Pub Date : 2024-03-01DOI: 10.24425/cpe.2024.149457
A. Antecka, Rafał Szeląg, Stanisław Ledakowicz
The use of foam fractionation followed by aqueous two-phase extraction has emerged as a potential alternative to traditional liquid chromatography, hitherto irreplaceable in the purification of phycobiliproteins. The crude extracts of C-phycocyanin and allophycocyanin were obtained after Thermosynechococcus PCC 6715 biomass disintegration. The FF process with air flow of 2.4 L·h -1 resulted in purification factors up to 1.47 and partitioning coefficients of about 39, and did not require the addition of surfactants. A temperature of 35˚C allowed for the highest partitioning coefficient of 67.6 and yield of 76%; however, the purity of C-PC in condensate at this temperature was lower than at 25˚C. ATPE was tested in 20 different systems consisting of polyethylene glycol and phosphate or citrate salts, of which PEG1500-citrate gave the highest purification factor value of 2.31. Conversely, a partitioning coefficient of 2416 and 1094 were obtained for the PEG1500-phosphate and PEG3000-phosphate systems, respectively. Interestingly, the use of FF condensate in subsequent ATPE step resulted, for the first time, in the separation of the polymer phase into two fractions, one contained C-phycocyanin and the other allophycocyanin. It can be concluded that the use of a two-step system of FF and ATPE is a viable way to separate phycobiliproteins.
{"title":"Separation and purification of phycobiliproteins from Thermosynechococcus PCC 6715 by foam fractionation and aqueous twophase extraction","authors":"A. Antecka, Rafał Szeląg, Stanisław Ledakowicz","doi":"10.24425/cpe.2024.149457","DOIUrl":"https://doi.org/10.24425/cpe.2024.149457","url":null,"abstract":"The use of foam fractionation followed by aqueous two-phase extraction has emerged as a potential alternative to traditional liquid chromatography, hitherto irreplaceable in the purification of phycobiliproteins. The crude extracts of C-phycocyanin and allophycocyanin were obtained after Thermosynechococcus PCC 6715 biomass disintegration. The FF process with air flow of 2.4 L·h -1 resulted in purification factors up to 1.47 and partitioning coefficients of about 39, and did not require the addition of surfactants. A temperature of 35˚C allowed for the highest partitioning coefficient of 67.6 and yield of 76%; however, the purity of C-PC in condensate at this temperature was lower than at 25˚C. ATPE was tested in 20 different systems consisting of polyethylene glycol and phosphate or citrate salts, of which PEG1500-citrate gave the highest purification factor value of 2.31. Conversely, a partitioning coefficient of 2416 and 1094 were obtained for the PEG1500-phosphate and PEG3000-phosphate systems, respectively. Interestingly, the use of FF condensate in subsequent ATPE step resulted, for the first time, in the separation of the polymer phase into two fractions, one contained C-phycocyanin and the other allophycocyanin. It can be concluded that the use of a two-step system of FF and ATPE is a viable way to separate phycobiliproteins.","PeriodicalId":516129,"journal":{"name":"Chemical and Process Engineering: New Frontiers","volume":" 14","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140090868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.24425/cpe.2024.149459
A. Gąszczak, E. Szczyrba, Anna Szczotka
The large diversity of chemical substances present in air, water, or soil makes it necessary tostudy their mutual impact on the effectiveness of microbiological decomposition ofcontaminants. This publication presents the results of the studies aimed at evaluating the effect of two biogenic heavy metals - zinc and copper - on the phenol biodegradation by the Stenotrophomonas maltophilia KB2 strain. The tests were carried out for concentrations ofmetals significantly exceeding the legally permitted wastewater values: for zinc up to13.3 g·m -3, and copper up to 3.33 g·m -3. In the tested metal concentration range, phenol biodegradation by the S. maltophilia KB2 strain was not significantly influenced by theintroduced dose of zinc. While the presence of copper inhibited both biomass growth andsubstrate degradation. Kinetic data of metal and phenol mixtures were analyzed and very goodcorrelations were obtained for the proposed equations. An equation consistents with the Hanand Levenspiel model was proposed for the system S. maltophilia KB2-phenol-copper, whilean equation consistents with the Kai model for the system St. maltophilia KB2-phenol-zinc. The simultaneous presence of Zn and Cu ions in the culture resulted in a stronger inhibition ofphenol biodegradation.
{"title":"The potential of Stenotrophomonas maltophilia KB2 for 1 phenol degradation 2 under exposure to heavy metal","authors":"A. Gąszczak, E. Szczyrba, Anna Szczotka","doi":"10.24425/cpe.2024.149459","DOIUrl":"https://doi.org/10.24425/cpe.2024.149459","url":null,"abstract":"The large diversity of chemical substances present in air, water, or soil makes it necessary tostudy their mutual impact on the effectiveness of microbiological decomposition ofcontaminants. This publication presents the results of the studies aimed at evaluating the effect of two biogenic heavy metals - zinc and copper - on the phenol biodegradation by the Stenotrophomonas maltophilia KB2 strain. The tests were carried out for concentrations ofmetals significantly exceeding the legally permitted wastewater values: for zinc up to13.3 g·m -3, and copper up to 3.33 g·m -3. In the tested metal concentration range, phenol biodegradation by the S. maltophilia KB2 strain was not significantly influenced by theintroduced dose of zinc. While the presence of copper inhibited both biomass growth andsubstrate degradation. Kinetic data of metal and phenol mixtures were analyzed and very goodcorrelations were obtained for the proposed equations. An equation consistents with the Hanand Levenspiel model was proposed for the system S. maltophilia KB2-phenol-copper, whilean equation consistents with the Kai model for the system St. maltophilia KB2-phenol-zinc. The simultaneous presence of Zn and Cu ions in the culture resulted in a stronger inhibition ofphenol biodegradation.","PeriodicalId":516129,"journal":{"name":"Chemical and Process Engineering: New Frontiers","volume":"31 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140082763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.24425/cpe.2024.149458
Marlena Domińska, K. Paździor, R. Ślężak, Stanisław Ledakowicz
The production of biohydrogen from food waste (FW) by dark fermentation (DF) is a promising technology for commercialisation, as it is both a clean fuel and a suitable means of sustainable waste management. The described experiments compared the biohydrogen production yields obtained after the use of inoculum from two different sources: digested sludge from the wastewater treatment plant (WWTP) in Lodz and sludge from the anaerobic treatment of dairy industry wastewater (DIW) (unconcentrated and double-concentrated). In addition, the effect of different temperatures (70, 90 and 121°C) of inoculum pretreatment on the biohydrogen production in DF was tested. The process was carried out batchwise at 37°C. The highest yield of hydrogen production was obtained after the inoculum pretreatment at 70°C. In addition, a higher amount of hydrogen could be obtained by using sludge from the WWTP as the inoculum (96 cm3 H2/gTVSFW) than unthickened sludge from the DIW (85 cm 3 H 2/g TVSFW). However, after thickening the sludge from the dairy industry, and at the same time balancing the dry matter of both sludges, the hydrogen production potential was comparable for bothsludges (for the WWTP sludge – 96 and for the DIW sludge – 93 cm 3 H 2/g TVSFW). The kinetics of hydrogen production was described by modified Gompertz equation, which showed a good fit (determination coefficient R2 between 0.909 and 0.999) to the experimental data.
{"title":"The influence of inoculum source and pretreatment on the biohydrogen production in the dark fermentation process","authors":"Marlena Domińska, K. Paździor, R. Ślężak, Stanisław Ledakowicz","doi":"10.24425/cpe.2024.149458","DOIUrl":"https://doi.org/10.24425/cpe.2024.149458","url":null,"abstract":"The production of biohydrogen from food waste (FW) by dark fermentation (DF) is a promising technology for commercialisation, as it is both a clean fuel and a suitable means of sustainable waste management. The described experiments compared the biohydrogen production yields obtained after the use of inoculum from two different sources: digested sludge from the wastewater treatment plant (WWTP) in Lodz and sludge from the anaerobic treatment of dairy industry wastewater (DIW) (unconcentrated and double-concentrated). In addition, the effect of different temperatures (70, 90 and 121°C) of inoculum pretreatment on the biohydrogen production in DF was tested. The process was carried out batchwise at 37°C. The highest yield of hydrogen production was obtained after the inoculum pretreatment at 70°C. In addition, a higher amount of hydrogen could be obtained by using sludge from the WWTP as the inoculum (96 cm3 H2/gTVSFW) than unthickened sludge from the DIW (85 cm 3 H 2/g TVSFW). However, after thickening the sludge from the dairy industry, and at the same time balancing the dry matter of both sludges, the hydrogen production potential was comparable for bothsludges (for the WWTP sludge – 96 and for the DIW sludge – 93 cm 3 H 2/g TVSFW). The kinetics of hydrogen production was described by modified Gompertz equation, which showed a good fit (determination coefficient R2 between 0.909 and 0.999) to the experimental data.","PeriodicalId":516129,"journal":{"name":"Chemical and Process Engineering: New Frontiers","volume":" June","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140092801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.24425/cpe.2024.149460
A. Rabajczyk, Jacek Zboina, M. Zielecka, Radosław Fellner, Piotr Kaczmarzyk, Dariusz Pietrzela, Grzegorz Zawistowski
Various types of events and emergency situations have a significant impact on the safety of people and the environment. This especially refers to the incidents involving the emission of pollutants, such as ammonia, into the atmosphere. The article presents the concept of combining unmanned aerial vehicles with contamination plume modelling. Such a solution allows for mapping negative effects of ammonia release caused by the damage to a tank (with set parameters) during its transport as well as by the point leakage (such as unsealing in the installation). Simulation based on the ALOHA model makes it possible to indicate the direction of pollution spread and constitutes the basis for taking action. And, the use of a drone allows to control contamination in real time and verify the probability of a threat occurring in a given area.
{"title":"UAS and a virtual environment as possible response tools 1 to the incidents 2 involving uncontrolled release of dangerous gases – a case study","authors":"A. Rabajczyk, Jacek Zboina, M. Zielecka, Radosław Fellner, Piotr Kaczmarzyk, Dariusz Pietrzela, Grzegorz Zawistowski","doi":"10.24425/cpe.2024.149460","DOIUrl":"https://doi.org/10.24425/cpe.2024.149460","url":null,"abstract":"Various types of events and emergency situations have a significant impact on the safety of people and the environment. This especially refers to the incidents involving the emission of pollutants, such as ammonia, into the atmosphere. The article presents the concept of combining unmanned aerial vehicles with contamination plume modelling. Such a solution allows for mapping negative effects of ammonia release caused by the damage to a tank (with set parameters) during its transport as well as by the point leakage (such as unsealing in the installation). Simulation based on the ALOHA model makes it possible to indicate the direction of pollution spread and constitutes the basis for taking action. And, the use of a drone allows to control contamination in real time and verify the probability of a threat occurring in a given area.","PeriodicalId":516129,"journal":{"name":"Chemical and Process Engineering: New Frontiers","volume":"8 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140084109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-05DOI: 10.24425/cpe.2021.138940
{"title":"138940","authors":"","doi":"10.24425/cpe.2021.138940","DOIUrl":"https://doi.org/10.24425/cpe.2021.138940","url":null,"abstract":"","PeriodicalId":516129,"journal":{"name":"Chemical and Process Engineering: New Frontiers","volume":"33 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139449855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-05DOI: 10.24425/cpe.2021.138942
{"title":"138942","authors":"","doi":"10.24425/cpe.2021.138942","DOIUrl":"https://doi.org/10.24425/cpe.2021.138942","url":null,"abstract":"","PeriodicalId":516129,"journal":{"name":"Chemical and Process Engineering: New Frontiers","volume":"55 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139449936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-05DOI: 10.24425/cpe.2024.148551
{"title":"148551","authors":"","doi":"10.24425/cpe.2024.148551","DOIUrl":"https://doi.org/10.24425/cpe.2024.148551","url":null,"abstract":"","PeriodicalId":516129,"journal":{"name":"Chemical and Process Engineering: New Frontiers","volume":"63 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139449719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}