Pub Date : 2024-03-01DOI: 10.1637/aviandiseases-D-23-00067
Shayne Ramsubeik, Simone Stoute, Beate Crossley, Daniel Rejmanek, Carmen Jerry, Wendi Jackson, Mark Bland, Jennine Ochoa
Highly pathogenic avian influenza (HPAI) has resulted in catastrophic economic losses globally in poultry. This case report describes the diagnostic detection and pathology of HPAI H5N1 in 5-day-old commercial ducklings, which is an atypical age for detection of natural infection of HPAI in poultry. The pathology observed at 5 days of age was also compared to lesions observed in ducklings from the same flock evaluated at 10 days of age before depopulation. The California Animal Health and Food Safety (CAHFS) Laboratory, Tulare, received ten 5-day-old Pekin duckling (Anas platyrhynchos domesticus) carcasses for diagnostic evaluation due to mortality that started increasing at 3 days of age. The most common gross findings included bilateral pulmonary edema with congestion and enlarged, mottled livers and spleens. Microscopically, cerebral neuronophagia, pancreatic necrosis, and interstitial pneumonia with pulmonary edema were observed in the 5-day-old ducklings. Oropharyngeal and cloacal swabs were positive for avian influenza virus (AIV) by real-time reverse transcriptase PCR. The AIV was typed as HPAI, EA/AM 2.3.4.4b H5N1 goose/Guangdong clade lineage by the National Veterinary Services Laboratory. Ducks at the affected premises were depopulated 4 days after the 5-day-old ducklings were submitted to the CAHFS lab, at which time additional tissue samples were collected for comparison to 10-day-old ducklings on the same premises. Differences in microscopic lesions and AIV tissue distribution were observed between the 5-day and 10-day tissues collected. Notably, microscopic lesions were more severe in the brain and pancreas at 10 days of age. Findings in 10-day-old ducklings included cerebral lymphoplasmacytic perivascular cuffing, gliosis, neuronal degeneration, and pancreatic necrosis. AIV antigen distribution and intensity was greatest in the cerebral tissue of the brains at 10 days and in the lungs at 5 days of age. To the authors' knowledge, published studies are limited on AIV natural infection in domestic ducks less than 9 days of age.
{"title":"Natural Infection with H5N1 Highly Pathogenic Influenza (HPAI) Virus in 5- and 10-Day-Old Commercial Pekin Ducklings (<i>Anas platyrhynchos domesticus</i>).","authors":"Shayne Ramsubeik, Simone Stoute, Beate Crossley, Daniel Rejmanek, Carmen Jerry, Wendi Jackson, Mark Bland, Jennine Ochoa","doi":"10.1637/aviandiseases-D-23-00067","DOIUrl":"10.1637/aviandiseases-D-23-00067","url":null,"abstract":"<p><p>Highly pathogenic avian influenza (HPAI) has resulted in catastrophic economic losses globally in poultry. This case report describes the diagnostic detection and pathology of HPAI H5N1 in 5-day-old commercial ducklings, which is an atypical age for detection of natural infection of HPAI in poultry. The pathology observed at 5 days of age was also compared to lesions observed in ducklings from the same flock evaluated at 10 days of age before depopulation. The California Animal Health and Food Safety (CAHFS) Laboratory, Tulare, received ten 5-day-old Pekin duckling (<i>Anas platyrhynchos domesticus</i>) carcasses for diagnostic evaluation due to mortality that started increasing at 3 days of age. The most common gross findings included bilateral pulmonary edema with congestion and enlarged, mottled livers and spleens. Microscopically, cerebral neuronophagia, pancreatic necrosis, and interstitial pneumonia with pulmonary edema were observed in the 5-day-old ducklings. Oropharyngeal and cloacal swabs were positive for avian influenza virus (AIV) by real-time reverse transcriptase PCR. The AIV was typed as HPAI, EA/AM 2.3.4.4b H5N1 goose/Guangdong clade lineage by the National Veterinary Services Laboratory. Ducks at the affected premises were depopulated 4 days after the 5-day-old ducklings were submitted to the CAHFS lab, at which time additional tissue samples were collected for comparison to 10-day-old ducklings on the same premises. Differences in microscopic lesions and AIV tissue distribution were observed between the 5-day and 10-day tissues collected. Notably, microscopic lesions were more severe in the brain and pancreas at 10 days of age. Findings in 10-day-old ducklings included cerebral lymphoplasmacytic perivascular cuffing, gliosis, neuronal degeneration, and pancreatic necrosis. AIV antigen distribution and intensity was greatest in the cerebral tissue of the brains at 10 days and in the lungs at 5 days of age. To the authors' knowledge, published studies are limited on AIV natural infection in domestic ducks less than 9 days of age.</p>","PeriodicalId":516846,"journal":{"name":"Avian diseases","volume":"68 1","pages":"65-71"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140868929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-29DOI: 10.1637/0005-2086-67.4.513
{"title":"Avian Pathology Volume 52 Number 6 November 2023 Table of Contents","authors":"","doi":"10.1637/0005-2086-67.4.513","DOIUrl":"https://doi.org/10.1637/0005-2086-67.4.513","url":null,"abstract":"","PeriodicalId":516846,"journal":{"name":"Avian diseases","volume":"65 49","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140486528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1637/aviandiseases-D-23-00055
Richard M Fulton
Developer ducks are ducks being reared for breeding. Like breeder candidate chickens, they are raised with appropriate light and feed programs. A commercial Pekin duck (Anas platyrhynchos domesticus) developer flock experienced an extraordinary, elevated mortality event at 6 wk of age. Weekly mortality rate that week was 162 ducklings out of a flock of 6420 (2.5%). Mortality jumped to 988 (15.4%) ducklings the next week. On first elevated mortality, six dead ducks from that flock were submitted for diagnostic investigation at Michigan State University Veterinary Diagnostic Laboratory. Myocarditis, pale striping or diffuse pallor of the epicardium, was grossly evident in five of the six submitted ducklings. All of the ducklings had hydropericardium, three had ascites, and three had congested meninges. Histology confirmed myocarditis with myocardial necrosis. Cerebrum and brainstem had lymphocytic vasculitis with rare neuronal necrosis in affected areas, as well as Purkinje cells in the cerebellum. West Nile virus was confirmed by PCR the day after submittal and by immunohistochemistry soon thereafter.
{"title":"West Nile Virus Infection in a Pekin Duck ( <i>Anas platyrhynchos domesticus</i> ) Developer Flock.","authors":"Richard M Fulton","doi":"10.1637/aviandiseases-D-23-00055","DOIUrl":"10.1637/aviandiseases-D-23-00055","url":null,"abstract":"<p><p>Developer ducks are ducks being reared for breeding. Like breeder candidate chickens, they are raised with appropriate light and feed programs. A commercial Pekin duck (<i>Anas platyrhynchos domesticus</i>) developer flock experienced an extraordinary, elevated mortality event at 6 wk of age. Weekly mortality rate that week was 162 ducklings out of a flock of 6420 (2.5%). Mortality jumped to 988 (15.4%) ducklings the next week. On first elevated mortality, six dead ducks from that flock were submitted for diagnostic investigation at Michigan State University Veterinary Diagnostic Laboratory. Myocarditis, pale striping or diffuse pallor of the epicardium, was grossly evident in five of the six submitted ducklings. All of the ducklings had hydropericardium, three had ascites, and three had congested meninges. Histology confirmed myocarditis with myocardial necrosis. Cerebrum and brainstem had lymphocytic vasculitis with rare neuronal necrosis in affected areas, as well as Purkinje cells in the cerebellum. West Nile virus was confirmed by PCR the day after submittal and by immunohistochemistry soon thereafter.</p>","PeriodicalId":516846,"journal":{"name":"Avian diseases","volume":"67 4","pages":"345-348"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1637/aviandiseases-D-23-00048
S A S van der Klein, C Evans, J L M Marchal, K Gibbs
Necrotic enteritis (NE) continues to be a significant burden to the poultry industry, compounded by pressure to reduce antibiotic use. Researchers use NE-challenge models to study the infection biology of NE and as screening tools to develop potential novel interventions. Currently, data are limited comparing such models between research establishments, and few indicate which quantitative metrics provide the most accurate measure for determining the efficacy of interventions. We compared data from 10 independent NE-challenge trials incorporating six challenge models employed in four geographical regions to determine the extent of variability in bird responses and to determine, using principal component analysis (PCA), which variables discriminated most effectively between nonchallenged control (NC) and challenged control (CC) groups. Response variables related to growth performance (weight gain, feed intake, feed conversion), health (mortality, lesion scores, NE induction rate), and, in three trials only, gut integrity (tight junction protein claudin-1, claudin-2, and zonula occludens-1 expression, coccidia counts, and intestinal permeability [assessed by FITC-dextran assay]). Treatments included a CC, which varied between trials (for example, in Eimeria predisposition, Clostridium perfringens strain, and days of inoculation), and a NC. The degree of response to challenge in CC birds varied significantly among models and trials. In all trials, lesion scores 1 to 4 days postchallenge were increased in CC vs. NC birds and varied both within and among models (by 0.29-1.17 points and 0.05-2.50 points, respectively). In addition, NE-related mortality at day 28 was increased in CC vs. NC, both within and among models (by 1.79%-4.72% and 0.02%-16.70%, respectively), and final (day 35 or 42) body weight was reduced by 3.9%-14.4% and overall FCR increased by up to 27% across trials (P , 0.05). A PCA on the combined dataset including only performance indicators failed to adequately differentiate NC and CC groups. However, the combination of performance and gut integrity variables and standardization of data by trial and phase achieved greater resolution between groups. This indicated that the inclusion of both types of variables in future NE-challenge studies would enable the generation of more robust predictions about intervention efficacy from different types of infection models. A final PCA based on a subset of key indicator variables, including body weight, feed intake, feed conversion ratio, mortality, and lesion score, achieved a good level of separation between NC and CC status of birds and could, with further research, be a useful supplement to existing approaches for assessing and predicting the NE status of birds in the field.
{"title":"Elucidating the Varying Impact of Necrotic Enteritis Using Performance and Health Indicators in Broiler Infection Models.","authors":"S A S van der Klein, C Evans, J L M Marchal, K Gibbs","doi":"10.1637/aviandiseases-D-23-00048","DOIUrl":"10.1637/aviandiseases-D-23-00048","url":null,"abstract":"<p><p>Necrotic enteritis (NE) continues to be a significant burden to the poultry industry, compounded by pressure to reduce antibiotic use. Researchers use NE-challenge models to study the infection biology of NE and as screening tools to develop potential novel interventions. Currently, data are limited comparing such models between research establishments, and few indicate which quantitative metrics provide the most accurate measure for determining the efficacy of interventions. We compared data from 10 independent NE-challenge trials incorporating six challenge models employed in four geographical regions to determine the extent of variability in bird responses and to determine, using principal component analysis (PCA), which variables discriminated most effectively between nonchallenged control (NC) and challenged control (CC) groups. Response variables related to growth performance (weight gain, feed intake, feed conversion), health (mortality, lesion scores, NE induction rate), and, in three trials only, gut integrity (tight junction protein claudin-1, claudin-2, and zonula occludens-1 expression, coccidia counts, and intestinal permeability [assessed by FITC-dextran assay]). Treatments included a CC, which varied between trials (for example, in <i>Eimeria</i> predisposition, <i>Clostridium perfringens</i> strain, and days of inoculation), and a NC. The degree of response to challenge in CC birds varied significantly among models and trials. In all trials, lesion scores 1 to 4 days postchallenge were increased in CC <i>vs.</i> NC birds and varied both within and among models (by 0.29-1.17 points and 0.05-2.50 points, respectively). In addition, NE-related mortality at day 28 was increased in CC <i>vs.</i> NC, both within and among models (by 1.79%-4.72% and 0.02%-16.70%, respectively), and final (day 35 or 42) body weight was reduced by 3.9%-14.4% and overall FCR increased by up to 27% across trials (<i>P</i> , 0.05). A PCA on the combined dataset including only performance indicators failed to adequately differentiate NC and CC groups. However, the combination of performance and gut integrity variables and standardization of data by trial and phase achieved greater resolution between groups. This indicated that the inclusion of both types of variables in future NE-challenge studies would enable the generation of more robust predictions about intervention efficacy from different types of infection models. A final PCA based on a subset of key indicator variables, including body weight, feed intake, feed conversion ratio, mortality, and lesion score, achieved a good level of separation between NC and CC status of birds and could, with further research, be a useful supplement to existing approaches for assessing and predicting the NE status of birds in the field.</p>","PeriodicalId":516846,"journal":{"name":"Avian diseases","volume":"67 4","pages":"326-339"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1637/aviandiseases-D-23-00026
Vijay Durairaj, Emily Barber, Ryan Vander Veen
Histomoniasis is a deadly disease of turkeys causing devastating economic losses to the poultry industry. In field outbreaks, a presumptive diagnosis is made based on gross pathology lesions and confirmed by histopathology. An early detection tool with quick turnaround time is needed to prevent the spread of histomoniasis. With this objective, two studies were conducted in turkeys. In Study 1, 40 poults were housed in two pens (20 poults/pen) and challenged at 14 days of age with Histomonas meleagridis by intracloacal route. Blood samples were collected 4 days postchallenge. Fifty-five percent (22/40) of the blood samples tested positive for H. meleagridis based on PCR using primers targeted against the 18S rRNA gene and confirmed by sequencing. In Study 2, 40 poults were housed in two groups and raised in floor pens. Groups 1 and 2 served as negative and challenge controls, respectively. At 14 days of age, the birds in Group 2 were challenged with H. meleagridis by intracloacal route. Blood samples were collected 2 days postchallenge. Five percent (1/20) of the blood samples tested positive for H. meleagridis, based on PCR and confirmed by sequencing. The results from both studies indicate that H. meleagridis DNA can be detected in the blood samples by PCR and confirmed by sequencing as early as 4 days postchallenge. This early detection method could be applied in field outbreaks to detect and confirm histomoniasis as early as possible.
{"title":"Early Detection of Histomoniasis in Blood Samples by PCR and Sequencing.","authors":"Vijay Durairaj, Emily Barber, Ryan Vander Veen","doi":"10.1637/aviandiseases-D-23-00026","DOIUrl":"10.1637/aviandiseases-D-23-00026","url":null,"abstract":"<p><p>Histomoniasis is a deadly disease of turkeys causing devastating economic losses to the poultry industry. In field outbreaks, a presumptive diagnosis is made based on gross pathology lesions and confirmed by histopathology. An early detection tool with quick turnaround time is needed to prevent the spread of histomoniasis. With this objective, two studies were conducted in turkeys. In Study 1, 40 poults were housed in two pens (20 poults/pen) and challenged at 14 days of age with <i>Histomonas meleagridis</i> by intracloacal route. Blood samples were collected 4 days postchallenge. Fifty-five percent (22/40) of the blood samples tested positive for <i>H. meleagridis</i> based on PCR using primers targeted against the 18S rRNA gene and confirmed by sequencing. In Study 2, 40 poults were housed in two groups and raised in floor pens. Groups 1 and 2 served as negative and challenge controls, respectively. At 14 days of age, the birds in Group 2 were challenged with <i>H. meleagridis</i> by intracloacal route. Blood samples were collected 2 days postchallenge. Five percent (1/20) of the blood samples tested positive for <i>H. meleagridis</i>, based on PCR and confirmed by sequencing. The results from both studies indicate that <i>H. meleagridis</i> DNA can be detected in the blood samples by PCR and confirmed by sequencing as early as 4 days postchallenge. This early detection method could be applied in field outbreaks to detect and confirm histomoniasis as early as possible.</p>","PeriodicalId":516846,"journal":{"name":"Avian diseases","volume":"67 4","pages":"340-344"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1637/aviandiseases-D-23-99998
Kannan Ganapathy, Sivamurthy Parthiban
The poultry industry is the largest source of meat and eggs for the growing human population worldwide. Key concerns in poultry farming are nutrition, management, flock health, and biosecurity measures. As part of the flock health, use of live viral vaccines plays a vital role in the prevention of economically important and common viral diseases. This includes diseases and production losses caused by Newcastle disease virus, infectious bronchitis virus, infectious laryngotracheitis virus, infectious bursal disease virus, Marek's disease virus, chicken infectious anemia virus, avian encephalomyelitis virus, fowlpox virus, and avian metapneumovirus. These viruses cause direct and indirect harms, such as financial losses worth millions of dollars, loss of protein sources, and threats to animal welfare. Flock losses vary by type of poultry, age of affected animals, co-infections, immune status, and environmental factors. Losses in broiler birds can consist of high mortality, poor body weight gain, high feed conversion ratio, and increased carcass condemnation. In commercial layers and breeder flocks, losses include higher than normal mortality rate, poor flock uniformity, drops in egg production and quality, poor hatchability, and poor day-old-chick quality. Despite the emergence of technology-based vaccines, such as inactivated, subunit, vector-based, DNA or RNA, and others, the attenuated live vaccines remain as important as before. Live vaccines are preferred in the global veterinary vaccine market, accounting for 24.3% of the global market share in 2022. The remaining 75% includes inactivated, DNA, subunit, conjugate, recombinant, and toxoid vaccines. The main reason for this is that live vaccines can induce innate, mucosal, cellular, and humoral immunities by single or multiple applications. Some live vaccine combinations provide higher and broader protection against several diseases or strains of viruses. This review aimed to explore insights on the pros and cons of attenuated live vaccines commonly used against major viral infections of the global chicken industry, and the future road map for improvement.
{"title":"Pros and Cons on Use of Live Viral Vaccines in Commercial Chicken Flocks.","authors":"Kannan Ganapathy, Sivamurthy Parthiban","doi":"10.1637/aviandiseases-D-23-99998","DOIUrl":"10.1637/aviandiseases-D-23-99998","url":null,"abstract":"<p><p>The poultry industry is the largest source of meat and eggs for the growing human population worldwide. Key concerns in poultry farming are nutrition, management, flock health, and biosecurity measures. As part of the flock health, use of live viral vaccines plays a vital role in the prevention of economically important and common viral diseases. This includes diseases and production losses caused by Newcastle disease virus, infectious bronchitis virus, infectious laryngotracheitis virus, infectious bursal disease virus, Marek's disease virus, chicken infectious anemia virus, avian encephalomyelitis virus, fowlpox virus, and avian metapneumovirus. These viruses cause direct and indirect harms, such as financial losses worth millions of dollars, loss of protein sources, and threats to animal welfare. Flock losses vary by type of poultry, age of affected animals, co-infections, immune status, and environmental factors. Losses in broiler birds can consist of high mortality, poor body weight gain, high feed conversion ratio, and increased carcass condemnation. In commercial layers and breeder flocks, losses include higher than normal mortality rate, poor flock uniformity, drops in egg production and quality, poor hatchability, and poor day-old-chick quality. Despite the emergence of technology-based vaccines, such as inactivated, subunit, vector-based, DNA or RNA, and others, the attenuated live vaccines remain as important as before. Live vaccines are preferred in the global veterinary vaccine market, accounting for 24.3% of the global market share in 2022. The remaining 75% includes inactivated, DNA, subunit, conjugate, recombinant, and toxoid vaccines. The main reason for this is that live vaccines can induce innate, mucosal, cellular, and humoral immunities by single or multiple applications. Some live vaccine combinations provide higher and broader protection against several diseases or strains of viruses. This review aimed to explore insights on the pros and cons of attenuated live vaccines commonly used against major viral infections of the global chicken industry, and the future road map for improvement.</p>","PeriodicalId":516846,"journal":{"name":"Avian diseases","volume":"67 4","pages":"410-420"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}