Pub Date : 2024-08-07eCollection Date: 2024-01-01DOI: 10.48130/forres-0024-0023
Benjamin Marquis
Due to climate change, the timing of budbreak is occurring earlier in temperate and boreal tree species. Since the warmer conditions also cause snow to melt earlier in the spring, the hypothesis that bud reactivation of tree species of the mixedwood forests of Québec would occur under drier conditions in the future and that species from the temperate forests with late budbreak would be most exposed to dry conditions was tested. The thermal-time bud phenology model was used to predict the timing of budbreak for early and late species using 300 and 500 growing degree-days as the threshold for the timing of budbreak. Climate data was obtained from four CMIP6 climate models from 1950-2100 for two socioeconomic pathways at two locations, one in the temperate forest and one in the boreal mixedwood forest. Using linear regressions, the anomaly, which results from the difference between the historical mean (1950-1980) and the yearly values in timing of budbreak was predicted by the anomaly in drought index (SPEI) per site, climate model, socioeconomic pathways, and species with early or late budbreak timing. Budbreak is expected to occur earlier in the future, whereas the temporal trends in SPEI remained weak during April and May. When paired with the anomalies in both timing of budbreak and drought index, analyses showed that budbreak could be expected to occur under drier conditions in the future. However, due to differences between climate models, it remains uncertain whether drought stress will begin earlier in the future.
{"title":"Simulations reveal variability in exposure to drier conditions during timing of budbreak for tree species of the mixedwood forests of Québec, Canada.","authors":"Benjamin Marquis","doi":"10.48130/forres-0024-0023","DOIUrl":"https://doi.org/10.48130/forres-0024-0023","url":null,"abstract":"<p><p>Due to climate change, the timing of budbreak is occurring earlier in temperate and boreal tree species. Since the warmer conditions also cause snow to melt earlier in the spring, the hypothesis that bud reactivation of tree species of the mixedwood forests of Québec would occur under drier conditions in the future and that species from the temperate forests with late budbreak would be most exposed to dry conditions was tested. The thermal-time bud phenology model was used to predict the timing of budbreak for early and late species using 300 and 500 growing degree-days as the threshold for the timing of budbreak. Climate data was obtained from four CMIP6 climate models from 1950-2100 for two socioeconomic pathways at two locations, one in the temperate forest and one in the boreal mixedwood forest. Using linear regressions, the anomaly, which results from the difference between the historical mean (1950-1980) and the yearly values in timing of budbreak was predicted by the anomaly in drought index (SPEI) per site, climate model, socioeconomic pathways, and species with early or late budbreak timing. Budbreak is expected to occur earlier in the future, whereas the temporal trends in SPEI remained weak during April and May. When paired with the anomalies in both timing of budbreak and drought index, analyses showed that budbreak could be expected to occur under drier conditions in the future. However, due to differences between climate models, it remains uncertain whether drought stress will begin earlier in the future.</p>","PeriodicalId":520285,"journal":{"name":"Forestry research","volume":"4 ","pages":"e026"},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524311/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In forestry genetics and industry, tree morphological traits such as height, crown size, and shape are critical for understanding growth dynamics and productivity. Traditional methods for measuring these traits are limited in efficiency, scalability, and accuracy, posing challenges for large-scale forest assessments. This study focuses on integrating unmanned aerial vehicle (UAV) technology with GWAS to improve genomic association studies in slash pine (Pinus elliottii). Seven key morphological traits have been identified (canopy area (CA), crown base height (CBH), crown length (CL), canopy volume (CV), crown width (CW), crown width height (CWH), and tree height (H)) through advanced UAV-based phenotyping. These associations account for a remarkable range of heritability in slash pine, with traits such as CBH, CL, CV, and H showing relatively high heritability across both Single nucleotide polymorphisms (SNP) and pedigree methods, indicating strong genetic influence, while traits such as CWH show lower heritability, suggesting greater environmental influence or non-additive genetic variance. The GWAS identified 28 associations, including 22 different SNPs localized to 16 candidate genes, that were significantly associated with the morphological traits of Slash Pine. Notably, two of these candidate genes, annotated as putative DEAD-like helicase and ethylene-responsive element binding factor (ERF), were present at different mutation sites and were significantly associated with CW and CA traits, respectively. These results demonstrate that the UAV imaging enables a comprehensive analysis of the Morphological growth response of slash pine and can facilitate the discovery of informative alleles to elucidate the genetic structure underlying complex phenotypic variation in conifers.
在林业遗传学和工业中,树高、树冠大小和树形等树木形态特征对于了解生长动态和生产力至关重要。测量这些性状的传统方法在效率、可扩展性和准确性方面受到限制,给大规模森林评估带来了挑战。本研究的重点是将无人飞行器(UAV)技术与 GWAS 相结合,以改进斜纹松(Pinus elliottii)的基因组关联研究。通过先进的无人飞行器表型分析,确定了七个关键形态性状(冠层面积(CA)、冠基高(CBH)、冠长(CL)、冠层体积(CV)、冠宽(CW)、冠宽高(CWH)和树高(H))。在单核苷酸多态性(SNP)和血统方法中,CBH、CL、CV 和 H 等性状的遗传率相对较高,表明遗传影响较强;而 CWH 等性状的遗传率较低,表明环境影响较大或存在非加性遗传变异。GWAS 发现了与斜纹松形态特征显著相关的 28 个关联,包括 16 个候选基因上的 22 个不同 SNP。值得注意的是,其中两个候选基因(注释为假定的 DEAD 样螺旋酶和乙烯反应元件结合因子(ERF))出现在不同的突变位点,并分别与 CW 和 CA 性状显著相关。这些结果表明,无人机成像技术可对斜纹松的形态生长反应进行全面分析,并有助于发现信息等位基因,从而阐明针叶树复杂表型变异的遗传结构。
{"title":"Enhancing genomic association studies in slash pine through close-range UAV-based morphological phenotyping.","authors":"Ruiye Yan, Yihan Dong, Yanjie Li, Cong Xu, Qifu Luan, Shu Diao, Chunyan Wu","doi":"10.48130/forres-0024-0022","DOIUrl":"https://doi.org/10.48130/forres-0024-0022","url":null,"abstract":"<p><p>In forestry genetics and industry, tree morphological traits such as height, crown size, and shape are critical for understanding growth dynamics and productivity. Traditional methods for measuring these traits are limited in efficiency, scalability, and accuracy, posing challenges for large-scale forest assessments. This study focuses on integrating unmanned aerial vehicle (UAV) technology with GWAS to improve genomic association studies in slash pine (<i>Pinus elliottii</i>). Seven key morphological traits have been identified (canopy area (CA), crown base height (CBH), crown length (CL), canopy volume (CV), crown width (CW), crown width height (CWH), and tree height (H)) through advanced UAV-based phenotyping. These associations account for a remarkable range of heritability in slash pine, with traits such as CBH, CL, CV, and H showing relatively high heritability across both Single nucleotide polymorphisms (SNP) and pedigree methods, indicating strong genetic influence, while traits such as CWH show lower heritability, suggesting greater environmental influence or non-additive genetic variance. The GWAS identified 28 associations, including 22 different SNPs localized to 16 candidate genes, that were significantly associated with the morphological traits of Slash Pine. Notably, two of these candidate genes, annotated as putative DEAD-like helicase and ethylene-responsive element binding factor (ERF), were present at different mutation sites and were significantly associated with CW and CA traits, respectively. These results demonstrate that the UAV imaging enables a comprehensive analysis of the Morphological growth response of slash pine and can facilitate the discovery of informative alleles to elucidate the genetic structure underlying complex phenotypic variation in conifers.</p>","PeriodicalId":520285,"journal":{"name":"Forestry research","volume":"4 ","pages":"e025"},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524239/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02eCollection Date: 2024-01-01DOI: 10.48130/forres-0024-0021
Dong Xing, Penghui Sun, Yulin Wang, Mei Jiang, Siyu Miao, Wei Liu, Huahong Huang, Erpei Lin
Chinese fir is the most important native softwood tree in China and has significant economic and ecological value. Accurate assessment of the growth status is critical for both seedling cultivation and germplasm evaluation of this commercially significant tree. Needle leaf chlorophyll content (LCC) and needle leaf water content (LWC), which are determinants of plant health and photosynthetic efficiency, are important indicators of the growth status in plants. In this study, for the first time, the LCC and LWC of Chinese fir seedlings were estimated based on hyperspectral reflectance spectra and machine learning algorithms. A line-scan hyperspectral imaging system with a spectral range of 870 to 1,720 nm was used to capture hyperspectral images of seedlings with varying LCC and LWC. The spectral data of the canopy area of the seedlings were extracted and preprocessed using the Savitzky-Golay smoothing (SG) algorithm. Subsequently, the Successive Projection Algorithm (SPA) and Competitive Adaptive Reweighted Sampling (CARS) methods were employed to extract the most informative wavelengths. Moreover, SVM, PLSR and ANNs were utilized to construct models that predict LCC and LWC based on effective wavelengths. The results indicated that the CARS-ANNs were the best for predicting LCC, with R²C = 0.932, RSMEC = 0.224, and R²P = 0.969, RSMEP = 0.157. Similarly, the SPA-ANNs model exhibited the best prediction performance for LWC, with R²C = 0.952, RSMEC = 0.049, and R²P = 0.948, RSMEP = 0.051. In conclusion, the present study highlights the significant potential of combining hyperspectral imaging (HSI) with machine learning algorithms as a rapid, non-destructive, and highly accurate method for estimating LCC and LWC in Chinese fir.
{"title":"Non-destructive estimation of needle leaf chlorophyll and water contents in Chinese fir seedlings based on hyperspectral reflectance spectra.","authors":"Dong Xing, Penghui Sun, Yulin Wang, Mei Jiang, Siyu Miao, Wei Liu, Huahong Huang, Erpei Lin","doi":"10.48130/forres-0024-0021","DOIUrl":"https://doi.org/10.48130/forres-0024-0021","url":null,"abstract":"<p><p>Chinese fir is the most important native softwood tree in China and has significant economic and ecological value. Accurate assessment of the growth status is critical for both seedling cultivation and germplasm evaluation of this commercially significant tree. Needle leaf chlorophyll content (LCC) and needle leaf water content (LWC), which are determinants of plant health and photosynthetic efficiency, are important indicators of the growth status in plants. In this study, for the first time, the LCC and LWC of Chinese fir seedlings were estimated based on hyperspectral reflectance spectra and machine learning algorithms. A line-scan hyperspectral imaging system with a spectral range of 870 to 1,720 nm was used to capture hyperspectral images of seedlings with varying LCC and LWC. The spectral data of the canopy area of the seedlings were extracted and preprocessed using the Savitzky-Golay smoothing (SG) algorithm. Subsequently, the Successive Projection Algorithm (SPA) and Competitive Adaptive Reweighted Sampling (CARS) methods were employed to extract the most informative wavelengths. Moreover, SVM, PLSR and ANNs were utilized to construct models that predict LCC and LWC based on effective wavelengths. The results indicated that the CARS-ANNs were the best for predicting LCC, with R²<sub>C</sub> = 0.932, RSME<sub>C</sub> = 0.224, and R²<sub>P</sub> = 0.969, RSME<sub>P</sub> = 0.157. Similarly, the SPA-ANNs model exhibited the best prediction performance for LWC, with R²<sub>C</sub> = 0.952, RSME<sub>C</sub> = 0.049, and R²<sub>P</sub> = 0.948, RSME<sub>P</sub> = 0.051. In conclusion, the present study highlights the significant potential of combining hyperspectral imaging (HSI) with machine learning algorithms as a rapid, non-destructive, and highly accurate method for estimating LCC and LWC in Chinese fir.</p>","PeriodicalId":520285,"journal":{"name":"Forestry research","volume":"4 ","pages":"e024"},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aims to understand the genetic basis of key industrial traits in Slash pine (Pinus elliottii Engelm. var. elliottii) to enhance improvement efficiency. Detailed analyses were conducted on inter-family differences, genetic parameters, correlations, and breeding values (BVs) for growth, wood properties, and resin traits of Slash pine planted in Changle Forest Farm of Hangzhou, leading to the identification of elite families. It indicates that growth traits are primarily influenced by environmental effects, while wood properties exhibit a significant impact of genetic effects. The variation in resin traits arises from both genetic and environmental effects. Notably, Beta-pinene exhibits the highest variability and genetic gains among the traits analyzed. The family heritability ranges for growth, wood properties, and resin traits are 0.543-0.794, 0.870-0.885, and 0.285-0.695, respectively. Significant positive correlations are evident between growth and resin traits, while a negative correlation is observed between growth and wood properties. Elite families identified through single-trait and multi-trait combined selection are 8-126 for growth traits, 2-325 and 0-373 for wood properties, and 8-131 for resin traits. The average genetic gains for these elite families are 7.44%, 7.17%, and 8.84%, respectively. These findings provide valuable insights for high-generation breeding of Slash pine and lay a genetic foundation for formulating effective breeding strategies for conifers.
{"title":"Genetic selection for growth, wood quality and resin traits of potential Slash pine for multiple industrial uses.","authors":"Xianyin Ding, Yini Zhang, Jiaming Sun, Zifeng Tan, Qinyun Huang, Shu Diao, Yadi Wu, Qifu Luan, Jingmin Jiang","doi":"10.48130/forres-0024-0020","DOIUrl":"https://doi.org/10.48130/forres-0024-0020","url":null,"abstract":"<p><p>This study aims to understand the genetic basis of key industrial traits in Slash pine (<i>Pinus elliottii</i> Engelm. var. <i>elliottii</i>) to enhance improvement efficiency. Detailed analyses were conducted on inter-family differences, genetic parameters, correlations, and breeding values (BVs) for growth, wood properties, and resin traits of Slash pine planted in Changle Forest Farm of Hangzhou, leading to the identification of elite families. It indicates that growth traits are primarily influenced by environmental effects, while wood properties exhibit a significant impact of genetic effects. The variation in resin traits arises from both genetic and environmental effects. Notably, Beta-pinene exhibits the highest variability and genetic gains among the traits analyzed. The family heritability ranges for growth, wood properties, and resin traits are 0.543-0.794, 0.870-0.885, and 0.285-0.695, respectively. Significant positive correlations are evident between growth and resin traits, while a negative correlation is observed between growth and wood properties. Elite families identified through single-trait and multi-trait combined selection are 8-126 for growth traits, 2-325 and 0-373 for wood properties, and 8-131 for resin traits. The average genetic gains for these elite families are 7.44%, 7.17%, and 8.84%, respectively. These findings provide valuable insights for high-generation breeding of Slash pine and lay a genetic foundation for formulating effective breeding strategies for conifers.</p>","PeriodicalId":520285,"journal":{"name":"Forestry research","volume":"4 ","pages":"e023"},"PeriodicalIF":0.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524238/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
UV-B radiation and drought majorly restrict plant growth, particularly in summer. ELONGATED HYPOCOTYL 5 (HY5), a bZIP transcription factor (TF), has a beneficial impact on photomorphogenesis. However, the sequence of HY5 from Betula platyphylla (BpHY5) has not been identified and the gene functions remain unclarified. We cloned the sequence of BpHY5, which was targeted to the nucleus. The hypocotyl phenotypes of heterologous expression in Arabidopsis thaliana and reverse mutation showed that BpHY5 is homologous to AtHY5. The expression of BpHY5 was increased in response to UV-B radiation, drought conditions, and the presence of abscisic acid (ABA). The overexpression of BpHY5 resulted in increased tolerance to UV-B radiation and drought and decreased ABA sensitivity with higher germination and greening rate, more developmental root system, stronger reactive oxygen species scavenging ability, and lower damage degree. The lignin content under UV-B condition of BpHY5/Col was higher than that of Col. Furthermore, overexpressing BpHY5 up-regulated the expression of genes related to tolerance (NCED3/9, ABI5, DREB2A, RD20, ERF4, NDB2, and APX2). In brief, the study suggests that BpHY5 from birch serves as a beneficial modulator of plant responses to UV-B radiation and drought stress.
{"title":"A birch ELONGATED HYPOCOTYL 5 gene enhances UV-B and drought tolerance.","authors":"Shangzhu Gao, Xiaohui Chen, Meihan Lin, Yibo Yin, Xiaoyi Li, Yaguang Zhan, Ying Xin, Fansuo Zeng","doi":"10.48130/forres-0024-0019","DOIUrl":"https://doi.org/10.48130/forres-0024-0019","url":null,"abstract":"<p><p>UV-B radiation and drought majorly restrict plant growth, particularly in summer. ELONGATED HYPOCOTYL 5 (HY5), a bZIP transcription factor (TF), has a beneficial impact on photomorphogenesis. However, the sequence of <i>HY5</i> from <i>Betula platyphylla</i> (<i>BpHY5</i>) has not been identified and the gene functions remain unclarified. We cloned the sequence of BpHY5, which was targeted to the nucleus. The hypocotyl phenotypes of heterologous expression in <i>Arabidopsis thaliana</i> and reverse mutation showed that <i>BpHY5</i> is homologous to <i>AtHY5</i>. The expression of <i>BpHY5</i> was increased in response to UV-B radiation, drought conditions, and the presence of abscisic acid (ABA). The overexpression of <i>BpHY5</i> resulted in increased tolerance to UV-B radiation and drought and decreased ABA sensitivity with higher germination and greening rate, more developmental root system, stronger reactive oxygen species scavenging ability, and lower damage degree. The lignin content under UV-B condition of <i>BpHY5</i>/Col was higher than that of Col. Furthermore, overexpressing <i>BpHY5</i> up-regulated the expression of genes related to tolerance (<i>NCED3/9</i>, <i>ABI5</i>, <i>DREB2A</i>, <i>RD20</i>, <i>ERF4</i>, <i>NDB2,</i> and <i>APX2</i>). In brief, the study suggests that <i>BpHY5</i> from birch serves as a beneficial modulator of plant responses to UV-B radiation and drought stress.</p>","PeriodicalId":520285,"journal":{"name":"Forestry research","volume":"4 ","pages":"e022"},"PeriodicalIF":0.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524257/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01eCollection Date: 2024-01-01DOI: 10.48130/forres-0024-0017
Qi Xie, Umair Ahmed, Cheng Qi, Kebing Du, Jie Luo, Pengcheng Wang, Bo Zheng, Xueping Shi
Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) plays a crucial role in relative gene expression analysis, and accurate normalization relies on suitable reference genes (RGs). In this study, a pipeline for identifying candidate RGs from publicly available stem-related RNA-Seq data of different Populus species under various developmental and abiotic stress conditions is presented. DESeq2's median of ratios yielded the smallest coefficient of variance (CV) values in a total of 292 RNA-Seq samples and was therefore chosen as the method for sample normalization. A total of 541 stably expressed genes were retrieved based on the CV values with a cutoff of 0.3. Universal gene-specific primer pairs were designed based on the consensus sequences of the orthologous genes of each Populus RG candidate. The expression levels of 12 candidate RGs and six reported RGs in stems under different abiotic stress conditions or in different Populus species were assessed by RT-qPCR. The expression stability of selected genes was further evaluated using ΔCt, geNorm, NormFinder, and BestKeeper. All candidate RGs were stably expressed in different experiments and conditions in Populus. A test dataset containing 117 RNA-Seq samples was then used to confirm the expression stability, six candidate RGs and three reported RGs met the requirement of CV ≤ 0.3. In summary, this study was to propose a systematic and optimized protocol for the identification of constitutively and stably expressed genes based on RNA-Seq data, and Potri.001G349400 (CNOT2) was identified as the best candidate RG suitable for gene expression studies in poplar stems.
{"title":"A protocol for identifying universal reference genes within a genus based on RNA-Seq data: a case study of poplar stem gene expression.","authors":"Qi Xie, Umair Ahmed, Cheng Qi, Kebing Du, Jie Luo, Pengcheng Wang, Bo Zheng, Xueping Shi","doi":"10.48130/forres-0024-0017","DOIUrl":"https://doi.org/10.48130/forres-0024-0017","url":null,"abstract":"<p><p>Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) plays a crucial role in relative gene expression analysis, and accurate normalization relies on suitable reference genes (RGs). In this study, a pipeline for identifying candidate RGs from publicly available stem-related RNA-Seq data of different <i>Populus</i> species under various developmental and abiotic stress conditions is presented. DESeq2's median of ratios yielded the smallest coefficient of variance (CV) values in a total of 292 RNA-Seq samples and was therefore chosen as the method for sample normalization. A total of 541 stably expressed genes were retrieved based on the CV values with a cutoff of 0.3. Universal gene-specific primer pairs were designed based on the consensus sequences of the orthologous genes of each <i>Populus</i> RG candidate. The expression levels of 12 candidate RGs and six reported RGs in stems under different abiotic stress conditions or in different <i>Populus</i> species were assessed by RT-qPCR. The expression stability of selected genes was further evaluated using ΔCt, geNorm, NormFinder, and BestKeeper. All candidate RGs were stably expressed in different experiments and conditions in <i>Populus</i>. A test dataset containing 117 RNA-Seq samples was then used to confirm the expression stability, six candidate RGs and three reported RGs met the requirement of CV ≤ 0.3. In summary, this study was to propose a systematic and optimized protocol for the identification of constitutively and stably expressed genes based on RNA-Seq data, and Potri.001G349400 (<i>CNOT2</i>) was identified as the best candidate RG suitable for gene expression studies in poplar stems.</p>","PeriodicalId":520285,"journal":{"name":"Forestry research","volume":"4 ","pages":"e021"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-23eCollection Date: 2024-01-01DOI: 10.48130/forres-0024-0018
Shihui Niu, Quanzi Li
{"title":"From haploid to reference: a new milestone in poplar genomics.","authors":"Shihui Niu, Quanzi Li","doi":"10.48130/forres-0024-0018","DOIUrl":"https://doi.org/10.48130/forres-0024-0018","url":null,"abstract":"","PeriodicalId":520285,"journal":{"name":"Forestry research","volume":"4 ","pages":"e020"},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524230/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-13eCollection Date: 2024-01-01DOI: 10.48130/forres-0024-0016
Wenxuan Liu, Caixia Liu, Song Chen, Meng Wang, Xinyu Wang, Yue Yu, Ronald R Sederoff, Hairong Wei, Xiangling You, Guanzheng Qu, Su Chen
Populus species, particularly P. trichocarpa, have long served as model trees for genomics research, owing to fully sequenced genomes. However, the high heterozygosity, and the presence of repetitive regions, including centromeres and ribosomal RNA gene clusters, have left 59 unresolved gaps, accounting for approximately 3.32% of the P. trichocarpa genome. In this study, the callus induction method was improved to derive a doubled haploid (DH) callus line from P. ussuriensis anthers. Leveraging long-read sequencing, we successfully assembled a nearly gap-free, telomere-to-telomere (T2T) P. ussuriensis genome spanning 412.13 Mb. This genome assembly contains only seven gaps and has a contig N50 length of 19.50 Mb. Annotation revealed 34,953 protein-coding genes in this genome, which is 465 more than that of P. trichocarpa. Notably, centromeric regions are characterized by higher-order repeats, we identified and annotated centromere regions in all DH genome chromosomes, a first for poplars. The derived DH genome exhibits high collinearity with P. trichocarpa and significantly fills gaps present in the latter's genome. This T2T P. ussuriensis reference genome will not only enhance our understanding of genome structure, and functions within the poplar genus but also provides valuable resources for poplar genomic and evolutionary studies.
长期以来,杨树物种,尤其是三叶杨,一直是基因组学研究的示范树种,因为它们的基因组已经完全测序。然而,由于杂合度高以及存在重复区域(包括中心粒和核糖体 RNA 基因簇),因此留下了 59 个未解决的缺口,约占毛白杨基因组的 3.32%。本研究改进了胼胝体诱导方法,从P. ussuriensis花药中获得了双倍单倍体(DH)胼胝体系。利用长线程测序技术,我们成功地组装了一个几乎无间隙、端粒到端粒(T2T)的 P. ussuriensis 基因组,跨度为 412.13 Mb。该基因组装配仅包含 7 个缺口,等位基因 N50 长度为 19.50 Mb。注释发现,该基因组中有 34 953 个蛋白质编码基因,比 P. trichocarpa 多 465 个。值得注意的是,中心粒区域具有高阶重复的特征,我们在所有 DH 基因组染色体中都鉴定并注释了中心粒区域,这在杨树中尚属首次。衍生的 DH 基因组与 P. trichocarpa 基因组具有很高的共线性,极大地填补了后者基因组中的空白。这个 T2T P. ussuriensis 参考基因组不仅能加深我们对杨属基因组结构和功能的了解,还能为杨树基因组和进化研究提供宝贵的资源。
{"title":"A nearly gapless, highly contiguous reference genome for a doubled haploid line of <i>Populus ussuriensis</i>, enabling advanced genomic studies.","authors":"Wenxuan Liu, Caixia Liu, Song Chen, Meng Wang, Xinyu Wang, Yue Yu, Ronald R Sederoff, Hairong Wei, Xiangling You, Guanzheng Qu, Su Chen","doi":"10.48130/forres-0024-0016","DOIUrl":"https://doi.org/10.48130/forres-0024-0016","url":null,"abstract":"<p><p><i>Populus</i> species, particularly <i>P. trichocarpa</i>, have long served as model trees for genomics research, owing to fully sequenced genomes. However, the high heterozygosity, and the presence of repetitive regions, including centromeres and ribosomal RNA gene clusters, have left 59 unresolved gaps, accounting for approximately 3.32% of the <i>P. trichocarpa</i> genome. In this study, the callus induction method was improved to derive a doubled haploid (DH) callus line from <i>P. ussuriensis</i> anthers. Leveraging long-read sequencing, we successfully assembled a nearly gap-free, telomere-to-telomere (T2T) <i>P. ussuriensis</i> genome spanning 412.13 Mb. This genome assembly contains only seven gaps and has a contig N50 length of 19.50 Mb. Annotation revealed 34,953 protein-coding genes in this genome, which is 465 more than that of <i>P. trichocarpa</i>. Notably, centromeric regions are characterized by higher-order repeats, we identified and annotated centromere regions in all DH genome chromosomes, a first for poplars. The derived DH genome exhibits high collinearity with <i>P. trichocarpa</i> and significantly fills gaps present in the latter's genome. This T2T <i>P. ussuriensis</i> reference genome will not only enhance our understanding of genome structure, and functions within the poplar genus but also provides valuable resources for poplar genomic and evolutionary studies.</p>","PeriodicalId":520285,"journal":{"name":"Forestry research","volume":"4 ","pages":"e019"},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524312/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Point cloud registration is a necessary prerequisite for conducting precise, large-scale forest surveys and management. This paper focuses on providing a systematic overview and summary of the work on forest point cloud registration over the past 20 years. The developmental process of forest point cloud registration methods, spanning from the early reliance on manual markers to the subsequent evolution towards automatic registration based on feature matching, and then to the advanced technology based on deep learning were reviewed. Furthermore, the paper offered detailed discussions on the registration between different point cloud platforms: ground platforms, between ground platforms and aerial platforms, and between aerial platforms. Additionally, the paper delved into mainstream datasets and evaluation metrics in the domain of forest point cloud registration. Finally, the paper summarized the current state of research in this area, highlighted challenges, and provided future research outlooks. This review aims to provide researchers with a comprehensive understanding of forest point cloud registration, and to promote the advancement of point cloud technology, hopefully inspiring further applications in the field.
{"title":"Forest point cloud registration: a review.","authors":"Jincheng Liu, Yijun Guo, Juntao Yang, Ningning Zhu, Wenxia Dai, Qiang Yu","doi":"10.48130/forres-0024-0015","DOIUrl":"https://doi.org/10.48130/forres-0024-0015","url":null,"abstract":"<p><p>Point cloud registration is a necessary prerequisite for conducting precise, large-scale forest surveys and management. This paper focuses on providing a systematic overview and summary of the work on forest point cloud registration over the past 20 years. The developmental process of forest point cloud registration methods, spanning from the early reliance on manual markers to the subsequent evolution towards automatic registration based on feature matching, and then to the advanced technology based on deep learning were reviewed. Furthermore, the paper offered detailed discussions on the registration between different point cloud platforms: ground platforms, between ground platforms and aerial platforms, and between aerial platforms. Additionally, the paper delved into mainstream datasets and evaluation metrics in the domain of forest point cloud registration. Finally, the paper summarized the current state of research in this area, highlighted challenges, and provided future research outlooks. This review aims to provide researchers with a comprehensive understanding of forest point cloud registration, and to promote the advancement of point cloud technology, hopefully inspiring further applications in the field.</p>","PeriodicalId":520285,"journal":{"name":"Forestry research","volume":"4 ","pages":"e018"},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-06eCollection Date: 2024-01-01DOI: 10.48130/forres-0024-0012
Yi He, Shuwen Chen, Chenhao Li, Shen Yang, Zhongyu Sun, Siyu Hou, Zhenggang Xu, Guiyan Yang
Walnut is an important economic tree species that is susceptible to osmotic stress. Scientific cultivation management is an important way to improve the yield and quality of walnuts, which requires understanding the regulatory mechanisms in response to osmotic stress. Therefore, in this study, 15 protein phosphatase 2A (PP2A) genes were identified from the walnut transcriptome (named JrPP2A01~15) and their potential function responses to osmotic stress were elucidated. The open reading frame (ORF) of JrPP2A01~15 ranges from 651 to 1,764 bp in length, the molecular weight of the encoded proteins are 24.15-65.61 kDa, and the theoretical isoelectric points are 4.80-8.37. These JrPP2As were unevenly distributed on 10 chromosomes and divided into five groups based on the composition of conserved domains, motifs, and exon/intron organizations. The five groups are JrPP2AAs, JrPP2AB's,JrPP2AB''s, JrPP2AB55s, and JrPP2ACs, including 1, 5, 2, 3, and 4 members, accordingly. The cis-elements in JrPP2As' promoters were involved in responses to hormone and abiotic stress. Most JrPP2A genes, excluding JrPP2A01, JrPP2A02, JrPP2A05, JrPP2A06, and JrPP2A13, could be induced significantly by PEG6000, NaCl, CaCl2 and ABA. JrPP2A02, JrPP2A05, JrPP2A07, JrPP2A09, and JrPP2A14, could independently interact with a bZIP transcription factor JrVIP1. Moreover, overexpression of JrPP2A07, JrPP2A09, and JrPP2A14 could significantly decrease ROS accumulation while increasing calcium (Ca) uptake exposed to PEG6000 and NaCl stresses, which was mediated by exogenous CaCl2 and ABA. These results suggested that JrPP2A genes play potential key roles in walnut response to drought and salt-inducing osmotic stress involving Ca- and ABA-dependent signaling pathways.
{"title":"Walnut phosphatase 2A proteins interact with basic leucine zipper protein JrVIP1 to regulate osmotic stress response <i>via</i> calcium signaling.","authors":"Yi He, Shuwen Chen, Chenhao Li, Shen Yang, Zhongyu Sun, Siyu Hou, Zhenggang Xu, Guiyan Yang","doi":"10.48130/forres-0024-0012","DOIUrl":"https://doi.org/10.48130/forres-0024-0012","url":null,"abstract":"<p><p>Walnut is an important economic tree species that is susceptible to osmotic stress. Scientific cultivation management is an important way to improve the yield and quality of walnuts, which requires understanding the regulatory mechanisms in response to osmotic stress. Therefore, in this study, 15 protein phosphatase 2A (<i>PP2A</i>) genes were identified from the walnut transcriptome (named <i>JrPP2A01</i>~<i>15</i>) and their potential function responses to osmotic stress were elucidated. The open reading frame (ORF) of <i>JrPP2A01~15</i> ranges from 651 to 1,764 bp in length, the molecular weight of the encoded proteins are 24.15-65.61 kDa, and the theoretical isoelectric points are 4.80-8.37. These <i>JrPP2As</i> were unevenly distributed on 10 chromosomes and divided into five groups based on the composition of conserved domains, motifs, and exon/intron organizations. The five groups are <i>JrPP2AAs</i>, <i>JrPP2AB's,</i> <i>JrPP2AB''s</i>, <i>JrPP2AB55s</i>, and <i>JrPP2ACs</i>, including 1, 5, 2, 3, and 4 members, accordingly. The <i>cis</i>-elements in <i>JrPP2As</i>' promoters were involved in responses to hormone and abiotic stress. Most <i>JrPP2A</i> genes, excluding <i>JrPP2A01</i>, <i>JrPP2A02</i>, <i>JrPP2A05</i>, <i>JrPP2A06</i>, and <i>JrPP2A13</i>, could be induced significantly by PEG<sub>6000</sub>, NaCl, CaCl<sub>2</sub> and ABA. JrPP2A02, JrPP2A05, JrPP2A07, JrPP2A09, and JrPP2A14, could independently interact with a bZIP transcription factor JrVIP1. Moreover, overexpression of <i>JrPP2A07, JrPP2A09</i>, and <i>JrPP2A14</i> could significantly decrease ROS accumulation while increasing calcium (Ca) uptake exposed to PEG<sub>6000</sub> and NaCl stresses, which was mediated by exogenous CaCl<sub>2</sub> and ABA. These results suggested that <i>JrPP2A</i> genes play potential key roles in walnut response to drought and salt-inducing osmotic stress involving Ca- and ABA-dependent signaling pathways.</p>","PeriodicalId":520285,"journal":{"name":"Forestry research","volume":"4 ","pages":"e016"},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543299/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}