Pub Date : 2024-07-21DOI: 10.3390/biomechanics4030030
Jair Wesley Ferreira Bueno, D. B. Coelho, Luis Augusto Teixeira
In the quotidian, people perform voluntary whole-body movements requiring dynamic body balance. However, the literature is scarce of dynamic balance evaluations employing standardized voluntary movements. In this investigation, we aimed to analyze the sensitivity of balance evaluation between gymnasts and athletes from other sports in the performance of balance tasks. Participants were evaluated in upright quiet standing and the performance of cyclic dynamic tasks of hip flexion-extension and squat-lift movements. Movements were individually standardized in amplitude, while the rhythm was externally paced at the frequency of 0.5 Hz. Tasks were performed on a force plate, with dynamic balance measured through the center of pressure displacement. Results showed that in quiet standing and the dynamic hip flexion-extension task, no significant differences were found between the groups. Conversely, results for the squat-lift task revealed a better balance of the gymnasts over controls, as indicated by the reduced amplitude and velocity of the center of pressure displacement during the task execution. The superior balance performance of gymnasts in the squat-lift task was also observed when vision was suppressed. These findings suggest the employed squat-lift task protocol is a potentially sensitive procedure for the evaluation of voluntary dynamic balance.
{"title":"Evaluation of Voluntary Dynamic Balance through Standardized Squat-Lift Movements: A Comparison between Gymnasts and Athletes from Other Sports","authors":"Jair Wesley Ferreira Bueno, D. B. Coelho, Luis Augusto Teixeira","doi":"10.3390/biomechanics4030030","DOIUrl":"https://doi.org/10.3390/biomechanics4030030","url":null,"abstract":"In the quotidian, people perform voluntary whole-body movements requiring dynamic body balance. However, the literature is scarce of dynamic balance evaluations employing standardized voluntary movements. In this investigation, we aimed to analyze the sensitivity of balance evaluation between gymnasts and athletes from other sports in the performance of balance tasks. Participants were evaluated in upright quiet standing and the performance of cyclic dynamic tasks of hip flexion-extension and squat-lift movements. Movements were individually standardized in amplitude, while the rhythm was externally paced at the frequency of 0.5 Hz. Tasks were performed on a force plate, with dynamic balance measured through the center of pressure displacement. Results showed that in quiet standing and the dynamic hip flexion-extension task, no significant differences were found between the groups. Conversely, results for the squat-lift task revealed a better balance of the gymnasts over controls, as indicated by the reduced amplitude and velocity of the center of pressure displacement during the task execution. The superior balance performance of gymnasts in the squat-lift task was also observed when vision was suppressed. These findings suggest the employed squat-lift task protocol is a potentially sensitive procedure for the evaluation of voluntary dynamic balance.","PeriodicalId":513714,"journal":{"name":"Biomechanics","volume":"61 25","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141817740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-12DOI: 10.3390/biomechanics4030029
Mathis Wegner, Simon Kuwert, Stefan Kratzenstein, Maciej J. K. Simon, Babak Moradi
The use of three-dimensional (3D) gait analysis to image femorotibial translation can aid in the diagnosis of pathology and provide additional insight into the severity of KOA (knee osteoarthritis). Femorotibial translation is of particular importance in patients undergoing UKA (unicompartmental knee arthroplasty), as the absence or elongation of ligamentous structures results in changes in the kinematic alignment. The aim of the study was to evaluate the parameters of femorotibial translation in patients with MOA (medial unicompartmental OA). An artificial model was employed to develop a method for calculating femorotibial translation in vitro. In a prospective cohort study, gait data using three-dimensional gait analysis were collected from 11 patients (68.73 ± 9.22 years) with severe OA scheduled for UKA and 29 unmatched healthy participants (22.07 ± 2.23 years). The discrete variables characterising femorotibial translation were compared for statistical significance (p < 0.05) using the Student’s t-test and the Mann–Whitney U-test. The results of the study validated an artificial model to mimic femorotibial translation. The comparison of patients scheduled for UKA and a healthy unmatched control group showed no statistically significant differences concerning femorotibial translation in all three planes (p > 0.05). However, the PROMs (patient-reported outcome measures), spatiotemporal, and kinematic parameters showed statistically significant differences between the groups (p < 0.001). The data presented here demonstrate typical changes in PROMs as well as spatiotemporal and kinematic outcomes for MOA as seen in knee OA. The results of the clinical gait analyses demonstrate individualised femorotibial translation. The extent of individual femorotibial translation may prove to be an important parameter for altered joint kinematics in patients with MOA, especially prior to UKA implantation.
利用三维(3D)步态分析对股骨胫骨平移进行成像,有助于病理诊断,并能进一步了解膝关节骨性关节炎(KOA)的严重程度。股胫骨平移对于接受 UKA(单髁膝关节置换术)的患者尤为重要,因为韧带结构的缺失或拉长会导致运动学排列的改变。本研究旨在评估MOA(内侧单关节OA)患者的股胫骨平移参数。研究人员利用人工模型开发了一种体外计算股胫骨平移的方法。在一项前瞻性队列研究中,利用三维步态分析收集了11名计划接受UKA治疗的重度OA患者(68.73 ± 9.22岁)和29名不匹配的健康参与者(22.07 ± 2.23岁)的步态数据。使用学生 t 检验和 Mann-Whitney U 检验比较了股胫骨平移离散变量的统计学意义(P < 0.05)。研究结果验证了模拟股胫骨平移的人工模型。对计划进行UKA的患者和未匹配的健康对照组进行比较后发现,在所有三个平面上,股胫骨平移的差异均无统计学意义(P > 0.05)。然而,PROMs(患者报告的结果测量)、时空和运动学参数显示,两组之间存在显著的统计学差异(P < 0.001)。本文提供的数据显示了膝关节 OA MOA 在 PROMs 以及时空和运动学结果方面的典型变化。临床步态分析结果表明股胫骨平移是个性化的。个体股胫骨平移的程度可能被证明是MOA患者关节运动学改变的一个重要参数,尤其是在UKA植入之前。
{"title":"Femoral Translation in Patients with Unicompartmental Osteoarthritis—A Cohort Study","authors":"Mathis Wegner, Simon Kuwert, Stefan Kratzenstein, Maciej J. K. Simon, Babak Moradi","doi":"10.3390/biomechanics4030029","DOIUrl":"https://doi.org/10.3390/biomechanics4030029","url":null,"abstract":"The use of three-dimensional (3D) gait analysis to image femorotibial translation can aid in the diagnosis of pathology and provide additional insight into the severity of KOA (knee osteoarthritis). Femorotibial translation is of particular importance in patients undergoing UKA (unicompartmental knee arthroplasty), as the absence or elongation of ligamentous structures results in changes in the kinematic alignment. The aim of the study was to evaluate the parameters of femorotibial translation in patients with MOA (medial unicompartmental OA). An artificial model was employed to develop a method for calculating femorotibial translation in vitro. In a prospective cohort study, gait data using three-dimensional gait analysis were collected from 11 patients (68.73 ± 9.22 years) with severe OA scheduled for UKA and 29 unmatched healthy participants (22.07 ± 2.23 years). The discrete variables characterising femorotibial translation were compared for statistical significance (p < 0.05) using the Student’s t-test and the Mann–Whitney U-test. The results of the study validated an artificial model to mimic femorotibial translation. The comparison of patients scheduled for UKA and a healthy unmatched control group showed no statistically significant differences concerning femorotibial translation in all three planes (p > 0.05). However, the PROMs (patient-reported outcome measures), spatiotemporal, and kinematic parameters showed statistically significant differences between the groups (p < 0.001). The data presented here demonstrate typical changes in PROMs as well as spatiotemporal and kinematic outcomes for MOA as seen in knee OA. The results of the clinical gait analyses demonstrate individualised femorotibial translation. The extent of individual femorotibial translation may prove to be an important parameter for altered joint kinematics in patients with MOA, especially prior to UKA implantation.","PeriodicalId":513714,"journal":{"name":"Biomechanics","volume":"53 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141654583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The advancement in depth-sensor technology increased the potential for the clinical use of markerless three-dimensional motion analysis (3DMA); however, the accurate quantification of depth-sensor-based 3DMA on gait characteristics deviating from normal patterns is unclear. This study investigated the concurrent validity of the measurements of compensatory movements measured by depth-sensor-based 3DMA compared to those measured by marker-based 3DMA. We induced swing-phase compensatory movements due to insufficient toe clearance by restricting unilateral ankle and knee joint movements in healthy individuals. Thirty-two healthy young adults (nineteen males, aged 20.4 ± 2.0 years, height 164.4 ± 9.8 cm, weight 60.0 ± 9.3 kg [average ± standard deviation]) walked the 6 m walkway in slow speed, very slow speed, and knee–ankle–foot orthosis (KAFO; participants wore KAFOs on the right leg) conditions. Gait kinematics were measured with marker-based and depth-sensor-based 3DMA systems. The intraclass correlation coefficient (ICC3,1) was used to measure the relative agreement between depth-sensor-based and marker-based 3DMA and demonstrated good or moderate validity for swing-phase compensatory movement measurement. Additionally, the ICC2,1 measured absolute agreement between the systems and showed lower validity than the ICC3,1. The measurement errors for contralateral vaulting, trunk lateral flexion, hip hiking, swing-side hip abduction, and circumduction between instruments were 0.01 m, 1.30°, 1.99°, 2.37°, and 1.53°, respectively. Depth-sensor-based 3DMA is useful for determining swing-phase compensatory movements, although the possibility of missing a slight measurement error of 1–2° must be considered.
{"title":"Concurrent Validity of Depth-Sensor-Based Quantification of Compensatory Movements during the Swing Phase of Gait in Healthy Individuals","authors":"Kento Kusuda, Shigehito Matsubara, Daisuke Noguchi, Moe Kuwahara, Hiroomi Hamasaki, Toshihiro Miwa, Toru Maeda, Toshihito Nakanishi, Shogo Ninomiya, Keita Honda","doi":"10.3390/biomechanics4030028","DOIUrl":"https://doi.org/10.3390/biomechanics4030028","url":null,"abstract":"The advancement in depth-sensor technology increased the potential for the clinical use of markerless three-dimensional motion analysis (3DMA); however, the accurate quantification of depth-sensor-based 3DMA on gait characteristics deviating from normal patterns is unclear. This study investigated the concurrent validity of the measurements of compensatory movements measured by depth-sensor-based 3DMA compared to those measured by marker-based 3DMA. We induced swing-phase compensatory movements due to insufficient toe clearance by restricting unilateral ankle and knee joint movements in healthy individuals. Thirty-two healthy young adults (nineteen males, aged 20.4 ± 2.0 years, height 164.4 ± 9.8 cm, weight 60.0 ± 9.3 kg [average ± standard deviation]) walked the 6 m walkway in slow speed, very slow speed, and knee–ankle–foot orthosis (KAFO; participants wore KAFOs on the right leg) conditions. Gait kinematics were measured with marker-based and depth-sensor-based 3DMA systems. The intraclass correlation coefficient (ICC3,1) was used to measure the relative agreement between depth-sensor-based and marker-based 3DMA and demonstrated good or moderate validity for swing-phase compensatory movement measurement. Additionally, the ICC2,1 measured absolute agreement between the systems and showed lower validity than the ICC3,1. The measurement errors for contralateral vaulting, trunk lateral flexion, hip hiking, swing-side hip abduction, and circumduction between instruments were 0.01 m, 1.30°, 1.99°, 2.37°, and 1.53°, respectively. Depth-sensor-based 3DMA is useful for determining swing-phase compensatory movements, although the possibility of missing a slight measurement error of 1–2° must be considered.","PeriodicalId":513714,"journal":{"name":"Biomechanics","volume":"113 46","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141666596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.3390/biomechanics4030027
D. Vickery-Howe, B. Dascombe, J. Drain, A. Clarke, B. Hoolihan, Greg L. Carstairs, Anjana J. Reddy, K. Middleton
This study aimed to investigate the physiological, perceptual, and biomechanical differences between male and female soldiers across several military-relevant load and walking speed combinations. Eleven female and twelve male soldiers completed twelve 12 min walking trials at varying speeds (3.5 km·h−1, 5.5 km·h−1, 6.5 km·h−1) and with varying external loads (7.2 kg, 23.2 kg, 35.2 kg). Physiological (indirect calorimetry, heart rate), perceptual (perceived exertion), and biomechanical (spatiotemporal, kinematic, kinetic) outcomes were measured throughout each trial. Females had a lower aerobic capacity and lower body strength than males, which resulted in them working at a greater exercise intensity (%VO2peak and heart rate) but with a lower oxygen pulse. Females demonstrated higher breathing frequency and perceived exertion with specific loads. At selected loads and speeds, frontal and sagittal pelvis, hip, and knee motions and forces were greater for females. Females consistently displayed greater relative stride length and step width. In conclusion, this study demonstrates the importance of tailored interventions, periodisation, and nutritional strategies for female military personnel, given their higher relative work rate and increased injury risk during load carriage tasks. Understanding these differences is crucial for preparing female soldiers for the physical demands of military service.
{"title":"Physiological, Perceptual, and Biomechanical Responses to Load Carriage while Walking at Military-Relevant Speeds and Loads—Are There Differences between Males and Females?","authors":"D. Vickery-Howe, B. Dascombe, J. Drain, A. Clarke, B. Hoolihan, Greg L. Carstairs, Anjana J. Reddy, K. Middleton","doi":"10.3390/biomechanics4030027","DOIUrl":"https://doi.org/10.3390/biomechanics4030027","url":null,"abstract":"This study aimed to investigate the physiological, perceptual, and biomechanical differences between male and female soldiers across several military-relevant load and walking speed combinations. Eleven female and twelve male soldiers completed twelve 12 min walking trials at varying speeds (3.5 km·h−1, 5.5 km·h−1, 6.5 km·h−1) and with varying external loads (7.2 kg, 23.2 kg, 35.2 kg). Physiological (indirect calorimetry, heart rate), perceptual (perceived exertion), and biomechanical (spatiotemporal, kinematic, kinetic) outcomes were measured throughout each trial. Females had a lower aerobic capacity and lower body strength than males, which resulted in them working at a greater exercise intensity (%VO2peak and heart rate) but with a lower oxygen pulse. Females demonstrated higher breathing frequency and perceived exertion with specific loads. At selected loads and speeds, frontal and sagittal pelvis, hip, and knee motions and forces were greater for females. Females consistently displayed greater relative stride length and step width. In conclusion, this study demonstrates the importance of tailored interventions, periodisation, and nutritional strategies for female military personnel, given their higher relative work rate and increased injury risk during load carriage tasks. Understanding these differences is crucial for preparing female soldiers for the physical demands of military service.","PeriodicalId":513714,"journal":{"name":"Biomechanics","volume":"59 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141702424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-05DOI: 10.3390/biomechanics4020026
Jessica Immonen, David Patterson, Nathan Kent, Samantha Pipkin, Alyssa Luu, Linh M Nguyen, Jason Ciccotelli, Jeremy James
The objective of this study was to assess the osteoarthritis (OA) disease severity in 47 temporomandibular joints (TMJs) using a validated scale for gross signs of OA while noting the specific sites for profound disease on the donor condyle and fossa. A disease severity score of Grade 0–4, representing absent to severe disease, was awarded to each specimen’s condyle and fossa by two blinded investigators who have demonstrated interrater reliability. The mandibular fossa was more pathological compared to the mandibular condyle (* p = 0.001). When the deepest focal lesions were qualitatively assessed, it was demonstrated that the mandibular fossa was more severely degenerated than the articular eminence in 58% of donors. In this subpopulation, 74% of the severe mandibular fossa pathology was seen on the deep articular surface. When the articular eminence was the most severely degenerated region of the fossa, it was equivalently likely to see severe focal lesions on the lateral eminence (35%) or equally distributed across the entire eminence (35%). The greatest disease severity was discovered in sites of overloading, which may be associated with paranormal mandibular movements and potentially bruxism. Patients with bruxism produce significant translational movements (grinding) in the upper joint compartment and heavy vertical loading (clenching). Theoretically, this amplifies pressure and inflammation on the lateral articular surfaces and in the deep fossa.
本研究的目的是使用一个经过验证的量表来评估 47 个颞下颌关节(TMJ)的骨关节炎(OA)疾病严重程度,同时注意供体髁状突和关节窝上严重疾病的具体部位。每个标本的髁突和窝的病变严重程度分为 0-4 级,代表无病变到严重病变,由两名双盲研究人员进行评分,他们的评分结果证明了评分者之间的可靠性。与下颌骨髁突相比,下颌骨窝的病变程度更高(* p = 0.001)。在对最深的病灶进行定性评估时,结果表明在 58% 的供体中,下颌窝的退化程度比关节突更严重。在这一亚群中,74%的严重下颌窝病变出现在深层关节表面。当关节突是下颌窝退变最严重的区域时,在外侧突(35%)或整个关节突(35%)同样可能出现严重的病灶性病变。超负荷部位的病变最严重,这可能与下颌异常运动和潜在的磨牙症有关。磨牙症患者会在上关节区产生明显的平移运动(磨牙)和严重的垂直负荷(咬紧牙关)。从理论上讲,这会增加外侧关节面和深窝的压力和炎症。
{"title":"Biomechanics of Bruxism Potentially Determine the Sites of Severe TMJ Osteoarthritis","authors":"Jessica Immonen, David Patterson, Nathan Kent, Samantha Pipkin, Alyssa Luu, Linh M Nguyen, Jason Ciccotelli, Jeremy James","doi":"10.3390/biomechanics4020026","DOIUrl":"https://doi.org/10.3390/biomechanics4020026","url":null,"abstract":"The objective of this study was to assess the osteoarthritis (OA) disease severity in 47 temporomandibular joints (TMJs) using a validated scale for gross signs of OA while noting the specific sites for profound disease on the donor condyle and fossa. A disease severity score of Grade 0–4, representing absent to severe disease, was awarded to each specimen’s condyle and fossa by two blinded investigators who have demonstrated interrater reliability. The mandibular fossa was more pathological compared to the mandibular condyle (* p = 0.001). When the deepest focal lesions were qualitatively assessed, it was demonstrated that the mandibular fossa was more severely degenerated than the articular eminence in 58% of donors. In this subpopulation, 74% of the severe mandibular fossa pathology was seen on the deep articular surface. When the articular eminence was the most severely degenerated region of the fossa, it was equivalently likely to see severe focal lesions on the lateral eminence (35%) or equally distributed across the entire eminence (35%). The greatest disease severity was discovered in sites of overloading, which may be associated with paranormal mandibular movements and potentially bruxism. Patients with bruxism produce significant translational movements (grinding) in the upper joint compartment and heavy vertical loading (clenching). Theoretically, this amplifies pressure and inflammation on the lateral articular surfaces and in the deep fossa.","PeriodicalId":513714,"journal":{"name":"Biomechanics","volume":"42 35","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141384688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-04DOI: 10.3390/biomechanics4020025
Mélissa Moulart, Maxime Acien, Audrey Leonard, Mathilde Loir, Nicolas Olivier, Frédéric Marin
Companies are becoming increasingly aware of the health of their employees and are now integrating exoskeleton solutions for both prevention and job maintenance. However, the effect of using exoskeletons is still an open question. Therefore, this study aimed to evaluate the impact of an active lumbar exoskeleton and its passive belt on trunk kinematics and muscle activity using instrumented motion analysis. Twenty-three healthy subjects volunteered to perform three handlings of a 5 kg load (free lifting, squat lifting, and load transfer) under three different experimental conditions. The “Control” condition was when the subject did not wear any device, the “Belt” condition was when the subject wore only the passive part of the exoskeleton, and the “Exo” condition was when the subject wore the active exoskeleton. Based on the Rapid Upper Limb Assessment scale, the exoskeleton reduced the time spent in angles that were considered dangerous for the back, according to ergonomic evaluations. Furthermore, for the handling sessions, it was observed that the exoskeleton did not modify muscle activity in the abdominal–lumbar region.
{"title":"Investigating Kinematics and Electromyography Changes in Manual Handling Tasks with an Active Lumbar Exoskeleton","authors":"Mélissa Moulart, Maxime Acien, Audrey Leonard, Mathilde Loir, Nicolas Olivier, Frédéric Marin","doi":"10.3390/biomechanics4020025","DOIUrl":"https://doi.org/10.3390/biomechanics4020025","url":null,"abstract":"Companies are becoming increasingly aware of the health of their employees and are now integrating exoskeleton solutions for both prevention and job maintenance. However, the effect of using exoskeletons is still an open question. Therefore, this study aimed to evaluate the impact of an active lumbar exoskeleton and its passive belt on trunk kinematics and muscle activity using instrumented motion analysis. Twenty-three healthy subjects volunteered to perform three handlings of a 5 kg load (free lifting, squat lifting, and load transfer) under three different experimental conditions. The “Control” condition was when the subject did not wear any device, the “Belt” condition was when the subject wore only the passive part of the exoskeleton, and the “Exo” condition was when the subject wore the active exoskeleton. Based on the Rapid Upper Limb Assessment scale, the exoskeleton reduced the time spent in angles that were considered dangerous for the back, according to ergonomic evaluations. Furthermore, for the handling sessions, it was observed that the exoskeleton did not modify muscle activity in the abdominal–lumbar region.","PeriodicalId":513714,"journal":{"name":"Biomechanics","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141387910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.3390/biomechanics4020024
Krista G. Clark, L. Raisbeck, Scott E. Ross, Christopher K. Rhea
Gait asymmetries are a common problem in clinical populations, such as those with a history of stroke or Parkinson’s disease. The use of a split-belt treadmill is one way to enhance gait symmetry but relies on specialty (and typically expensive) equipment. Alternatively, visual cues have been shown as a method to alter gait mechanics, but their utility in altering gait symmetry has been relatively understudied. Before deploying this method to clinical populations, a proof-of-concept study is needed to explore using visual cues to alter gait symmetry in healthy adults. Therefore, the purpose of this study was to examine the extent to which healthy adults could synchronize to an asymmetric visual cue with a small or large gait asymmetry using wearable sensors to measure gait asymmetries. Seventy-two healthy adults (ages: 23.89 ± 6.08 years) walked on the treadmill for two conditions: with and without the visual cue. Each walking condition lasted 10 min at the participant’s preferred walking speed. Inertial sensors were used to measure gait asymmetries. Some participants did not respond to the visual cue, and groups were separated into responders and non-responders. Participants in the small and large asymmetry-responder groups exhibited statistically significant increased asymmetries in single limb support % (p < 0.01) and step duration (s) (p < 0.05, p < 0.01, respectively). Only the large asymmetry-responder group showed statistically significant (p < 0.01) increased asymmetries in stride length. Overall, asymmetrical walking visual cues can alter gait asymmetries, and inertial sensors were sensitive enough to detect small changes in gait asymmetries.
步态不对称是临床人群中的常见问题,例如有中风或帕金森病史的人群。使用分带跑步机是增强步态对称性的一种方法,但需要依赖专业设备(通常价格昂贵)。另外,视觉提示也被证明是改变步态力学的一种方法,但对其在改变步态对称性方面的效用研究相对较少。在将这种方法应用于临床人群之前,需要进行概念验证研究,探索利用视觉线索改变健康成年人的步态对称性。因此,本研究的目的是利用测量步态不对称的可穿戴传感器,考察健康成年人在步态不对称程度较小或较大的情况下,能在多大程度上与不对称的视觉线索同步。72 名健康成年人(年龄:23.89 ± 6.08 岁)在跑步机上行走,分为两种情况:有视觉提示和无视觉提示。每种步行条件持续 10 分钟,步行速度由参与者选择。惯性传感器用于测量步态不对称。有些参与者对视觉提示没有反应,因此被分为有反应和无反应两组。小不对称反应组和大不对称反应组的参与者在单肢支撑率(p < 0.01)和步幅持续时间(s)(分别为 p < 0.05 和 p < 0.01)方面表现出显著的不对称。只有大不对称反应组的步长不对称增加具有统计学意义(p < 0.01)。总之,不对称行走的视觉提示可以改变步态的不对称,而惯性传感器的灵敏度足以检测到步态不对称的微小变化。
{"title":"Mimicking an Asymmetrically Walking Visual Cue Alters Gait Symmetry in Healthy Adults","authors":"Krista G. Clark, L. Raisbeck, Scott E. Ross, Christopher K. Rhea","doi":"10.3390/biomechanics4020024","DOIUrl":"https://doi.org/10.3390/biomechanics4020024","url":null,"abstract":"Gait asymmetries are a common problem in clinical populations, such as those with a history of stroke or Parkinson’s disease. The use of a split-belt treadmill is one way to enhance gait symmetry but relies on specialty (and typically expensive) equipment. Alternatively, visual cues have been shown as a method to alter gait mechanics, but their utility in altering gait symmetry has been relatively understudied. Before deploying this method to clinical populations, a proof-of-concept study is needed to explore using visual cues to alter gait symmetry in healthy adults. Therefore, the purpose of this study was to examine the extent to which healthy adults could synchronize to an asymmetric visual cue with a small or large gait asymmetry using wearable sensors to measure gait asymmetries. Seventy-two healthy adults (ages: 23.89 ± 6.08 years) walked on the treadmill for two conditions: with and without the visual cue. Each walking condition lasted 10 min at the participant’s preferred walking speed. Inertial sensors were used to measure gait asymmetries. Some participants did not respond to the visual cue, and groups were separated into responders and non-responders. Participants in the small and large asymmetry-responder groups exhibited statistically significant increased asymmetries in single limb support % (p < 0.01) and step duration (s) (p < 0.05, p < 0.01, respectively). Only the large asymmetry-responder group showed statistically significant (p < 0.01) increased asymmetries in stride length. Overall, asymmetrical walking visual cues can alter gait asymmetries, and inertial sensors were sensitive enough to detect small changes in gait asymmetries.","PeriodicalId":513714,"journal":{"name":"Biomechanics","volume":"113 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141272026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.3390/biomechanics4020023
G. Giarmatzis, S. Fotiadou, E. Giannakou, E. Karakasis, Konstantinos Vadikolias, N. Aggelousis
This study aims to evaluate the consistency of musculoskeletal modelling outcomes during walking in chronic post-stroke patients, focusing on both affected and unaffected sides. Understanding the specific muscle forces involved is crucial for designing targeted rehabilitation strategies to improve balance and mobility after a stroke. Musculoskeletal modelling provides valuable insights into muscle and joint loading, aiding clinicians in analysing essential biomarkers and enhancing patients’ functional outcomes. However, the repeatability of these modelling outcomes in stroke gait has not been thoroughly explored until now. Twelve post-stroke, hemiparetic survivors were included in the study, which consisted of a gait analysis protocol to capture kinematic and kinetic variables. Two generic full body MSK models—Hamner (Ham) and Rajagopal (Raj)—were used to compute joint angles and muscle forces during walking, with combinations of two muscle force estimation algorithms (Static Optimisation (SO) and Computed Muscle Control (CMC)) and different joint degrees-of-freedoms (DOF). The multiple correlation coefficient (MCCoef) was used to compute repeatability for all forces, grouped based on anatomical function. Regardless of models and DOFs, the mean minimum (0.75) and maximum (0.94) MCCoefs denote moderate-to-excellent repeatability for all muscle groups. The combination of the Ham model and SO provided the most repeatable muscle force estimations of all the muscle groups except for the hip flexors, adductors and internal rotators. DOF configuration did not generally affect muscle force repeatability in the Ham–SO case, although the 311 seemed to relate to the highest values. Lastly, the DOF setting had a significant effect on some muscle groups’ force output, with the highest magnitudes reported for the 321 and 322 of non-paretic and paretic hip adductors and extensors, knee flexors and ankle dorsiflexors and paretic knee flexors. The primary findings of our study can assist users in selecting the most suitable modelling workflow and encourage the widespread adoption of MSK modelling in clinical practice.
{"title":"Evaluating the Repeatability of Musculoskeletal Modelling Force Outcomes in Gait among Chronic Stroke Survivors: Implications for Contemporary Clinical Practice","authors":"G. Giarmatzis, S. Fotiadou, E. Giannakou, E. Karakasis, Konstantinos Vadikolias, N. Aggelousis","doi":"10.3390/biomechanics4020023","DOIUrl":"https://doi.org/10.3390/biomechanics4020023","url":null,"abstract":"This study aims to evaluate the consistency of musculoskeletal modelling outcomes during walking in chronic post-stroke patients, focusing on both affected and unaffected sides. Understanding the specific muscle forces involved is crucial for designing targeted rehabilitation strategies to improve balance and mobility after a stroke. Musculoskeletal modelling provides valuable insights into muscle and joint loading, aiding clinicians in analysing essential biomarkers and enhancing patients’ functional outcomes. However, the repeatability of these modelling outcomes in stroke gait has not been thoroughly explored until now. Twelve post-stroke, hemiparetic survivors were included in the study, which consisted of a gait analysis protocol to capture kinematic and kinetic variables. Two generic full body MSK models—Hamner (Ham) and Rajagopal (Raj)—were used to compute joint angles and muscle forces during walking, with combinations of two muscle force estimation algorithms (Static Optimisation (SO) and Computed Muscle Control (CMC)) and different joint degrees-of-freedoms (DOF). The multiple correlation coefficient (MCCoef) was used to compute repeatability for all forces, grouped based on anatomical function. Regardless of models and DOFs, the mean minimum (0.75) and maximum (0.94) MCCoefs denote moderate-to-excellent repeatability for all muscle groups. The combination of the Ham model and SO provided the most repeatable muscle force estimations of all the muscle groups except for the hip flexors, adductors and internal rotators. DOF configuration did not generally affect muscle force repeatability in the Ham–SO case, although the 311 seemed to relate to the highest values. Lastly, the DOF setting had a significant effect on some muscle groups’ force output, with the highest magnitudes reported for the 321 and 322 of non-paretic and paretic hip adductors and extensors, knee flexors and ankle dorsiflexors and paretic knee flexors. The primary findings of our study can assist users in selecting the most suitable modelling workflow and encourage the widespread adoption of MSK modelling in clinical practice.","PeriodicalId":513714,"journal":{"name":"Biomechanics","volume":"55 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141279514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-20DOI: 10.3390/biomechanics4020020
Kenta Chida, Takayuki Inami, Shota Yamaguchi, Yasumasa Yoshida, N. Kohtake
This study aimed to evaluate the effects of different target distances on various leg joints in the fencing lunge (lunge). Fifteen fencers performed the lunges from three different target distances (normal, short, and long). Joint angle data in the sagittal plane of the hip, knee, and ankle of the front and rear legs were measured using a 3D motion analysis system (Miqus M3). Joint angle variables were compared between each distance using a one-way repeated-measures analysis of variance and Friedman tests (p < 0.05). The results showed significant differences in various extensions, ranges of motion, and flexion angles in the measured joints for all distances. As the distances increased, there was greater flexion of the rear knee joint early during the lunge, followed by greater extension of the rear hip and knee joints, greater plantar flexion of the rear ankle joint, and higher peak velocity of the body center of mass. Furthermore, target distance extension was suggested to significantly affect front hip and knee joint flexion during the braking phase of the lunge. This study provides insight and information valuable to coaches and fencers operating in actual competition settings.
{"title":"Effects of Different Target Distances on the Kinematics of Hip, Knee, and Ankle Joints in the Fencing Lunge","authors":"Kenta Chida, Takayuki Inami, Shota Yamaguchi, Yasumasa Yoshida, N. Kohtake","doi":"10.3390/biomechanics4020020","DOIUrl":"https://doi.org/10.3390/biomechanics4020020","url":null,"abstract":"This study aimed to evaluate the effects of different target distances on various leg joints in the fencing lunge (lunge). Fifteen fencers performed the lunges from three different target distances (normal, short, and long). Joint angle data in the sagittal plane of the hip, knee, and ankle of the front and rear legs were measured using a 3D motion analysis system (Miqus M3). Joint angle variables were compared between each distance using a one-way repeated-measures analysis of variance and Friedman tests (p < 0.05). The results showed significant differences in various extensions, ranges of motion, and flexion angles in the measured joints for all distances. As the distances increased, there was greater flexion of the rear knee joint early during the lunge, followed by greater extension of the rear hip and knee joints, greater plantar flexion of the rear ankle joint, and higher peak velocity of the body center of mass. Furthermore, target distance extension was suggested to significantly affect front hip and knee joint flexion during the braking phase of the lunge. This study provides insight and information valuable to coaches and fencers operating in actual competition settings.","PeriodicalId":513714,"journal":{"name":"Biomechanics","volume":"33 23","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141120711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-19DOI: 10.3390/biomechanics4020019
Stuart Evans, Sam Gleadhill
Laterality preferences are intrinsic in most physical activities, and ice hockey is one domain wherein these preferences might influence performance. Biomechanical laterality between dominant and nondominant (or preferred and nonpreferred) limbs is believed to be an advantageous attribute that is linked with skilled performance. Yet little is known about the implications of motor asymmetries for skilled performers in dynamic, time-constrained, team-based activities in an off-ice environment. This can be extended to when player position is considered, notably for those playing in a defensive or an offensive position. In this study, fourteen semi-professional collegiate male ice hockey players (age: 21.87 ± 2.98 years; BMI: 25.26 ± 3.21 kg/m) performed a randomized repeated 15 m sprint-change of direction task. Assessments of lower limb laterality were carried out as participants commenced the 15 m sprint change of direction task in both a right and left foot rear setback position. Biomechanical laterality between right and left rear foot setback positions was inferred by an ActiGraph GTx3 triaxial accelerometer that was located on the participants’ spinous process, representing the trunk centre of mass (CoM). Overall, ANOVA results indicated significant differences across all sprint split times between the right and left foot rear setback positions, with times significantly quicker when players commenced in a right rear foot setback position (p < 0.001). ANOVA revealed significant differences in trunk CoM acceleration between in a right and left rear setback position, specifically during the initial 0–10 m sprint split, with offensive players observed to have lesser trunk anteroposterior and vertical CoM acceleration (p = 0.05) and during the final 5 m sprint split (p = 0.002, d = 0.7), despite overall smaller effect sizes seen in the left foot rear setback position. It appears that starting with the foot in a right rear setback position results in quicker 15 m performance times and concurrent lower magnitudes of trunk CoM acceleration. Although we demonstrated that offensive players were quicker and displayed less trunk CoM acceleration, we recommend that future studies use a greater number of participants for inter-limb symmetry in these movement tests.
{"title":"Comparing the Effects of an Off-Ice Sprint-Change of Direction Task on Trunk Kinematics and Gait Laterality in Collegiate Ice Hockey Players","authors":"Stuart Evans, Sam Gleadhill","doi":"10.3390/biomechanics4020019","DOIUrl":"https://doi.org/10.3390/biomechanics4020019","url":null,"abstract":"Laterality preferences are intrinsic in most physical activities, and ice hockey is one domain wherein these preferences might influence performance. Biomechanical laterality between dominant and nondominant (or preferred and nonpreferred) limbs is believed to be an advantageous attribute that is linked with skilled performance. Yet little is known about the implications of motor asymmetries for skilled performers in dynamic, time-constrained, team-based activities in an off-ice environment. This can be extended to when player position is considered, notably for those playing in a defensive or an offensive position. In this study, fourteen semi-professional collegiate male ice hockey players (age: 21.87 ± 2.98 years; BMI: 25.26 ± 3.21 kg/m) performed a randomized repeated 15 m sprint-change of direction task. Assessments of lower limb laterality were carried out as participants commenced the 15 m sprint change of direction task in both a right and left foot rear setback position. Biomechanical laterality between right and left rear foot setback positions was inferred by an ActiGraph GTx3 triaxial accelerometer that was located on the participants’ spinous process, representing the trunk centre of mass (CoM). Overall, ANOVA results indicated significant differences across all sprint split times between the right and left foot rear setback positions, with times significantly quicker when players commenced in a right rear foot setback position (p < 0.001). ANOVA revealed significant differences in trunk CoM acceleration between in a right and left rear setback position, specifically during the initial 0–10 m sprint split, with offensive players observed to have lesser trunk anteroposterior and vertical CoM acceleration (p = 0.05) and during the final 5 m sprint split (p = 0.002, d = 0.7), despite overall smaller effect sizes seen in the left foot rear setback position. It appears that starting with the foot in a right rear setback position results in quicker 15 m performance times and concurrent lower magnitudes of trunk CoM acceleration. Although we demonstrated that offensive players were quicker and displayed less trunk CoM acceleration, we recommend that future studies use a greater number of participants for inter-limb symmetry in these movement tests.","PeriodicalId":513714,"journal":{"name":"Biomechanics","volume":"115 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141124120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}