首页 > 最新文献

Proceedings of the 17th ACM International Conference on Web Search and Data Mining最新文献

英文 中文
Multi-Granular Text Classification with Minimal Supervision 最小监督下的多粒度文本分类
Yunyi Zhang
{"title":"Multi-Granular Text Classification with Minimal Supervision","authors":"Yunyi Zhang","doi":"10.1145/3616855.3635735","DOIUrl":"https://doi.org/10.1145/3616855.3635735","url":null,"abstract":"","PeriodicalId":517585,"journal":{"name":"Proceedings of the 17th ACM International Conference on Web Search and Data Mining","volume":"8 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140286091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Augmenting Keyword-based Search in Mobile Applications Using LLMs 使用 LLM 在移动应用中增强基于关键字的搜索
Harikrishnan C, Giridhar Sreenivasa Murthy, Kumar Rangarajan
{"title":"Augmenting Keyword-based Search in Mobile Applications Using LLMs","authors":"Harikrishnan C, Giridhar Sreenivasa Murthy, Kumar Rangarajan","doi":"10.1145/3616855.3635745","DOIUrl":"https://doi.org/10.1145/3616855.3635745","url":null,"abstract":"","PeriodicalId":517585,"journal":{"name":"Proceedings of the 17th ACM International Conference on Web Search and Data Mining","volume":"22 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140285677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Journey to A Knowledgeable Assistant with Retrieval-Augmented Generation (RAG) 利用检索增强生成技术(RAG)实现知识型助理之旅
Xin Luna Dong
{"title":"The Journey to A Knowledgeable Assistant with Retrieval-Augmented Generation (RAG)","authors":"Xin Luna Dong","doi":"10.1145/3616855.3638207","DOIUrl":"https://doi.org/10.1145/3616855.3638207","url":null,"abstract":"","PeriodicalId":517585,"journal":{"name":"Proceedings of the 17th ACM International Conference on Web Search and Data Mining","volume":"13 6‐7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140285664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated Tailoring of Large Language Models for Industry-Specific Downstream Tasks 为特定行业下游任务自动定制大型语言模型
Shreya Saxena, Siva Prasad, Muneeswaran I, Advaith Shankar, Varun V, Saisubramaniam Gopalakrishnan, Vishal Vaddina
{"title":"Automated Tailoring of Large Language Models for Industry-Specific Downstream Tasks","authors":"Shreya Saxena, Siva Prasad, Muneeswaran I, Advaith Shankar, Varun V, Saisubramaniam Gopalakrishnan, Vishal Vaddina","doi":"10.1145/3616855.3635743","DOIUrl":"https://doi.org/10.1145/3616855.3635743","url":null,"abstract":"","PeriodicalId":517585,"journal":{"name":"Proceedings of the 17th ACM International Conference on Web Search and Data Mining","volume":"101 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140286061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guardian: Guarding against Gradient Leakage with Provable Defense for Federated Learning 守护者为联合学习提供可证明的防御,防止梯度泄漏
Mingyuan Fan, Yang Liu, Cen Chen, Chengyu Wang, Minghui Qiu, Wenmeng Zhou
{"title":"Guardian: Guarding against Gradient Leakage with Provable Defense for Federated Learning","authors":"Mingyuan Fan, Yang Liu, Cen Chen, Chengyu Wang, Minghui Qiu, Wenmeng Zhou","doi":"10.1145/3616855.3635758","DOIUrl":"https://doi.org/10.1145/3616855.3635758","url":null,"abstract":"","PeriodicalId":517585,"journal":{"name":"Proceedings of the 17th ACM International Conference on Web Search and Data Mining","volume":"18 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140285682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SIRUP: Search-based Book Recommendation Playground SIRUP:基于搜索的图书推荐游乐场
Ghazaleh Haratinezhad Torbati, Anna Tigunova, G. Weikum
{"title":"SIRUP: Search-based Book Recommendation Playground","authors":"Ghazaleh Haratinezhad Torbati, Anna Tigunova, G. Weikum","doi":"10.1145/3616855.3635692","DOIUrl":"https://doi.org/10.1145/3616855.3635692","url":null,"abstract":"","PeriodicalId":517585,"journal":{"name":"Proceedings of the 17th ACM International Conference on Web Search and Data Mining","volume":"4 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140285694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Capturing Temporal Node Evolution via Self-supervised Learning: A New Perspective on Dynamic Graph Learning 通过自我监督学习捕捉时间节点演变:动态图学习的新视角
Lingwen Liu, Guangqi Wen, Peng Cao, Jinzhu Yang, Weiping Li, Osmar R. Zaiane
Dynamic graphs play an important role in many fields like social relationship analysis, recommender systems and medical science, as graphs evolve over time. It is fundamental to capture the evolution patterns for dynamic graphs. Existing works mostly focus on constraining the temporal smoothness between neighbor snap-shots, however, fail to capture sharp shifts, which can be beneficial for graph dynamics embedding. To solve it, we assume the evolution of dynamic graph nodes can be split into temporal shift embedding and temporal consistency embedding. Thus, we propose the Self-supervised Temporal-aware Dynamic Graph representation Learning framework (STDGL) for disentangling the temporal shift embedding from temporal consistency embedding via a well-designed auxiliary task from the perspectives of both node local and global connectivity modeling in a self-supervised manner, further enhancing the learning of interpretable graph representations and improving the performance of various downstream tasks. Extensive experiments on link prediction, edge classification and node classification tasks demonstrate STDGL successfully learns the disentan-gled temporal shift and consistency representations. Furthermore, the results indicate significant improvements in our STDGL over the state-of-the-art methods, and appealing interpretability and transferability owing to the disentangled node representations.
动态图在社会关系分析、推荐系统和医学科学等许多领域发挥着重要作用,因为图会随着时间的推移而演变。捕捉动态图的演化模式至关重要。现有的研究大多侧重于限制相邻快照之间的时间平滑性,但却无法捕捉对图动态嵌入有益的急剧变化。为了解决这个问题,我们假定动态图节点的演化可以分为时间偏移嵌入和时间一致性嵌入。因此,我们提出了自监督时间感知动态图表征学习框架(Self-supervised Temporal-aware Dynamic Graph representation Learning framework,简称 STDGL),通过精心设计的辅助任务,从节点局部和全局连通性建模的角度,以自监督的方式将时间偏移嵌入与时间一致性嵌入分离开来,进一步增强了可解释图表征的学习能力,提高了各种下游任务的性能。在链接预测、边缘分类和节点分类任务上的大量实验证明,STDGL 成功地学习了分解的时移和一致性表示。此外,实验结果表明,与最先进的方法相比,我们的 STDGL 有了显著的改进,而且由于采用了分解节点表示法,其可解释性和可移植性也极具吸引力。
{"title":"Capturing Temporal Node Evolution via Self-supervised Learning: A New Perspective on Dynamic Graph Learning","authors":"Lingwen Liu, Guangqi Wen, Peng Cao, Jinzhu Yang, Weiping Li, Osmar R. Zaiane","doi":"10.1145/3616855.3635765","DOIUrl":"https://doi.org/10.1145/3616855.3635765","url":null,"abstract":"Dynamic graphs play an important role in many fields like social relationship analysis, recommender systems and medical science, as graphs evolve over time. It is fundamental to capture the evolution patterns for dynamic graphs. Existing works mostly focus on constraining the temporal smoothness between neighbor snap-shots, however, fail to capture sharp shifts, which can be beneficial for graph dynamics embedding. To solve it, we assume the evolution of dynamic graph nodes can be split into temporal shift embedding and temporal consistency embedding. Thus, we propose the Self-supervised Temporal-aware Dynamic Graph representation Learning framework (STDGL) for disentangling the temporal shift embedding from temporal consistency embedding via a well-designed auxiliary task from the perspectives of both node local and global connectivity modeling in a self-supervised manner, further enhancing the learning of interpretable graph representations and improving the performance of various downstream tasks. Extensive experiments on link prediction, edge classification and node classification tasks demonstrate STDGL successfully learns the disentan-gled temporal shift and consistency representations. Furthermore, the results indicate significant improvements in our STDGL over the state-of-the-art methods, and appealing interpretability and transferability owing to the disentangled node representations.","PeriodicalId":517585,"journal":{"name":"Proceedings of the 17th ACM International Conference on Web Search and Data Mining","volume":"27 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140285669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unbiased Learning to Rank: On Recent Advances and Practical Applications 无偏学习排名:最新进展与实际应用
Shashank Gupta, Philipp Hager, Jin Huang, Ali Vardasbi, Harrie Oosterhuis
{"title":"Unbiased Learning to Rank: On Recent Advances and Practical Applications","authors":"Shashank Gupta, Philipp Hager, Jin Huang, Ali Vardasbi, Harrie Oosterhuis","doi":"10.1145/3616855.3636451","DOIUrl":"https://doi.org/10.1145/3616855.3636451","url":null,"abstract":"","PeriodicalId":517585,"journal":{"name":"Proceedings of the 17th ACM International Conference on Web Search and Data Mining","volume":"96 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140286063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatic Extraction of Patterns in Digital News Articles of Femicides occurred in Mexico by Text Mining Techniques 利用文本挖掘技术自动提取墨西哥杀戮女性事件数字新闻文章中的模式
Jonathan Zárate-Cartas, Alejandro Molina-Villegas
{"title":"Automatic Extraction of Patterns in Digital News Articles of Femicides occurred in Mexico by Text Mining Techniques","authors":"Jonathan Zárate-Cartas, Alejandro Molina-Villegas","doi":"10.1145/3616855.3636503","DOIUrl":"https://doi.org/10.1145/3616855.3636503","url":null,"abstract":"","PeriodicalId":517585,"journal":{"name":"Proceedings of the 17th ACM International Conference on Web Search and Data Mining","volume":"14 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140286123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WordGraph: A Python Package for Reconstructing Interactive Causal Graphical Models from Text Data WordGraph:从文本数据重构交互式因果图模型的 Python 软件包
Amine Ferdjaoui, Séverine Affeldt, Mohamed Nadif
{"title":"WordGraph: A Python Package for Reconstructing Interactive Causal Graphical Models from Text Data","authors":"Amine Ferdjaoui, Séverine Affeldt, Mohamed Nadif","doi":"10.1145/3616855.3635698","DOIUrl":"https://doi.org/10.1145/3616855.3635698","url":null,"abstract":"","PeriodicalId":517585,"journal":{"name":"Proceedings of the 17th ACM International Conference on Web Search and Data Mining","volume":"14 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140285687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Proceedings of the 17th ACM International Conference on Web Search and Data Mining
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1