Abstract. The Integrated Ocean Drilling Program (IODP) expedition 347 cored sediments from different settings of the Baltic Sea covering the last glacial–interglacial cycle. The main aim was to study the geological development of the Baltic Sea in relation to the extreme climate variability of the region with changing ice cover and major shifts in temperature, salinity, and biological communities. Using the Greatship Manisha as a European Consortium for Ocean Research Drilling (ECORD) mission-specific platform, we recovered 1.6 km of core from nine sites of which four were additionally cored for microbiology. The sites covered the gateway to the North Sea and Atlantic Ocean, several sub-basins in the southern Baltic Sea, a deep basin in the central Baltic Sea, and a river estuary in the north. The waxing and waning of the Scandinavian ice sheet has profoundly affected the Baltic Sea sediments. During the Weichselian, progressing glaciers reshaped the submarine landscape and displaced sedimentary deposits from earlier Quaternary time. As the glaciers retreated they left a complex pattern of till, sand, and lacustrine clay, which in the basins has since been covered by a thick deposit of Holocene, organic-rich clay. Due to the stratified water column of the brackish Baltic Sea and the recurrent and widespread anoxia, the deeper basins harbor laminated sediments that provide a unique opportunity for high-resolution chronological studies. The Baltic Sea is a eutrophic intra-continental sea that is strongly impacted by terrestrial runoff and nutrient fluxes. The Holocene deposits are recorded today to be up to 50 m deep and geochemically affected by diagenetic alterations driven by organic matter degradation. Many of the cored sequences were highly supersaturated with respect to methane, which caused strong degassing upon core recovery. The depth distributions of conservative sea water ions still reflected the transition at the end of the last glaciation from fresh-water clays to Holocene brackish mud. High-resolution sampling and analyses of interstitial water chemistry revealed the intensive mineralization and zonation of the predominant biogeochemical processes. Quantification of microbial cells in the sediments yielded some of the highest cell densities yet recorded by scientific drilling.
{"title":"IODP expedition 347: Baltic Sea basin paleoenvironment and biosphere","authors":"T. Andrén, B. Jørgensen, C. Cotterill, S. Green","doi":"10.5194/SD-20-1-2015","DOIUrl":"https://doi.org/10.5194/SD-20-1-2015","url":null,"abstract":"Abstract. The Integrated Ocean Drilling Program (IODP) expedition 347 cored sediments from different settings of the Baltic Sea covering the last glacial–interglacial cycle. The main aim was to study the geological development of the Baltic Sea in relation to the extreme climate variability of the region with changing ice cover and major shifts in temperature, salinity, and biological communities. Using the Greatship Manisha as a European Consortium for Ocean Research Drilling (ECORD) mission-specific platform, we recovered 1.6 km of core from nine sites of which four were additionally cored for microbiology. The sites covered the gateway to the North Sea and Atlantic Ocean, several sub-basins in the southern Baltic Sea, a deep basin in the central Baltic Sea, and a river estuary in the north. The waxing and waning of the Scandinavian ice sheet has profoundly affected the Baltic Sea sediments. During the Weichselian, progressing glaciers reshaped the submarine landscape and displaced sedimentary deposits from earlier Quaternary time. As the glaciers retreated they left a complex pattern of till, sand, and lacustrine clay, which in the basins has since been covered by a thick deposit of Holocene, organic-rich clay. Due to the stratified water column of the brackish Baltic Sea and the recurrent and widespread anoxia, the deeper basins harbor laminated sediments that provide a unique opportunity for high-resolution chronological studies. The Baltic Sea is a eutrophic intra-continental sea that is strongly impacted by terrestrial runoff and nutrient fluxes. The Holocene deposits are recorded today to be up to 50 m deep and geochemically affected by diagenetic alterations driven by organic matter degradation. Many of the cored sequences were highly supersaturated with respect to methane, which caused strong degassing upon core recovery. The depth distributions of conservative sea water ions still reflected the transition at the end of the last glaciation from fresh-water clays to Holocene brackish mud. High-resolution sampling and analyses of interstitial water chemistry revealed the intensive mineralization and zonation of the predominant biogeochemical processes. Quantification of microbial cells in the sediments yielded some of the highest cell densities yet recorded by scientific drilling.","PeriodicalId":51840,"journal":{"name":"Scientific Drilling","volume":"40 1","pages":"1-12"},"PeriodicalIF":1.2,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86315131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Kieft, T. Onstott, L. Ahonen, V. Aloisi, F. Colwell, B. Engelen, S. Fendrihan, E. Gaidos, U. Harms, I. Head, J. Kallmeyer, B. Reese, Li‐Hung Lin, P. Long, D. Moser, H. Mills, Pinaki Sar, D. Schulze‐Makuch, H. Stan‐Lotter, D. Wagner, Pei-Ling Wang, F. Westall, M. Wilkins
Abstract. The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following: "(1) What is the extent and diversity of deep microbial life and what are the factors limiting it? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity? (3) How is deep microbial life adapted to subsurface conditions? (4) How do subsurface microbial communities affect energy resources? And (5) how does the deep biosphere interact with the geosphere and atmosphere?" (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have included a deep-life component; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for deep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two participants from nine countries proposed projects and sites that included compressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcano–tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP-sponsored drilling workshops in 2016.
摘要国际大陆科学钻探计划(ICDP)长期以来一直支持对深层地下生命的研究,并针对有关地下生命的基本问题,包括以下内容:“(1)深层微生物生命的范围和多样性是什么,限制它的因素是什么?(2)代谢/碳/能量来源的类型和地下活动的速率是什么?(3)深层微生物是如何适应地下环境的?(4)地下微生物群落如何影响能源资源?(5)深层生物圈如何与地圈和大气相互作用?”(Horsfield et al., 2014)许多icdp赞助的钻井项目都包含深生命组件;然而,到目前为止,还没有一个项目是由深层生命目标驱动的,部分原因是地球微生物学家在启动深层生物圈驱动的ICDP项目方面进展缓慢。因此,深碳观测站(DCO)最近与ICDP合作举办了一个研讨会,其具体目的是为深海生物驱动的ICDP项目收集潜在的支持者和候选钻井地点的想法。来自9个国家的22位与会者提出的项目和地点包括挤压和伸展构造环境、蒸发岩、富含油气的页岩、洪水玄武岩、前寒武纪盾构岩、冰下和次冻土环境、活火山构造系统、巨型扇三角洲和蛇纹化超基性环境。提出了成功应用ICDP的标准和要求。讨论了特定于深层生命的技术要求,得出的结论是,虽然这些程序需要充分的规划,但它们完全符合其他学科的抽样需要。本次研讨会的结果是,一个关于盆地和山脉地理省(BRPP)的钻井研讨会提案已经提交给ICDP,其他几个钻井项目的支持者计划在2016年为ICDP赞助的钻井研讨会提交提案。
{"title":"Workshop to develop deep-life continental scientific drilling projects","authors":"T. Kieft, T. Onstott, L. Ahonen, V. Aloisi, F. Colwell, B. Engelen, S. Fendrihan, E. Gaidos, U. Harms, I. Head, J. Kallmeyer, B. Reese, Li‐Hung Lin, P. Long, D. Moser, H. Mills, Pinaki Sar, D. Schulze‐Makuch, H. Stan‐Lotter, D. Wagner, Pei-Ling Wang, F. Westall, M. Wilkins","doi":"10.5194/SD-19-43-2015","DOIUrl":"https://doi.org/10.5194/SD-19-43-2015","url":null,"abstract":"Abstract. The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following: \"(1) What is the extent and diversity of deep microbial life and what are the factors limiting it? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity? (3) How is deep microbial life adapted to subsurface conditions? (4) How do subsurface microbial communities affect energy resources? And (5) how does the deep biosphere interact with the geosphere and atmosphere?\" (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have included a deep-life component; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for deep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two participants from nine countries proposed projects and sites that included compressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcano–tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP-sponsored drilling workshops in 2016.","PeriodicalId":51840,"journal":{"name":"Scientific Drilling","volume":"14 1","pages":"43-53"},"PeriodicalIF":1.2,"publicationDate":"2015-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87142185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A scientific drilling project in the Bushveld Igneous Complex in South Africa has been proposed to contribute to the following scientific topics of the International Continental Drilling Program (ICDP): large igneous provinces and mantle plumes, natural resources, volcanic systems and thermal regimes, and deep life. An interdisciplinary team of researchers from eight countries met in Johannesburg to exchange ideas about the scientific objectives and a drilling strategy to achieve them. The workshop identified drilling targets in each of the three main lobes of the Bushveld Complex, which will integrate existing drill cores with new boreholes to establish permanently curated and accessible reference profiles of the Bushveld Complex. Coordinated studies of this material will address fundamental questions related to the origin and evolution of parental Bushveld magma(s), the magma chamber processes that caused layering and ore formation, and the role of crust vs. mantle in the genesis of Bushveld granites and felsic volcanic units. Other objectives are to study geophysical and geodynamic aspects of the Bushveld intrusion, including crustal stresses and thermal gradient, and to determine the nature of deep groundwater systems and the biology of subsurface microbial communities.
{"title":"Drilling through the largest magma chamber on Earth: Bushveld Igneous Complex Drilling Project (BICDP)","authors":"R. Trumbull, L. Ashwal, S. Webb, I. Veksler","doi":"10.5194/SD-19-33-2015","DOIUrl":"https://doi.org/10.5194/SD-19-33-2015","url":null,"abstract":"A scientific drilling project in the Bushveld Igneous Complex in South Africa has been proposed to contribute to the following scientific topics of the International Continental Drilling Program (ICDP): large igneous provinces and mantle plumes, natural resources, volcanic systems and thermal regimes, and deep life. An interdisciplinary team of researchers from eight countries met in Johannesburg to exchange ideas about the scientific objectives and a drilling strategy to achieve them. The workshop identified drilling targets in each of the three main lobes of the Bushveld Complex, which will integrate existing drill cores with new boreholes to establish permanently curated and accessible reference profiles of the Bushveld Complex. Coordinated studies of this material will address fundamental questions related to the origin and evolution of parental Bushveld magma(s), the magma chamber processes that caused layering and ore formation, and the role of crust vs. mantle in the genesis of Bushveld granites and felsic volcanic units. Other objectives are to study geophysical and geodynamic aspects of the Bushveld intrusion, including crustal stresses and thermal gradient, and to determine the nature of deep groundwater systems and the biology of subsurface microbial communities.","PeriodicalId":51840,"journal":{"name":"Scientific Drilling","volume":"57 1","pages":"33-37"},"PeriodicalIF":1.2,"publicationDate":"2015-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81520017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This workshop brought together specialists from various fields to develop a drilling proposal to fill the "Oligo-Miocene Gap" that exists in our understanding of the functions of Earth's systems. We propose to establish the first continuous high-deposition record of the Oligo-Miocene through new International Ocean Discovery Program (IODP) drilling in the North Atlantic to allow the development of a continuous Neogene cyclostratigraphy and to enhance our knowledge of Oligo-Miocene ocean–ice–climate dynamics. The workshop was held in Heidelberg from 15 to 17 September 2014 funded by ESF (EARTHTIME EU), NSF, and the ECORD MagellanPlus Workshop Series Program. A total of 24 participants from six different countries (Australia, France, Germany, the Netherlands, United Kingdom, and United States) attended the workshop, including several early career stage researchers. We discussed certain aspects of Cenozoic paleoceanography and paleoclimate and how the gaps in the Oligo-Miocene could be filled using scientific drilling. The ultimate goal of the workshop (to submit a pre-proposal to IODP) was achieved (IODP Proposal 874-pre was submitted 1 October 2014). Our workshop consisted of overview presentations followed by self-selected breakout groups that discussed different topics and produced text and figures for the proposal. Here, we give a short overview of the major topics discussed during the workshop and the scientific goals presented in the resulting IODP pre-proposal.
{"title":"Newfoundland Neogene sediment drifts: transition from the Paleogene greenhouse to the modern icehouse","authors":"O. Friedrich, R. Norris, P. Wilson, B. Opdyke","doi":"10.5194/SD-19-39-2015","DOIUrl":"https://doi.org/10.5194/SD-19-39-2015","url":null,"abstract":"This workshop brought together specialists from various fields to develop a drilling proposal to fill the \"Oligo-Miocene Gap\" that exists in our understanding of the functions of Earth's systems. We propose to establish the first continuous high-deposition record of the Oligo-Miocene through new International Ocean Discovery Program (IODP) drilling in the North Atlantic to allow the development of a continuous Neogene cyclostratigraphy and to enhance our knowledge of Oligo-Miocene ocean–ice–climate dynamics. The workshop was held in Heidelberg from 15 to 17 September 2014 funded by ESF (EARTHTIME EU), NSF, and the ECORD MagellanPlus Workshop Series Program. A total of 24 participants from six different countries (Australia, France, Germany, the Netherlands, United Kingdom, and United States) attended the workshop, including several early career stage researchers. We discussed certain aspects of Cenozoic paleoceanography and paleoclimate and how the gaps in the Oligo-Miocene could be filled using scientific drilling. The ultimate goal of the workshop (to submit a pre-proposal to IODP) was achieved (IODP Proposal 874-pre was submitted 1 October 2014). Our workshop consisted of overview presentations followed by self-selected breakout groups that discussed different topics and produced text and figures for the proposal. Here, we give a short overview of the major topics discussed during the workshop and the scientific goals presented in the resulting IODP pre-proposal.","PeriodicalId":51840,"journal":{"name":"Scientific Drilling","volume":"366 1","pages":"39-42"},"PeriodicalIF":1.2,"publicationDate":"2015-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72945950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Lorenz, Jan-Erik Rosberg, C. Juhlin, L. Bjelm, B. Almqvist, Théo Berthet, R. Conze, D. Gee, I. Klonowska, C. Pascal, Karsten Pedersen, N. Roberts, C. Tsang
The Collisional Orogeny in the Scandinavian Caledonides (COSC) scientific drilling project focuses on mountain building processes in a major mid-Palaeozoic orogen in western Scandinavia and its comparison with modern analogues. The project investigates the subduction-generated Seve Nape Complex. These in part under ultra-high-pressure conditions metamorphosed outer continental margin and continent-ocean transition zone assemblages were emplaced onto the Baltoscandian platform and there influenced the underlying allochthons and the basement. COSC-1 is the first of two ca. 2.5 km deep, fully cored drill holes located in the vicinity of the abandoned Froa mine, close to the town of Are in Jamtland, central Sweden. It sampled a thick section of the lower part of the Seve Complex and was planned to penetrate its basal thrust zone into the underlying lowergrade metamorphosed allochthon. The drill hole reached a depth of 2495.8m and nearly 100% core recovery was achieved. Although planning was based on existing geological mapping and new high-resolution seismic surveys, the drilling resulted in some surprises: the Lower Seve Nappe proved to be composed of rather homogenous gneisses, with only subordinate mafic bodies, and its basal thrust zone was unexpectedly thick (> 800 m). The drill hole did not penetrate the bottom of the thrust zone. However, lower-grade metasedimentary rocks were encountered in the lowermost part of the drill hole together with garnetiferous mylonites tens of metres thick. The tectonostratigraphic position is still unclear, and geological and geophysical interpretations are under revision. The compact gneisses host only eight fluid conducting zones of limited transmissivity between 300m and total depth. Downhole measurements suggest an uncorrected average geothermal gradient of ~ 20 °C km-1. This paper summarizes the operations and preliminary results from COSC-1 (ICDP 5054-1-A), drilled from early May to late August 2014, and is complemented by a detailed operational report and the data repository.
{"title":"COSC-1 - drilling of a subduction-related allochthon in the Palaeozoic Caledonide orogen of Scandinavia","authors":"H. Lorenz, Jan-Erik Rosberg, C. Juhlin, L. Bjelm, B. Almqvist, Théo Berthet, R. Conze, D. Gee, I. Klonowska, C. Pascal, Karsten Pedersen, N. Roberts, C. Tsang","doi":"10.5194/SD-19-1-2015","DOIUrl":"https://doi.org/10.5194/SD-19-1-2015","url":null,"abstract":"The Collisional Orogeny in the Scandinavian Caledonides (COSC) scientific drilling project focuses on mountain building processes in a major mid-Palaeozoic orogen in western Scandinavia and its comparison with modern analogues. The project investigates the subduction-generated Seve Nape Complex. These in part under ultra-high-pressure conditions metamorphosed outer continental margin and continent-ocean transition zone assemblages were emplaced onto the Baltoscandian platform and there influenced the underlying allochthons and the basement. COSC-1 is the first of two ca. 2.5 km deep, fully cored drill holes located in the vicinity of the abandoned Froa mine, close to the town of Are in Jamtland, central Sweden. It sampled a thick section of the lower part of the Seve Complex and was planned to penetrate its basal thrust zone into the underlying lowergrade metamorphosed allochthon. The drill hole reached a depth of 2495.8m and nearly 100% core recovery was achieved. Although planning was based on existing geological mapping and new high-resolution seismic surveys, the drilling resulted in some surprises: the Lower Seve Nappe proved to be composed of rather homogenous gneisses, with only subordinate mafic bodies, and its basal thrust zone was unexpectedly thick (> 800 m). The drill hole did not penetrate the bottom of the thrust zone. However, lower-grade metasedimentary rocks were encountered in the lowermost part of the drill hole together with garnetiferous mylonites tens of metres thick. The tectonostratigraphic position is still unclear, and geological and geophysical interpretations are under revision. The compact gneisses host only eight fluid conducting zones of limited transmissivity between 300m and total depth. Downhole measurements suggest an uncorrected average geothermal gradient of ~ 20 °C km-1. This paper summarizes the operations and preliminary results from COSC-1 (ICDP 5054-1-A), drilled from early May to late August 2014, and is complemented by a detailed operational report and the data repository.","PeriodicalId":51840,"journal":{"name":"Scientific Drilling","volume":"15 1","pages":"1-11"},"PeriodicalIF":1.2,"publicationDate":"2015-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85043725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Sjöqvist, Mikael Arthursson, A. Lundström, E. Estrada, Andreas Inerfeldt, H. Lorenz
Abstract. We describe a new innovative drill core scanner that semi-automatedly analyses drill cores directly in drill core trays with X-ray fluorescence spectrometry, without the need for much sample preparation or operator intervention. The instrument is fed with entire core trays, which are photographed at high resolution and scanned by a 3-D profiling laser. Algorithms recognise the geometry of the core tray, number of slots, location of the drill cores, calculate the optimal scanning path, and execute a continuous XRF analysis of 2 cm width along the core. The instrument is equipped with critical analytical components that allow an effective QA/QC routine to be implemented. It is a mobile instrument that can be manoeuvred by a single person with a manual pallet jack.
{"title":"An innovative optical and chemical drill core scanner","authors":"A. Sjöqvist, Mikael Arthursson, A. Lundström, E. Estrada, Andreas Inerfeldt, H. Lorenz","doi":"10.5194/SD-19-13-2015","DOIUrl":"https://doi.org/10.5194/SD-19-13-2015","url":null,"abstract":"Abstract. We describe a new innovative drill core scanner that semi-automatedly analyses drill cores directly in drill core trays with X-ray fluorescence spectrometry, without the need for much sample preparation or operator intervention. The instrument is fed with entire core trays, which are photographed at high resolution and scanned by a 3-D profiling laser. Algorithms recognise the geometry of the core tray, number of slots, location of the drill cores, calculate the optimal scanning path, and execute a continuous XRF analysis of 2 cm width along the core. The instrument is equipped with critical analytical components that allow an effective QA/QC routine to be implemented. It is a mobile instrument that can be manoeuvred by a single person with a manual pallet jack.","PeriodicalId":51840,"journal":{"name":"Scientific Drilling","volume":"6 1","pages":"13-16"},"PeriodicalIF":1.2,"publicationDate":"2015-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73882918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Kirkpatrick, M. Strasser, S. Kodaira, J. Sample, J. Mori, S. Saito
J. D. Kirkpatrick, M. Strasser, S. Kodaira, J. Sample, J. Mori, and S. Saito Department of Geosciences, Colorado State University, 1482 Campus Delivery, Fort Collins, CO 80523, USA Geological Institute, ETH Zurich, NO G 46, Sonneggstrasse 5, 8092 Zurich, Switzerland Research and Development Center for Earthquake and Tsunami, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan School of Earth Sciences and Environmental Sustainability, Northern Arizona University, 602 S Humphreys, Flagstaff, AZ 86011, USA Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan Research and Development Center for Ocean Drilling Science, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
J. D. Kirkpatrick, M. Strasser, S. Kodaira, J. Sample, J. Mori,和S. Saito科罗拉多州立大学地球科学系,1482 Campus Delivery, Fort Collins, CO 80523,美国地质研究所,苏黎世联邦理工学院,NO G 46, Sonneggstrasse 5, 8092苏黎世,瑞士,地震和海啸研究发展中心,日本海洋地球科学技术机构,3173-25昭和町,金泽区,横滨236-0001,日本地球科学与环境可持续发展学院,北亚利桑那大学,亚利桑那州Flagstaff S Humphreys 602, AZ 86011;京都大学防灾研究所,京都宇治市高所,京都611-0011;日本海洋-地球科学技术振兴院,日本横须贺夏岛町2-15,日本237-0061
{"title":"IODP workshop: tracking the Tsunamigenic slips across and along the Japan Trench (JTRACK)","authors":"J. Kirkpatrick, M. Strasser, S. Kodaira, J. Sample, J. Mori, S. Saito","doi":"10.5194/SD-19-27-2015","DOIUrl":"https://doi.org/10.5194/SD-19-27-2015","url":null,"abstract":"J. D. Kirkpatrick, M. Strasser, S. Kodaira, J. Sample, J. Mori, and S. Saito Department of Geosciences, Colorado State University, 1482 Campus Delivery, Fort Collins, CO 80523, USA Geological Institute, ETH Zurich, NO G 46, Sonneggstrasse 5, 8092 Zurich, Switzerland Research and Development Center for Earthquake and Tsunami, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan School of Earth Sciences and Environmental Sustainability, Northern Arizona University, 602 S Humphreys, Flagstaff, AZ 86011, USA Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan Research and Development Center for Ocean Drilling Science, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan","PeriodicalId":51840,"journal":{"name":"Scientific Drilling","volume":"39 1","pages":"27-32"},"PeriodicalIF":1.2,"publicationDate":"2015-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77455402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Shervais, James P. Evans, V. Toy, J. Kirkpatrick, A. Clarke, J. Eichelberger
Abstract. Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and convergent plate margins (subduction zones). This workshop brought together a diverse group of scientists with a broad range of scientific experience and interests. A particular strength was the involvement of both early-career scientists, who will initiate and carry out these new research programs, and more senior researchers with many years of experience in scientific drilling and active tectonics research. Each of the themes and questions outlined above has direct benefits to society, including improving hazard assessment, direct monitoring of active systems for early warning, renewable and non-renewable resource and energy exploitation, and predicting the environmental impacts of natural hazards, emphasizing the central role that scientific drilling will play in future scientific and societal developments.
{"title":"Drilling to investigate processes in active tectonics and magmatism","authors":"J. Shervais, James P. Evans, V. Toy, J. Kirkpatrick, A. Clarke, J. Eichelberger","doi":"10.5194/SD-18-19-2014","DOIUrl":"https://doi.org/10.5194/SD-18-19-2014","url":null,"abstract":"Abstract. Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and convergent plate margins (subduction zones). This workshop brought together a diverse group of scientists with a broad range of scientific experience and interests. A particular strength was the involvement of both early-career scientists, who will initiate and carry out these new research programs, and more senior researchers with many years of experience in scientific drilling and active tectonics research. Each of the themes and questions outlined above has direct benefits to society, including improving hazard assessment, direct monitoring of active systems for early warning, renewable and non-renewable resource and energy exploitation, and predicting the environmental impacts of natural hazards, emphasizing the central role that scientific drilling will play in future scientific and societal developments.","PeriodicalId":51840,"journal":{"name":"Scientific Drilling","volume":"28 1","pages":"19-33"},"PeriodicalIF":1.2,"publicationDate":"2014-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87341508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fifty-four participants attended the Antarctic Geologic Drilling Workshop (AGDW) to discuss science objectives and develop key projects. The goal of the NSF-sponsored AGDW was specifically to discuss the interests of US-based scientists in Antarctic and Southern Ocean projects, foster interactions within the Antarctic geoscience community, and discuss top-priority scientific questions and technological requirements to advance outstanding scientific goals. Antarctica, with its thick shroud of glacial ice and fringed belt of floating oceanic ice, offers challenges to unraveling the history of one of Earth’s last frontiers. Rocks deposited in and around Antarctica, reachable through a wide-range of innovative geological drilling approaches, formed during times that witnessed climate and ice-sheet changes. Recovery of rocks through drilling expands the understanding of the interplay of Earth’s dynamic processes that control and respond to the Antarctic cryosphere. Much of our knowledge of past climate changes, and inferred ice-sheet history, has been obtained from drill cores taken in low-latitude settings. Such far-field proxies offer an outline of ice-sheet behavior, but cannot show which part of the ice sheet changed or what the ocean currents, temperatures, or other controlling parameters were in ice-proximal settings. Drilling in Antarctica can yield samples of rock that were influenced directly by glacial processes and which provide access to Antarctica’s ice-covered geology. Limited outcrops, short gravity cores, and drill cores with partial recovery have been studied from many locations, but such records cannot give the continuous temporal record needed to determine the timing and rates of ice-sheet change or boundary conditions controlling that behavior. Spatially distributed records, including transects from onshore to distal records from each major ice drainage basin, are needed to resolve the individual histories of each area. Seismic data linking drill sites can increase the impact of individual sites by extending the details over a broader area and tightening the time constraints at each site. New over-ice seismic data acquisition through systems like Vibroseis will identify new subglacial drilling targets. New methods to sample bedrock and measure conditions beneath the ice will help refine basal-bed boundary conditions that are vital to reconstructions of icesheet behavior. Numerical modeling can test data-driven hypotheses and evaluate forcing mechanisms under different atmospheric boundary conditions. Within the workshop discussions, two general themes rose to highest priority. One is on late Quaternary interglacials, when Earth and ocean conditions were similar to today and ice retreated landward of its current position. The other priority is the study of mid-Cenozoic ice-sheet history during times when boundary conditions of high atmospheric CO2 approached those estimated for the next century, but when Earth and ocean conditions w
{"title":"A way forward to discover Antarctica's past","authors":"J. Wellner","doi":"10.5194/SD-18-11-2014","DOIUrl":"https://doi.org/10.5194/SD-18-11-2014","url":null,"abstract":"Fifty-four participants attended the Antarctic Geologic Drilling Workshop (AGDW) to discuss science objectives and develop key projects. The goal of the NSF-sponsored AGDW was specifically to discuss the interests of US-based scientists in Antarctic and Southern Ocean projects, foster interactions within the Antarctic geoscience community, and discuss top-priority scientific questions and technological requirements to advance outstanding scientific goals. Antarctica, with its thick shroud of glacial ice and fringed belt of floating oceanic ice, offers challenges to unraveling the history of one of Earth’s last frontiers. Rocks deposited in and around Antarctica, reachable through a wide-range of innovative geological drilling approaches, formed during times that witnessed climate and ice-sheet changes. Recovery of rocks through drilling expands the understanding of the interplay of Earth’s dynamic processes that control and respond to the Antarctic cryosphere. Much of our knowledge of past climate changes, and inferred ice-sheet history, has been obtained from drill cores taken in low-latitude settings. Such far-field proxies offer an outline of ice-sheet behavior, but cannot show which part of the ice sheet changed or what the ocean currents, temperatures, or other controlling parameters were in ice-proximal settings. Drilling in Antarctica can yield samples of rock that were influenced directly by glacial processes and which provide access to Antarctica’s ice-covered geology. Limited outcrops, short gravity cores, and drill cores with partial recovery have been studied from many locations, but such records cannot give the continuous temporal record needed to determine the timing and rates of ice-sheet change or boundary conditions controlling that behavior. Spatially distributed records, including transects from onshore to distal records from each major ice drainage basin, are needed to resolve the individual histories of each area. Seismic data linking drill sites can increase the impact of individual sites by extending the details over a broader area and tightening the time constraints at each site. New over-ice seismic data acquisition through systems like Vibroseis will identify new subglacial drilling targets. New methods to sample bedrock and measure conditions beneath the ice will help refine basal-bed boundary conditions that are vital to reconstructions of icesheet behavior. Numerical modeling can test data-driven hypotheses and evaluate forcing mechanisms under different atmospheric boundary conditions. Within the workshop discussions, two general themes rose to highest priority. One is on late Quaternary interglacials, when Earth and ocean conditions were similar to today and ice retreated landward of its current position. The other priority is the study of mid-Cenozoic ice-sheet history during times when boundary conditions of high atmospheric CO2 approached those estimated for the next century, but when Earth and ocean conditions w","PeriodicalId":51840,"journal":{"name":"Scientific Drilling","volume":"12 1","pages":"11-11"},"PeriodicalIF":1.2,"publicationDate":"2014-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79697884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Corganiser is a software tool developed to simplify the process of preparing whole-round sampling plans for time-sensitive microbiology and geochemistry sampling during scientific drilling. It was developed during the Integrated Ocean Drilling Program (IODP) Expedition 347, but is designed to work with a wide range of core and section configurations and can thus be used in future drilling projects. Corganiser is written in the Python programming language and is implemented both as a graphical web interface and command-line interface. It can be accessed online at http://130.226.247.137/ .
{"title":"Corganiser: a web-based software tool for planning time-sensitive sampling of whole rounds during scientific drilling","authors":"I. Marshall","doi":"10.5194/SD-18-1-2014","DOIUrl":"https://doi.org/10.5194/SD-18-1-2014","url":null,"abstract":"Corganiser is a software tool developed to simplify the process of preparing whole-round sampling plans for time-sensitive microbiology and geochemistry sampling during scientific drilling. It was developed during the Integrated Ocean Drilling Program (IODP) Expedition 347, but is designed to work with a wide range of core and section configurations and can thus be used in future drilling projects. Corganiser is written in the Python programming language and is implemented both as a graphical web interface and command-line interface. It can be accessed online at http://130.226.247.137/ .","PeriodicalId":51840,"journal":{"name":"Scientific Drilling","volume":"13 1","pages":"1-4"},"PeriodicalIF":1.2,"publicationDate":"2014-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72874313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}