This paper explores the convergence of Human-Centered AI (HCAI) and Cyber-Physical Social Systems (CPSS) in pursuing advanced Cognitive Situation Awareness (CSA). Integrating HCAI principles within CPSS fosters systems prioritizing human needs, values, and experiences, improving perception, understanding, and responsiveness to complex environments. By incorporating transparency, interpretability, and usability into Artificial Intelligence (AI) systems, the human-centered approach enhances user interaction and cooperation with intelligent systems, leading to more adaptive and efficient CPSS. The study employs a comprehensive approach to explore the intersection of HCAI and CPSS. Moreover, the paper presents case studies to illustrate real-world applications of HCAI and CPSS, such as self-driving cars and smart homes, transportation, healthcare, energy management, social media, and emergency response systems. Nevertheless, technical complexities, privacy concerns, and regulatory considerations must be addressed. The paper demonstrates the practical implications of integrating HCAI into CPSS through case studies in various domains. Furthermore, It highlights the positive impact of CSA systems such as self-driving cars, showcasing improvements in transportation. This paper contributes to advancing CSA and designing intelligent systems, promoting human–machine collaboration and societal well-being. By examining the intersection of HCAI and CPSS, this study advances research in CSA and designing intelligent systems prioritizing human needs, values, and experiences.
{"title":"Synergy of Human-Centered AI and Cyber-Physical-Social Systems for Enhanced Cognitive Situation Awareness: Applications, Challenges and Opportunities","authors":"Saeed Hamood Alsamhi, Santosh Kumar, Ammar Hawbani, Alexey V. Shvetsov, Liang Zhao, Mohsen Guizani","doi":"10.1007/s12559-024-10271-7","DOIUrl":"https://doi.org/10.1007/s12559-024-10271-7","url":null,"abstract":"<p>This paper explores the convergence of Human-Centered AI (HCAI) and Cyber-Physical Social Systems (CPSS) in pursuing advanced Cognitive Situation Awareness (CSA). Integrating HCAI principles within CPSS fosters systems prioritizing human needs, values, and experiences, improving perception, understanding, and responsiveness to complex environments. By incorporating transparency, interpretability, and usability into Artificial Intelligence (AI) systems, the human-centered approach enhances user interaction and cooperation with intelligent systems, leading to more adaptive and efficient CPSS. The study employs a comprehensive approach to explore the intersection of HCAI and CPSS. Moreover, the paper presents case studies to illustrate real-world applications of HCAI and CPSS, such as self-driving cars and smart homes, transportation, healthcare, energy management, social media, and emergency response systems. Nevertheless, technical complexities, privacy concerns, and regulatory considerations must be addressed. The paper demonstrates the practical implications of integrating HCAI into CPSS through case studies in various domains. Furthermore, It highlights the positive impact of CSA systems such as self-driving cars, showcasing improvements in transportation. This paper contributes to advancing CSA and designing intelligent systems, promoting human–machine collaboration and societal well-being. By examining the intersection of HCAI and CPSS, this study advances research in CSA and designing intelligent systems prioritizing human needs, values, and experiences.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":"17 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140567888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-10DOI: 10.1007/s12559-024-10266-4
Carmen De Maio, Giuseppe Fenza, Mariacristina Gallo, Vincenzo Loia, Alberto Volpe
Fires represent a significant threat to the environment, infrastructure, and human safety, often spreading rapidly with wide-ranging consequences such as economic losses and life risks. Early detection and swift response to fire outbreaks are crucial to mitigating their impact. While satellite-based monitoring is effective, it may miss brief or indoor fires. This paper introduces a novel Perceived Risk Index (PRI) that, complementing satellite data, leverages social media data to provide insights into the severity of fire events. In the light of the results of statistical analysis, the PRI incorporates the number of fire-related tweets and the associated emotional expressions to gauge the perceived risk. The index’s evaluation involves the development of a comprehensive system that collects, classifies, annotates, and correlates social media posts with satellite data, presenting the findings in an interactive dashboard. Experimental results using diverse datasets of real-fire tweets demonstrate an average best correlation of 77% between PRI and the brightness values of fires detected by satellites. This correlation extends to the real intensity of the corresponding fires, showcasing the potential of social media platforms in furnishing information for emergency response and decision-making. The proposed PRI proves to be a valuable tool for ongoing monitoring efforts, having the potential to capture data on fires missed by satellites. This contributes to the development to more effective strategies for mitigating the environmental, infrastructural, and safety impacts of fire events.
火灾对环境、基础设施和人类安全构成重大威胁,通常会迅速蔓延,造成经济损失和生命危险等广泛后果。及早发现并迅速应对火灾爆发对减轻其影响至关重要。基于卫星的监测虽然有效,但可能会错过短暂的火灾或室内火灾。本文介绍了一种新颖的感知风险指数(PRI),该指数与卫星数据互为补充,利用社交媒体数据来深入了解火灾事件的严重性。根据统计分析结果,PRI 将与火灾有关的推文数量和相关的情绪表达纳入其中,以衡量感知风险。该指数的评估包括开发一个综合系统,用于收集、分类、注释社交媒体帖子并将其与卫星数据相关联,同时在一个交互式仪表板中展示评估结果。使用各种真实火灾推文数据集的实验结果表明,PRI 与卫星探测到的火灾亮度值之间的平均最佳相关性为 77%。这种相关性延伸到了相应火灾的实际强度,展示了社交媒体平台在为应急响应和决策提供信息方面的潜力。拟议的 PRI 被证明是持续监测工作的宝贵工具,有可能捕捉到卫星遗漏的火灾数据。这有助于制定更有效的战略,减轻火灾事件对环境、基础设施和安全的影响。
{"title":"A Perceived Risk Index Leveraging Social Media Data: Assessing Severity of Fire on Microblogging","authors":"Carmen De Maio, Giuseppe Fenza, Mariacristina Gallo, Vincenzo Loia, Alberto Volpe","doi":"10.1007/s12559-024-10266-4","DOIUrl":"https://doi.org/10.1007/s12559-024-10266-4","url":null,"abstract":"<p>Fires represent a significant threat to the environment, infrastructure, and human safety, often spreading rapidly with wide-ranging consequences such as economic losses and life risks. Early detection and swift response to fire outbreaks are crucial to mitigating their impact. While satellite-based monitoring is effective, it may miss brief or indoor fires. This paper introduces a novel Perceived Risk Index (PRI) that, complementing satellite data, leverages social media data to provide insights into the severity of fire events. In the light of the results of statistical analysis, the PRI incorporates the number of fire-related tweets and the associated emotional expressions to gauge the perceived risk. The index’s evaluation involves the development of a comprehensive system that collects, classifies, annotates, and correlates social media posts with satellite data, presenting the findings in an interactive dashboard. Experimental results using diverse datasets of real-fire tweets demonstrate an average best correlation of 77% between PRI and the brightness values of fires detected by satellites. This correlation extends to the real intensity of the corresponding fires, showcasing the potential of social media platforms in furnishing information for emergency response and decision-making. The proposed PRI proves to be a valuable tool for ongoing monitoring efforts, having the potential to capture data on fires missed by satellites. This contributes to the development to more effective strategies for mitigating the environmental, infrastructural, and safety impacts of fire events.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":"53 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140567887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diagnosing cognitive impairment is an ongoing field of research especially in the elderly. Assessing the health status of the elderly can be a complex process that requires both subjective and objective measures. Subjective measures, such as self-reported responses to questions, can provide valuable information about a person’s experiences, feelings, and beliefs. However, from a scientific point of view, objective measures, based on quantifiable data that can be used to assess a person’s physical and cognitive functioning, are more appropriate and rigorous. The proposed system is based on the use of non-invasive instrumentation, which includes video images acquired with a frontal camera while the user performs different handwriting tasks on a Wacom tablet. We have acquired a new multimodal database of 191 elder subjects, which has been classified by human experts into healthy and cognitive impairment users by means of the standard pentagon copying test. The automatic classification was carried out using a video segmentation algorithm through the technique of shot boundary detection, in conjunction with a Transformer neural network. We obtain a multiclass classification accuracy of 77% and two-class accuracy of 83% based on frontal camera images, which basically detects head movements during handwriting tasks. Our automatic system can replicate human classification of handwritten pentagon copying test, opening a new method for cognitive impairment detection based on head movements. We also demonstrate the possibility to identifying the handwritten task performed by the user, based on frontal camera images and a Transformer neural network.
{"title":"Cognitive Impairment Detection Based on Frontal Camera Scene While Performing Handwriting Tasks","authors":"Federico Candela, Santina Romeo, Marcos Faundez-Zanuy, Pau Ferrer-Ramos","doi":"10.1007/s12559-024-10279-z","DOIUrl":"https://doi.org/10.1007/s12559-024-10279-z","url":null,"abstract":"<p>Diagnosing cognitive impairment is an ongoing field of research especially in the elderly. Assessing the health status of the elderly can be a complex process that requires both subjective and objective measures. Subjective measures, such as self-reported responses to questions, can provide valuable information about a person’s experiences, feelings, and beliefs. However, from a scientific point of view, objective measures, based on quantifiable data that can be used to assess a person’s physical and cognitive functioning, are more appropriate and rigorous. The proposed system is based on the use of non-invasive instrumentation, which includes video images acquired with a frontal camera while the user performs different handwriting tasks on a Wacom tablet. We have acquired a new multimodal database of 191 elder subjects, which has been classified by human experts into healthy and cognitive impairment users by means of the standard pentagon copying test. The automatic classification was carried out using a video segmentation algorithm through the technique of shot boundary detection, in conjunction with a Transformer neural network. We obtain a multiclass classification accuracy of 77% and two-class accuracy of 83% based on frontal camera images, which basically detects head movements during handwriting tasks. Our automatic system can replicate human classification of handwritten pentagon copying test, opening a new method for cognitive impairment detection based on head movements. We also demonstrate the possibility to identifying the handwritten task performed by the user, based on frontal camera images and a Transformer neural network.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":"25 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140567720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cyber-physical-social-systems interconnect diverse technologies and communication infrastructure to the Internet for environmental sensing and computation. They offer many real-time autonomous services for smart cities, industry, transportation, medical systems, etc. The Internet of Medical Things (IoMT) has gained the potential for developing cyber-physical system (CPS) to facilitate healthcare applications and analyze the records of patients. Such a communication paradigm is integrated into many wireless standards for managing crucial data with cloud computing. However, the limitations of low-powered resources of such healthcare infrastructures increase the complexity level of sustainable growth. Wireless connectivity in next-generation networks is another research goal due to unbalanced load distribution. Furthermore, low-powered computing devices can be easily accessible by intruders and eliminate the confidentiality of any data transmission, so privacy is another research concern for healthcare systems. Therefore, using intelligent computing, this paper proposed a novel resilient predictive model for e-health sensing. The proposed model provides an efficient CPS-enabled automated routing system by exploring the optimization process with edge intelligence. This particular solution increases the level of cooperation between communication devices with intelligent data processing and higher predictive services. Moreover, by offering a trustworthy scheme, it seeks to enhance digital communication, data aggregation, and data breach prevention. The experimental findings highlight significant outcomes of the proposed model for packet reception, network overhead, data delay, and reliability as compared to alternative solutions.
{"title":"A Novel Resilient and Intelligent Predictive Model for CPS-Enabled E-Health Applications","authors":"Amjad Rehman, Khalid Haseeb, Teg Alam, Tanzila Saba, Gwanggil Jeon","doi":"10.1007/s12559-024-10278-0","DOIUrl":"https://doi.org/10.1007/s12559-024-10278-0","url":null,"abstract":"<p>Cyber-physical-social-systems interconnect diverse technologies and communication infrastructure to the Internet for environmental sensing and computation. They offer many real-time autonomous services for smart cities, industry, transportation, medical systems, etc. The Internet of Medical Things (IoMT) has gained the potential for developing cyber-physical system (CPS) to facilitate healthcare applications and analyze the records of patients. Such a communication paradigm is integrated into many wireless standards for managing crucial data with cloud computing. However, the limitations of low-powered resources of such healthcare infrastructures increase the complexity level of sustainable growth. Wireless connectivity in next-generation networks is another research goal due to unbalanced load distribution. Furthermore, low-powered computing devices can be easily accessible by intruders and eliminate the confidentiality of any data transmission, so privacy is another research concern for healthcare systems. Therefore, using intelligent computing, this paper proposed a novel resilient predictive model for e-health sensing. The proposed model provides an efficient CPS-enabled automated routing system by exploring the optimization process with edge intelligence. This particular solution increases the level of cooperation between communication devices with intelligent data processing and higher predictive services. Moreover, by offering a trustworthy scheme, it seeks to enhance digital communication, data aggregation, and data breach prevention. The experimental findings highlight significant outcomes of the proposed model for packet reception, network overhead, data delay, and reliability as compared to alternative solutions.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":"59 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140567797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04DOI: 10.1007/s12559-024-10264-6
Jie Lin, Xiangyu Zeng, Yulong Pan, Shangqing Ren, Yige Bao
Due to small imaging range of lens, blurring by jitter in the operation process and high similarity of urethral image features observed in different positions, doctors often face challenges in conducting a quick and comprehensive microscopic examination. In this paper, we combine image processing, simultaneous localization and mapping (SLAM) and intelligent navigation technologies to build an ORB-SLAM-based auxiliary microscopy guiding system. It can automatically process real-time microscopy videos, analyze the doctor’s detection path and provide direction for areas that have not been detected, assisting the doctor in completing urethral wall detection. In this system, a generative adversarial network-based deblurring algorithm is used to deblur the urethral images before SLAM processing. We creatively propose a vascular attention-based feature extraction algorithm tailored for urethral images. This algorithm combines F3Net and U-Net networks to detect the main body and branch points of blood vessels, respectively, which demonstrates the capability to assist the SLAM system in tracking the urethra more stably. Moreover, we design the direction guidance rules to aid doctors in urethral endoscopy. The system has been evaluated with a real urethral endoscope video dataset. Compared to other mainstream feature extraction algorithms, the method proposed in this paper is more accurate and comprehensive in identifying urethral vascular features, resulting in a 4.34% accuracy improvement, which confirms its effectiveness.
由于镜头成像范围小、操作过程中的抖动造成模糊以及不同位置观察到的尿道图像特征相似度高,医生在进行快速、全面的显微镜检查时经常面临挑战。本文结合图像处理、同步定位与映射(SLAM)和智能导航技术,构建了基于 ORB-SLAM 的辅助显微镜引导系统。它能自动处理实时显微镜视频,分析医生的检测路径,并为未检测到的区域提供方向指引,协助医生完成尿道壁检测。在该系统中,基于生成对抗网络的去模糊算法可在 SLAM 处理之前对尿道图像进行去模糊处理。我们创造性地提出了一种为尿道图像量身定制的基于血管注意力的特征提取算法。该算法结合了 F3Net 和 U-Net 网络,分别检测血管的主体和分支点,证明了该算法能够帮助 SLAM 系统更稳定地跟踪尿道。此外,我们还设计了方向引导规则,以帮助医生进行尿道内窥镜检查。我们利用真实的尿道内窥镜视频数据集对该系统进行了评估。与其他主流特征提取算法相比,本文提出的方法在识别尿道血管特征方面更加准确和全面,准确率提高了 4.34%,证实了其有效性。
{"title":"Intelligent Inspection Guidance of Urethral Endoscopy Based on SLAM with Blood Vessel Attentional Features","authors":"Jie Lin, Xiangyu Zeng, Yulong Pan, Shangqing Ren, Yige Bao","doi":"10.1007/s12559-024-10264-6","DOIUrl":"https://doi.org/10.1007/s12559-024-10264-6","url":null,"abstract":"<p>Due to small imaging range of lens, blurring by jitter in the operation process and high similarity of urethral image features observed in different positions, doctors often face challenges in conducting a quick and comprehensive microscopic examination. In this paper, we combine image processing, simultaneous localization and mapping (SLAM) and intelligent navigation technologies to build an ORB-SLAM-based auxiliary microscopy guiding system. It can automatically process real-time microscopy videos, analyze the doctor’s detection path and provide direction for areas that have not been detected, assisting the doctor in completing urethral wall detection. In this system, a generative adversarial network-based deblurring algorithm is used to deblur the urethral images before SLAM processing. We creatively propose a vascular attention-based feature extraction algorithm tailored for urethral images. This algorithm combines F3Net and U-Net networks to detect the main body and branch points of blood vessels, respectively, which demonstrates the capability to assist the SLAM system in tracking the urethra more stably. Moreover, we design the direction guidance rules to aid doctors in urethral endoscopy. The system has been evaluated with a real urethral endoscope video dataset. Compared to other mainstream feature extraction algorithms, the method proposed in this paper is more accurate and comprehensive in identifying urethral vascular features, resulting in a 4.34% accuracy improvement, which confirms its effectiveness.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":"34 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140567886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.1007/s12559-024-10267-3
Rusab Sarmun, Muhammad E. H. Chowdhury, M. Murugappan, Ahmed Aqel, Maymouna Ezzuddin, Syed Mahfuzur Rahman, Amith Khandakar, Sanzida Akter, Rashad Alfkey, Md. Anwarul Hasan
Diabetes mellitus (DM) can cause chronic foot issues and severe infections, including Diabetic Foot Ulcers (DFUs) that heal slowly due to insufficient blood flow. A recurrence of these ulcers can lead to 84% of lower limb amputations and even cause death. High-risk diabetes patients require expensive medications, regular check-ups, and proper personal hygiene to prevent DFUs, which affect 15–25% of diabetics. Accurate diagnosis, appropriate care, and prompt response can prevent amputations and fatalities through early and reliable DFU detection from image analysis. We propose a comprehensive deep learning-based system for detecting DFUs from patients’ feet images by reliably localizing ulcer points. Our method utilizes innovative model ensemble techniques—non-maximum suppression (NMS), Soft-NMS, and weighted bounding box fusion (WBF)—to combine predictions from state-of-the-art object detection models. The performances of diverse cutting-edge model architectures used in this study complement each other, leading to more generalized and improved results when combined in an ensemble. Our WBF-based approach combining YOLOv8m and FRCNN-ResNet101 achieves a mean average precision (mAP) score of 86.4% at the IoU threshold of 0.5 on the DFUC2020 dataset, significantly outperforming the former benchmark by 12.4%. We also perform external validation on the IEEE DataPort Diabetic Foot dataset which has demonstrated robust and reliable model performance on the qualitative analysis. In conclusion, our study effectively developed an innovative diabetic foot ulcer (DFU) detection system using an ensemble model of deep neural networks (DNNs). This AI-driven tool serves as an initial screening aid for medical professionals, augmenting the diagnostic process by enhancing sensitivity to potential DFU cases. While recognizing the presence of false positives, our research contributes to improving patient care through the integration of human medical expertise with AI-based solutions in DFU management.
{"title":"Diabetic Foot Ulcer Detection: Combining Deep Learning Models for Improved Localization","authors":"Rusab Sarmun, Muhammad E. H. Chowdhury, M. Murugappan, Ahmed Aqel, Maymouna Ezzuddin, Syed Mahfuzur Rahman, Amith Khandakar, Sanzida Akter, Rashad Alfkey, Md. Anwarul Hasan","doi":"10.1007/s12559-024-10267-3","DOIUrl":"https://doi.org/10.1007/s12559-024-10267-3","url":null,"abstract":"<p>Diabetes mellitus (DM) can cause chronic foot issues and severe infections, including Diabetic Foot Ulcers (DFUs) that heal slowly due to insufficient blood flow. A recurrence of these ulcers can lead to 84% of lower limb amputations and even cause death. High-risk diabetes patients require expensive medications, regular check-ups, and proper personal hygiene to prevent DFUs, which affect 15–25% of diabetics. Accurate diagnosis, appropriate care, and prompt response can prevent amputations and fatalities through early and reliable DFU detection from image analysis. We propose a comprehensive deep learning-based system for detecting DFUs from patients’ feet images by reliably localizing ulcer points. Our method utilizes innovative model ensemble techniques—non-maximum suppression (NMS), Soft-NMS, and weighted bounding box fusion (WBF)—to combine predictions from state-of-the-art object detection models. The performances of diverse cutting-edge model architectures used in this study complement each other, leading to more generalized and improved results when combined in an ensemble. Our WBF-based approach combining YOLOv8m and FRCNN-ResNet101 achieves a mean average precision (mAP) score of 86.4% at the IoU threshold of 0.5 on the DFUC2020 dataset, significantly outperforming the former benchmark by 12.4%. We also perform external validation on the IEEE DataPort Diabetic Foot dataset which has demonstrated robust and reliable model performance on the qualitative analysis. In conclusion, our study effectively developed an innovative diabetic foot ulcer (DFU) detection system using an ensemble model of deep neural networks (DNNs). This AI-driven tool serves as an initial screening aid for medical professionals, augmenting the diagnostic process by enhancing sensitivity to potential DFU cases. While recognizing the presence of false positives, our research contributes to improving patient care through the integration of human medical expertise with AI-based solutions in DFU management.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":"2 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140567894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-23DOI: 10.1007/s12559-024-10261-9
Najwa Kouka, Rahma Fourati, Asma Baghdadi, Patrick Siarry, M. Adel
Epileptic seizure prediction using multi-channel electroencephalogram (EEG) signals is very important in clinical therapy. A large number of channels lead to high computational complexity with low model performance. To improve the performance and reduce the overfitting that arises due to the use of unrelevant channels, the present paper proposed a channel selection method to study the brain region activation related to epileptic seizure. Our method is bio-inspired and cognitive since it integrates the novel binary many-objective particle swarm optimization with a ConvLSTM model. The proposed method has two advantages. First, it performed a new initialization strategy based on channel weighting with mutual information, thereby promoting the fast convergence of the optimization algorithm. Second, it captures spatio-temporal information from raw EEG segments thanks to the ConvLSTM model. The selected sub-channels are optimized as many-objective optimization problem that includes maximizing F1-score, sensitivity, specificity, and minimizing the ratio rate of selected channels. Our results have shown a performance of up to (97.94%) with only one EEG channel. Interestingly, when using all the EEG channels available, lower performance was achieved compared to the case when EEG channels were selected by our approach. This study revealed that it is possible to predict epileptic seizures using a few channels, which provides evidence for the future development of portable EEG seizure prediction devices.
利用多通道脑电图(EEG)信号预测癫痫发作在临床治疗中非常重要。大量通道导致计算复杂度高,模型性能低。为了提高模型性能,减少因使用无关通道而导致的过拟合,本文提出了一种通道选择方法,用于研究与癫痫发作相关的脑区激活。我们的方法融合了新颖的二元多目标粒子群优化和 ConvLSTM 模型,因此具有生物启发和认知的特点。所提出的方法有两个优点。首先,它采用了基于信道加权与互信息的新初始化策略,从而促进了优化算法的快速收敛。其次,由于采用了 ConvLSTM 模型,它能从原始脑电图片段中捕捉时空信息。所选子通道的优化是一个多目标优化问题,包括最大化 F1 分数、灵敏度、特异性和最小化所选通道的比率。我们的研究结果表明,仅使用一个脑电图通道,性能可达(97.94%/)。有趣的是,当使用所有可用的脑电图通道时,与通过我们的方法选择脑电图通道的情况相比,取得的性能较低。这项研究揭示了使用几个通道预测癫痫发作是可能的,这为未来开发便携式脑电图癫痫发作预测设备提供了证据。
{"title":"A Mutual Information-Based Many-Objective Optimization Method for EEG Channel Selection in the Epileptic Seizure Prediction Task","authors":"Najwa Kouka, Rahma Fourati, Asma Baghdadi, Patrick Siarry, M. Adel","doi":"10.1007/s12559-024-10261-9","DOIUrl":"https://doi.org/10.1007/s12559-024-10261-9","url":null,"abstract":"<p>Epileptic seizure prediction using multi-channel electroencephalogram (EEG) signals is very important in clinical therapy. A large number of channels lead to high computational complexity with low model performance. To improve the performance and reduce the overfitting that arises due to the use of unrelevant channels, the present paper proposed a channel selection method to study the brain region activation related to epileptic seizure. Our method is bio-inspired and cognitive since it integrates the novel binary many-objective particle swarm optimization with a ConvLSTM model. The proposed method has two advantages. First, it performed a new initialization strategy based on channel weighting with mutual information, thereby promoting the fast convergence of the optimization algorithm. Second, it captures spatio-temporal information from raw EEG segments thanks to the ConvLSTM model. The selected sub-channels are optimized as many-objective optimization problem that includes maximizing F1-score, sensitivity, specificity, and minimizing the ratio rate of selected channels. Our results have shown a performance of up to <span>(97.94%)</span> with only one EEG channel. Interestingly, when using all the EEG channels available, lower performance was achieved compared to the case when EEG channels were selected by our approach. This study revealed that it is possible to predict epileptic seizures using a few channels, which provides evidence for the future development of portable EEG seizure prediction devices.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":"101 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140197170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-12DOI: 10.1007/s12559-024-10258-4
Abstract
Hyperdimensional Computing (HDC), also known as Vector-Symbolic Architectures (VSA), is a promising framework for the development of cognitive architectures and artificial intelligence systems, as well as for technical applications and emerging neuromorphic and nanoscale hardware. HDC/VSA operate with hypervectors, i.e., neural-like distributed vector representations of large fixed dimension (usually > 1000). One of the key ingredients of HDC/VSA are the methods for encoding various data types (from numeric scalars and vectors to graphs) by hypervectors. In this paper, we propose an approach for the formation of hypervectors of sequences that provides both an equivariance with respect to the shift of sequences and preserves the similarity of sequences with identical elements at nearby positions. Our methods represent the sequence elements by compositional hypervectors and exploit permutations of hypervectors for representing the order of sequence elements. We experimentally explored the proposed representations using a diverse set of tasks with data in the form of symbolic strings. Although we did not use any features here (hypervector of a sequence was formed just from the hypervectors of its symbols at their positions), the proposed approach demonstrated the performance on a par with the methods that exploit various features, such as subsequences. The proposed techniques were designed for the HDC/VSA model known as Sparse Binary Distributed Representations. However, they can be adapted to hypervectors in formats of other HDC/VSA models, as well as for representing sequences of types other than symbolic strings. Directions for further research are discussed.
{"title":"Shift-Equivariant Similarity-Preserving Hypervector Representations of Sequences","authors":"","doi":"10.1007/s12559-024-10258-4","DOIUrl":"https://doi.org/10.1007/s12559-024-10258-4","url":null,"abstract":"<h3>Abstract</h3> <p>Hyperdimensional Computing (HDC), also known as Vector-Symbolic Architectures (VSA), is a promising framework for the development of cognitive architectures and artificial intelligence systems, as well as for technical applications and emerging neuromorphic and nanoscale hardware. HDC/VSA operate with hypervectors, i.e., neural-like distributed vector representations of large fixed dimension (usually > 1000). One of the key ingredients of HDC/VSA are the methods for encoding various data types (from numeric scalars and vectors to graphs) by hypervectors. In this paper, we propose an approach for the formation of hypervectors of sequences that provides both an equivariance with respect to the shift of sequences and preserves the similarity of sequences with identical elements at nearby positions. Our methods represent the sequence elements by compositional hypervectors and exploit permutations of hypervectors for representing the order of sequence elements. We experimentally explored the proposed representations using a diverse set of tasks with data in the form of symbolic strings. Although we did not use any features here (hypervector of a sequence was formed just from the hypervectors of its symbols at their positions), the proposed approach demonstrated the performance on a par with the methods that exploit various features, such as subsequences. The proposed techniques were designed for the HDC/VSA model known as Sparse Binary Distributed Representations. However, they can be adapted to hypervectors in formats of other HDC/VSA models, as well as for representing sequences of types other than symbolic strings. Directions for further research are discussed.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":"75 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-12DOI: 10.1007/s12559-024-10270-8
Jun Miao, Peng Liu, Chen Chen, Yuanhua Qiao
In identifying objects, people usually associate memory templates to guide visual attention and determine the category of an object. The initial character images that children learn are usually normal patterns. However, the variation in corresponding handwritten patterns is quite large. To learn these deformed images with large variance, current deep models must involve millions of parameters for such kind of classification tasks that seem much easier and simpler to children who learn to recognize new characters associated with their initially taught normal patterns. From the perspective of humans’ perception, when people see a new object, they first think of a template image in their memory, which is similar to the object. This mapping process makes it easier for humans to learn new objects. Inspired by this cognitive association mechanism, this study developed a cognition-inspired handwritten character recognition model using a proposed normal template mapping neural network. This model uses an encoder-decoder architecture to build a normal template mapping neural network that transforms handwritten character images of one class to normalized characters similar to a given printed template character image representing that class. Then, a simple shallow classifier recognizes these normalized images, which are easier to classify. The experimental results show that the proposed model completes handwritten character recognition with comparable or higher precision at a much lower parameter count than current representative deep models. The proposed model removes the individual styles of handwritten character images and maps them to patterns similar to normal template images. This greatly reduces the classification difficulty and enables the classifier to classify only known standard character images.
{"title":"Normal Template Mapping: An Association-Inspired Handwritten Character Recognition Model","authors":"Jun Miao, Peng Liu, Chen Chen, Yuanhua Qiao","doi":"10.1007/s12559-024-10270-8","DOIUrl":"https://doi.org/10.1007/s12559-024-10270-8","url":null,"abstract":"<p>In identifying objects, people usually associate memory templates to guide visual attention and determine the category of an object. The initial character images that children learn are usually normal patterns. However, the variation in corresponding handwritten patterns is quite large. To learn these deformed images with large variance, current deep models must involve millions of parameters for such kind of classification tasks that seem much easier and simpler to children who learn to recognize new characters associated with their initially taught normal patterns. From the perspective of humans’ perception, when people see a new object, they first think of a template image in their memory, which is similar to the object. This mapping process makes it easier for humans to learn new objects. Inspired by this cognitive association mechanism, this study developed a cognition-inspired handwritten character recognition model using a proposed normal template mapping neural network. This model uses an encoder-decoder architecture to build a normal template mapping neural network that transforms handwritten character images of one class to normalized characters similar to a given printed template character image representing that class. Then, a simple shallow classifier recognizes these normalized images, which are easier to classify. The experimental results show that the proposed model completes handwritten character recognition with comparable or higher precision at a much lower parameter count than current representative deep models. The proposed model removes the individual styles of handwritten character images and maps them to patterns similar to normal template images. This greatly reduces the classification difficulty and enables the classifier to classify only known standard character images.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":"110 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140127066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-11DOI: 10.1007/s12559-024-10263-7
Abbas Pourhedayat, Marzie Aghababaeipour Dehkordi, Mohammad Reza Daliri
Using rodents as a model of physiological vision studies requires adequate information about their visual cortex. Although the primary visual cortex of rats has different sub-regions, there are few studies on the different response patterns of these sub-regions. In this study, we recorded the local field potentials (LFPs) from sub-regions of the primary visual cortex (V1) of anesthetized rats. We used random dots patterns as moving stimuli presented in random sequences. Then we used machine learning methods to decode the direction and speed of the stimuli from the recorded signals. Our results revealed that there are different patterns of responses to motion stimuli across sub-regions. Although the decoding results using LFPs were not high, they were enhanced by moving to the lateral sub-regions of the V1. Our results suggested that the location of the recording areas impact reaction time, the pattern of the responses in time- and frequency- domains, and encoding the motion stimuli.
{"title":"Motion Selectivity of the Local Filed Potentials in the Primary Visual Cortex of Rats: A Machine Learning Approach","authors":"Abbas Pourhedayat, Marzie Aghababaeipour Dehkordi, Mohammad Reza Daliri","doi":"10.1007/s12559-024-10263-7","DOIUrl":"https://doi.org/10.1007/s12559-024-10263-7","url":null,"abstract":"<p>Using rodents as a model of physiological vision studies requires adequate information about their visual cortex. Although the primary visual cortex of rats has different sub-regions, there are few studies on the different response patterns of these sub-regions. In this study, we recorded the local field potentials (LFPs) from sub-regions of the primary visual cortex (V1) of anesthetized rats. We used random dots patterns as moving stimuli presented in random sequences. Then we used machine learning methods to decode the direction and speed of the stimuli from the recorded signals. Our results revealed that there are different patterns of responses to motion stimuli across sub-regions. Although the decoding results using LFPs were not high, they were enhanced by moving to the lateral sub-regions of the V1. Our results suggested that the location of the recording areas impact reaction time, the pattern of the responses in time- and frequency- domains, and encoding the motion stimuli.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":"87 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140097523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}