 2023-10-06 DOI: 10.1142/s0219493723400075
Linghongzhi Lu, Yang Li, Xianbin Liu
{"title":"Data-driven method to extract mean exit time and escape probability for dynamical systems driven by Levy noises","authors":"Linghongzhi Lu, Yang Li, Xianbin Liu","doi":"10.1142/s0219493723400075","DOIUrl":"https://doi.org/10.1142/s0219493723400075","url":null,"abstract":"","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135350517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniform large deviations of fractional stochastic equations with polynomial drift on unbounded domains 无界域上具有多项式漂移的分数阶随机方程的一致大偏差
IF 1.1 4区 数学 Q3 Mathematics Pub Date : 2023-09-01 DOI: 10.1142/s0219493723500491
Bixiang Wang
{"title":"Uniform large deviations of fractional stochastic equations with polynomial drift on unbounded domains","authors":"Bixiang Wang","doi":"10.1142/s0219493723500491","DOIUrl":"https://doi.org/10.1142/s0219493723500491","url":null,"abstract":"","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43456698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GAUSSIAN STRUCTURE IN COALESCING STOCHASTIC FLOWS 聚并随机流中的高斯结构
IF 1.1 4区 数学 Q3 Mathematics Pub Date : 2023-09-01 DOI: 10.1142/s021949372350048x
A. Dorogovtsev, K.V. Hlyniana
{"title":"GAUSSIAN STRUCTURE IN COALESCING STOCHASTIC FLOWS","authors":"A. Dorogovtsev, K.V. Hlyniana","doi":"10.1142/s021949372350048x","DOIUrl":"https://doi.org/10.1142/s021949372350048x","url":null,"abstract":"","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48531190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Stochastics and Dynamics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1