Pub Date : 2022-08-01DOI: 10.1016/j.ynpai.2022.100101
Joanna M. Hobson , Myles D. Moody , Robert E. Sorge , Burel R. Goodin
Extant literature posits that humans experience two types of threat: physical threat and social threat. While describing pain as “physical” or “social” can be helpful for understanding pain origins (i.e., broken bone versus lost relationship), this dichotomy is largely artificial and not particularly helpful for understanding how the human brain experiences pain. One real world example of social exclusion and rejection that is threatening and likely to bring about significant stress is racism. Racism is a system of beliefs, practices, and policies that operates to disadvantage racialized minorities while providing advantage to those with historical power, particularly White people in the United States and most other Western nations. The objective of this Mini-Review is to present evidence in support of the argument that racism promotes physical pain in racialized minorities, which in turn promotes chronic pain disparities. First, we provide a theoretical framework describing how racism is a potent stressor that affects the health and well-being of racialized minorities. We will then address the neurobiological underpinnings linking racism to social threat, as well as that linking social threats and physical pain. Finally, we will discuss how the perception of social threat brought about by racism may undermine pain management efforts.
{"title":"The neurobiology of social stress resulting from Racism: Implications for pain disparities among racialized minorities","authors":"Joanna M. Hobson , Myles D. Moody , Robert E. Sorge , Burel R. Goodin","doi":"10.1016/j.ynpai.2022.100101","DOIUrl":"10.1016/j.ynpai.2022.100101","url":null,"abstract":"<div><p>Extant literature posits that humans experience two types of threat: physical threat and social threat. While describing pain as “physical” or “social” can be helpful for understanding pain origins (i.e., broken bone versus lost relationship), this dichotomy is largely artificial and not particularly helpful for understanding how the human brain experiences pain. One real world example of social exclusion and rejection that is threatening and likely to bring about significant stress is racism. Racism is a system of beliefs, practices, and policies that operates to disadvantage racialized minorities while providing advantage to those with historical power, particularly White people in the United States and most other Western nations. The objective of this Mini-Review is to present evidence in support of the argument that racism promotes physical pain in racialized minorities, which in turn promotes chronic pain disparities. First, we provide a theoretical framework describing how racism is a potent stressor that affects the health and well-being of racialized minorities. We will then address the neurobiological underpinnings linking racism to social threat, as well as that linking social threats and physical pain. Finally, we will discuss how the perception of social threat brought about by racism may undermine pain management efforts.</p></div>","PeriodicalId":52177,"journal":{"name":"Neurobiology of Pain","volume":"12 ","pages":"Article 100101"},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9449662/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33461327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-01DOI: 10.1016/j.ynpai.2022.100107
Soamy Montesino-Goicolea , Lingsong Meng , Asha Rani , Zhiguang Huo , Thomas C. Foster , Roger B. Fillingim , Yenisel Cruz-Almeida
Our study aimed to identify differentially methylated regions (i.e., genomic region where multiple adjacent CpG sites show differential methylation) and their enriched genomic pathways associated with knee osteoarthritis pain (KOA). We recruited cognitively healthy middle to older aged (age 45–85) adults with (n = 182) and without (n = 31) self-reported KOA pain. We also extracted DNA from peripheral blood that was analyzed using MethylationEPIC arrays. The R package minfi (Aryee et al., 2014) was used to perform methylation data preprocessing and quality control. To investigate biological pathways impacted by differential methylation, we performed pathway enrichment analysis using Ingenuity Pathway Analysis (IPA) to identify canonical pathways and upstream regulators. Annotated genes within ± 5 kb of the putative differentially methylated regions (DMRs, p < 0.05) were subjected to the IPA analysis. There was no significant difference in age, sex, study site between no pain and pain group (p > 0.05). Non-Hispanic black individuals were overrepresented in the pain group (p = 0.003). At raw p < 0.05 cutoff, we identified a total of 19,710 CpG probes, including 13,951 hypermethylated CpG probes, for which DNA methylation level was higher in the groups with highest pain grades. We also identified 5,759 hypomethylated CpG probes for which DNA methylation level was lower in the pain groups with higher pain grades. IPA revealed that pain-related DMRs were enriched across multiple pathways and upstream regulators. The top 10 canonical pathways were linked to cellular signaling processes related to immune responses (i.e., antigen presentation, PD-1, PD-L1 cancer immunotherapy, B cell development, IL-4 signaling, Th1 and Th2 activation pathway, and phagosome maturation). Moreover, in terms of upstream regulators, NDUFAF3 was the most significant (p = 8.6E-04) upstream regulator. Our findings support previous preliminary work suggesting the importance of epigenetic regulation of the immune system in knee pain and the need for future work to understand the epigenetic contributions to chronic pain.
我们的研究旨在确定差异甲基化区域(即多个相邻CpG位点显示差异甲基化的基因组区域)及其丰富的基因组通路与膝关节骨关节炎疼痛(KOA)相关。我们招募了认知健康的中老年(45-85岁)成年人,有(n = 182)和没有(n = 31)自我报告KOA疼痛。我们还从外周血中提取DNA,使用MethylationEPIC阵列进行分析。使用R包minfi (Aryee et al., 2014)进行甲基化数据预处理和质量控制。为了研究受差异甲基化影响的生物学途径,我们使用匠人途径分析(Ingenuity pathway analysis, IPA)进行了途径富集分析,以确定典型途径和上游调节因子。在假设的差异甲基化区域(DMRs, p <0.05)进行IPA分析。无疼痛组与疼痛组在年龄、性别、研究部位上无显著差异(p >0.05)。非西班牙裔黑人在疼痛组的比例过高(p = 0.003)。在raw p <在0.05截断值下,我们共鉴定出19,710个CpG探针,其中包括13,951个高甲基化的CpG探针,在疼痛等级最高的组中,DNA甲基化水平较高。我们还鉴定出5,759个低甲基化的CpG探针,其DNA甲基化水平在疼痛等级较高的疼痛组中较低。IPA显示,与疼痛相关的DMRs在多个通路和上游调节因子中富集。前10个典型途径与免疫应答相关的细胞信号传导过程有关(即抗原呈递、PD-1、PD-L1癌症免疫治疗、B细胞发育、IL-4信号传导、Th1和Th2激活途径以及吞噬体成熟)。在上游调节因子方面,NDUFAF3是最显著的上游调节因子(p = 8.6E-04)。我们的研究结果支持了先前的初步工作,表明免疫系统的表观遗传调控在膝关节疼痛中的重要性,以及未来工作需要了解表观遗传对慢性疼痛的贡献。
{"title":"Enrichment of genomic pathways based on differential DNA methylation profiles associated with knee osteoarthritis pain","authors":"Soamy Montesino-Goicolea , Lingsong Meng , Asha Rani , Zhiguang Huo , Thomas C. Foster , Roger B. Fillingim , Yenisel Cruz-Almeida","doi":"10.1016/j.ynpai.2022.100107","DOIUrl":"10.1016/j.ynpai.2022.100107","url":null,"abstract":"<div><p>Our study aimed to identify differentially methylated regions (i.e., genomic region where multiple adjacent CpG sites show differential methylation) and their enriched genomic pathways associated with knee osteoarthritis pain (KOA). We recruited cognitively healthy middle to older aged (age 45–85) adults with (n = 182) and without (n = 31) self-reported KOA pain. We also extracted DNA from peripheral blood that was analyzed using MethylationEPIC arrays. The R package <em>minfi</em> (<span>Aryee et al., 2014</span>) was used to perform methylation data preprocessing and quality control. To investigate biological pathways impacted by differential methylation, we performed pathway enrichment analysis using Ingenuity Pathway Analysis (IPA) to identify canonical pathways and upstream regulators. Annotated genes within ± 5 kb of the putative differentially methylated regions (DMRs, p < 0.05) were subjected to the IPA analysis. There was no significant difference in age, sex, study site between no pain and pain group (p > 0.05). Non-Hispanic black individuals were overrepresented in the pain group (p = 0.003). At raw p < 0.05 cutoff, we identified a total of 19,710 CpG probes, including 13,951 hypermethylated CpG probes, for which DNA methylation level was higher in the groups with highest pain grades. We also identified 5,759 hypomethylated CpG probes for which DNA methylation level was lower in the pain groups with higher pain grades. IPA revealed that pain-related DMRs were enriched across multiple pathways and upstream regulators. The top 10 canonical pathways were linked to cellular signaling processes related to immune responses (i.e., antigen presentation, PD-1, PD-L1 cancer immunotherapy, B cell development, IL-4 signaling, Th1 and Th2 activation pathway, and phagosome maturation). Moreover, in terms of upstream regulators, NDUFAF3 was the most significant (p = 8.6E-04) upstream regulator. Our findings support previous preliminary work suggesting the importance of epigenetic regulation of the immune system in knee pain and the need for future work to understand the epigenetic contributions to chronic pain.</p></div>","PeriodicalId":52177,"journal":{"name":"Neurobiology of Pain","volume":"12 ","pages":"Article 100107"},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9755025/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10638422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-01DOI: 10.1016/j.ynpai.2022.100106
Nolan A. Huck , Lauren J. Donovan , Huaishuang Shen , Claire E. Jordan , Gabriella P.B. Muwanga , Caldwell M. Bridges , Thomas E. Forman , Stephanie A. Cordonnier , Elena S. Haight , Fiona Dale-Huang , Yoshinori Takemura , Vivianne L. Tawfik
Chronic pain is a common and often debilitating problem that affects 100 million Americans. A better understanding of pain’s molecular mechanisms is necessary for developing safe and effective therapeutics. Microglial activation has been implicated as a mediator of chronic pain in numerous preclinical studies; unfortunately, translational efforts using known glial modulators have largely failed, perhaps at least in part due to poor specificity of the compounds pursued, or an incomplete understanding of microglial reactivity. In order to achieve a more granular understanding of the role of microglia in chronic pain as a means of optimizing translational efforts, we utilized a clinically-informed mouse model of complex regional pain syndrome (CRPS), and monitored microglial activation throughout pain progression. We discovered that while both males and females exhibit spinal cord microglial activation as evidenced by increases in Iba1, activation is attenuated and delayed in females. We further evaluated the expression of the newly identified microglia-specific marker, TMEM119, and identified two distinct populations in the spinal cord parenchyma after peripheral injury: TMEM119+ microglia and TMEM119- infiltrating myeloid lineage cells, which are comprised of Ly6G + neutrophils and Ly6G- macrophages/monocytes. Neurons are sensitized by inflammatory mediators released in the CNS after injury; however, the cellular source of these cytokines remains somewhat unclear. Using multiplex in situ hybridization in combination with immunohistochemistry, we demonstrate that spinal cord TMEM119+ microglia are the cellular source of cytokines IL6 and IL1β after peripheral injury. Taken together, these data have important implications for translational studies: 1) microglia remain a viable analgesic target for males and females, so long as duration after injury is considered; 2) the analgesic properties of microglial modulators are likely at least in part related to their suppression of microglial-released cytokines, and 3) a limited number of neutrophils and macrophages/monocytes infiltrate the spinal cord after peripheral injury but have unknown impact on pain persistence or resolution. Further studies to uncover glial-targeted therapeutic interventions will need to consider sex, timing after injury, and the exact target population of interest to have the specificity necessary for translation.
{"title":"Sex-distinct microglial activation and myeloid cell infiltration in the spinal cord after painful peripheral injury","authors":"Nolan A. Huck , Lauren J. Donovan , Huaishuang Shen , Claire E. Jordan , Gabriella P.B. Muwanga , Caldwell M. Bridges , Thomas E. Forman , Stephanie A. Cordonnier , Elena S. Haight , Fiona Dale-Huang , Yoshinori Takemura , Vivianne L. Tawfik","doi":"10.1016/j.ynpai.2022.100106","DOIUrl":"10.1016/j.ynpai.2022.100106","url":null,"abstract":"<div><p>Chronic pain is a common and often debilitating problem that affects 100 million Americans. A better understanding of pain’s molecular mechanisms is necessary for developing safe and effective therapeutics. Microglial activation has been implicated as a mediator of chronic pain in numerous preclinical studies; unfortunately, translational efforts using known glial modulators have largely failed, perhaps at least in part due to poor specificity of the compounds pursued, or an incomplete understanding of microglial reactivity. In order to achieve a more granular understanding of the role of microglia in chronic pain as a means of optimizing translational efforts, we utilized a clinically-informed mouse model of complex regional pain syndrome (CRPS), and monitored microglial activation throughout pain progression. We discovered that while both males and females exhibit spinal cord microglial activation as evidenced by increases in Iba1, activation is attenuated and delayed in females. We further evaluated the expression of the newly identified microglia-specific marker, TMEM119, and identified two distinct populations in the spinal cord parenchyma after peripheral injury: TMEM119+ microglia and TMEM119- infiltrating myeloid lineage cells, which are comprised of Ly6G + neutrophils and Ly6G- macrophages/monocytes. Neurons are sensitized by inflammatory mediators released in the CNS after injury; however, the cellular source of these cytokines remains somewhat unclear. Using multiplex <em>in situ</em> hybridization in combination with immunohistochemistry, we demonstrate that spinal cord TMEM119+ microglia are the cellular source of cytokines IL6 and IL1β after peripheral injury. Taken together, these data have important implications for translational studies: 1) microglia remain a viable analgesic target for males and females, so long as duration after injury is considered; 2) the analgesic properties of microglial modulators are likely at least in part related to their suppression of microglial-released cytokines, and 3) a limited number of neutrophils and macrophages/monocytes infiltrate the spinal cord after peripheral injury but have unknown impact on pain persistence or resolution. Further studies to uncover glial-targeted therapeutic interventions will need to consider sex, timing after injury, and the exact target population of interest to have the specificity necessary for translation.</p></div>","PeriodicalId":52177,"journal":{"name":"Neurobiology of Pain","volume":"12 ","pages":"Article 100106"},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f8/b4/main.PMC9755061.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9517375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-01DOI: 10.1016/j.ynpai.2022.100108
Scott Alexander Holmes , Joud Mar'i , Stephen Green , David Borsook
As our definition of pain evolves, the factors implicit in defining and predicting pain status grow. These factors each have unique data characteristics and their outcomes each have unique target attributes. The clinical characterization of pain does not, as defined in the most recent IASP definition, require any tissue pathology, suggesting that the experience of pain can be uniquely psychological in nature. Predicting a persons pain status may be optimized through integration of multiple independent observations; however, how they are integrated has direct relevance towards predicting chronic pain development, clinical application, and research investigation. The current challenge is to find clinically-mindful ways of integrating clinical pain rating scales with neuroimaging of the peripheral and central nervous system with the biopsychocial environment and improving our capacity for diagnostic flexibility and knowledge translation through data modeling. This commentary addresses how our current knowledge of pain phenotypes and risk factors interacts with statistical models and how we can proceed forward in a clinically responsible way.
{"title":"Towards a deeper understanding of pain: How machine learning and deep learning algorithms are needed to provide the next generation of pain medicine for use in the clinic","authors":"Scott Alexander Holmes , Joud Mar'i , Stephen Green , David Borsook","doi":"10.1016/j.ynpai.2022.100108","DOIUrl":"10.1016/j.ynpai.2022.100108","url":null,"abstract":"<div><p>As our definition of pain evolves, the factors implicit in defining and predicting pain status grow. These factors each have unique data characteristics and their outcomes each have unique target attributes. The clinical characterization of pain does not, as defined in the most recent IASP definition, require any tissue pathology, suggesting that the experience of pain can be uniquely psychological in nature. Predicting a persons pain status may be optimized through integration of multiple independent observations; however, how they are integrated has direct relevance towards predicting chronic pain development, clinical application, and research investigation. The current challenge is to find clinically-mindful ways of integrating clinical pain rating scales with neuroimaging of the peripheral and central nervous system with the biopsychocial environment and improving our capacity for diagnostic flexibility and knowledge translation through data modeling. This commentary addresses how our current knowledge of pain phenotypes and risk factors interacts with statistical models and how we can proceed forward in a clinically responsible way.</p></div>","PeriodicalId":52177,"journal":{"name":"Neurobiology of Pain","volume":"12 ","pages":"Article 100108"},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/93/c9/main.PMC10039383.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9204616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-01DOI: 10.1016/j.ynpai.2022.100105
Paula Sureda-Gibert , Marcela Romero-Reyes , Simon Akerman
Migraine stands as one of the most disabling neurological conditions worldwide. It is a disorder of great challenge to study given its heterogeneous representation, cyclic nature, and complexity of neural networks involved. Despite this, clinical and preclinical research has greatly benefitted from the use of the nitric oxide donor, nitroglycerin (NTG), to model this disorder, dissect underlying mechanisms, and to facilitate the development and screening of effective therapeutics. NTG is capable of triggering a migraine attack, only in migraineurs or patients with a history of migraine and inducing migraine-like phenotypes in rodent models. It is however unclear to what extent NTG and NO, as its breakdown product, is a determinant factor in the underlying pathophysiology of migraine, and importantly, whether it really does facilitate the translation from the bench to the bedside, and vice-versa. This review provides an insight into the evidence supporting the strengths of this model, as well as its limitations, and shines a light into the possible role of NO-related mechanisms in altered molecular signalling pathways.
{"title":"Nitroglycerin as a model of migraine: Clinical and preclinical review","authors":"Paula Sureda-Gibert , Marcela Romero-Reyes , Simon Akerman","doi":"10.1016/j.ynpai.2022.100105","DOIUrl":"10.1016/j.ynpai.2022.100105","url":null,"abstract":"<div><p>Migraine stands as one of the most disabling neurological conditions worldwide. It is a disorder of great challenge to study given its heterogeneous representation, cyclic nature, and complexity of neural networks involved. Despite this, clinical and preclinical research has greatly benefitted from the use of the nitric oxide donor, nitroglycerin (NTG), to model this disorder, dissect underlying mechanisms, and to facilitate the development and screening of effective therapeutics. NTG is capable of triggering a migraine attack, only in migraineurs or patients with a history of migraine and inducing migraine-like phenotypes in rodent models. It is however unclear to what extent NTG and NO, as its breakdown product, is a determinant factor in the underlying pathophysiology of migraine, and importantly, whether it really does facilitate the translation from the bench to the bedside, and vice-versa. This review provides an insight into the evidence supporting the strengths of this model, as well as its limitations, and shines a light into the possible role of NO-related mechanisms in altered molecular signalling pathways.</p></div>","PeriodicalId":52177,"journal":{"name":"Neurobiology of Pain","volume":"12 ","pages":"Article 100105"},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6c/60/main.PMC10039393.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10298127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-01DOI: 10.1016/j.ynpai.2022.100102
Simona Nikolova, Todd J. Schwedt
This review summarizes major findings and recent advances in magnetic resonance spectroscopy (MRS) of migraine. A multi database search of PubMed, EMBASE, and Web of Science was performed with variations of magnetic resonance spectroscopy and headache until 20th September 2021. The search generated 2897 studies, 676 which were duplicates and 1836 were not related to headache. Of the remaining 385 studies examined, further exclusions for not migraine (n = 114), and not MRS of human brain (n = 128), and non-original contributions (n = 51) or conferences (n = 24) or case studies (n = 11) or non-English (n = 3), were applied. The manuscripts of all resulting reports were reviewed for their possible inclusion in this manuscript (n = 54). The reference lists of all included reports were carefully reviewed and articles relevant to this review were added (n = 2).
Included are 56 studies of migraine with and without aura that involve magnetic resonance spectroscopy of the human brain. The topics are presented in the form of a narrative review. This review aims to provide a summary of the metabolic changes measured by MRS in patients with migraine. Despite the variability reported between studies, common findings focused on regions functionally relevant to migraine such as occipital cortices, thalamic nuclei, cerebellum and cingulate. The most reproducible results were decreased N-acetyl-aspartate (NAA) in cerebellum in patients with hemiplegic migraine and in the thalamus of chronic migraine patients. Increased lactate (Lac) in the occipital cortex was found for migraine with aura but not in subjects without aura. MRS studies support the hypothesis of impaired energetics and mitochondrial dysfunction in migraine. Although results regarding GABA and Glu were less consistent, studies suggest there might be an imbalance of these important inhibitory and excitatory neurotransmitters in the migraine brain. Multinuclear imaging studies in migraine with and without aura, predominantly investigating phosphorous, report alterations of PCr in occipital, parietal, and posterior brain regions. There have been too few studies to assess the diagnostic relevance of sodium imaging in migraine.
{"title":"Magnetic resonance spectroscopy studies in migraine","authors":"Simona Nikolova, Todd J. Schwedt","doi":"10.1016/j.ynpai.2022.100102","DOIUrl":"10.1016/j.ynpai.2022.100102","url":null,"abstract":"<div><p></p><ul><li><span><p>This review summarizes major findings and recent advances in magnetic resonance spectroscopy (MRS) of migraine. A multi database search of PubMed, EMBASE, and Web of Science was performed with variations of magnetic resonance spectroscopy and headache until 20th September 2021. The search generated 2897 studies, 676 which were duplicates and 1836 were not related to headache. Of the remaining 385 studies examined, further exclusions for not migraine (n = 114), and not MRS of human brain (n = 128), and non-original contributions (n = 51) or conferences (n = 24) or case studies (n = 11) or non-English (n = 3), were applied. The manuscripts of all resulting reports were reviewed for their possible inclusion in this manuscript (n = 54). The reference lists of all included reports were carefully reviewed and articles relevant to this review were added (n = 2).</p></span></li></ul>Included are 56 studies of migraine with and without aura that involve magnetic resonance spectroscopy of the human brain. The topics are presented in the form of a narrative review. This review aims to provide a summary of the metabolic changes measured by MRS in patients with migraine. Despite the variability reported between studies, common findings focused on regions functionally relevant to migraine such as occipital cortices, thalamic nuclei, cerebellum and cingulate. The most reproducible results were decreased <em>N</em>-acetyl-aspartate (NAA) in cerebellum in patients with hemiplegic migraine and in the thalamus of chronic migraine patients. Increased lactate (Lac) in the occipital cortex was found for migraine with aura but not in subjects without aura. MRS studies support the hypothesis of impaired energetics and mitochondrial dysfunction in migraine. Although results regarding GABA and Glu were less consistent, studies suggest there might be an imbalance of these important inhibitory and excitatory neurotransmitters in the migraine brain. Multinuclear imaging studies in migraine with and without aura, predominantly investigating phosphorous, report alterations of PCr in occipital, parietal, and posterior brain regions. There have been too few studies to assess the diagnostic relevance of sodium imaging in migraine.</div>","PeriodicalId":52177,"journal":{"name":"Neurobiology of Pain","volume":"12 ","pages":"Article 100102"},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5b/a2/main.PMC9755026.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10399024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-01DOI: 10.1016/j.ynpai.2022.100103
Esad Ulker , Martial Caillaud , Eda Koseli , Katherine Contreras , Yasmin Alkhlaif , Eric Lindley , Mitali Barik , Sofia Ghani , Camron D. Bryant , M. Imad Damaj
Background
Management of pain post-surgery is crucial for tissue healing in both veterinary and human medicine. Overuse of some analgesics such as opioids may lead to addictions and worsen pain syndromes (opioid-induced hyperalgesia), while underuse of it may affect the welfare of the patient. Therefore, the importance of using surgery models in laboratory animals is increasing, with the goal of improving our understanding of pain neurobiology and developing safer analgesics.
Methods
We compared the widely used plantar incision model with the laparotomy surgery model and measured pain-related behaviors using both spontaneous and evoked responses in female and male C57BL/6J mice. Additionally, we assessed conditioned place preference (CPP) and sucrose preference tests to measure pain-induced motivation for the analgesic ketoprofen and anhedonia-like behavior.
Results
Laparotomized mice showed increased abdominal sensitivity while paw-incised mice showed increased paw thermal and mechanical sensitivity up to seven days post-surgery. Laparotomy surgery reduced all spontaneous behaviors in our study however this effect dissipated by 24 h post-laparotomy. On the other hand, paw incision only reduced the percentage of cage hanging in a sex-dependent manner at 6 h post-incision. We also showed that both surgery models increased conditioned place preference for ketoprofen while preference for sucrose was only reduced at 24 h post-laparotomy. Laporatomy, but not paw incision, induced a decrease in body weight at 24 h post-surgery. Neither surgery model affected fluid intake.
Conclusion
Our results indicate that post-surgery hypersensitivity and behavioral deficits may differ by the incision site. Furthermore, factors associated with the surgery including length of the incision, duration of the anesthesia, and the layers that received stitches may affect subsequent spontaneous behaviors. These findings may help to improve drug development or the choice of the effective analgesic, depending on the surgery type.
{"title":"Comparison of Pain-Like behaviors in two surgical incision animal models in C57BL/6J mice","authors":"Esad Ulker , Martial Caillaud , Eda Koseli , Katherine Contreras , Yasmin Alkhlaif , Eric Lindley , Mitali Barik , Sofia Ghani , Camron D. Bryant , M. Imad Damaj","doi":"10.1016/j.ynpai.2022.100103","DOIUrl":"10.1016/j.ynpai.2022.100103","url":null,"abstract":"<div><h3>Background</h3><p>Management of pain post-surgery is crucial for tissue healing in both veterinary and human medicine. Overuse of some analgesics such as opioids may lead to addictions and worsen pain syndromes (opioid-induced hyperalgesia), while underuse of it may affect the welfare of the patient. Therefore, the importance of using surgery models in laboratory animals is increasing, with the goal of improving our understanding of pain neurobiology and developing safer analgesics.</p></div><div><h3>Methods</h3><p>We compared the widely used plantar incision model with the laparotomy surgery model and measured pain-related behaviors using both spontaneous and evoked responses in female and male C57BL/6J mice. Additionally, we assessed conditioned place preference (CPP) and sucrose preference tests to measure pain-induced motivation for the analgesic ketoprofen and anhedonia-like behavior.</p></div><div><h3>Results</h3><p>Laparotomized mice showed increased abdominal sensitivity while paw-incised mice showed increased paw thermal and mechanical sensitivity up to seven days post-surgery. Laparotomy surgery reduced all spontaneous behaviors in our study however this effect dissipated by 24 h post-laparotomy. On the other hand, paw incision only reduced the percentage of cage hanging in a sex-dependent manner at 6 h post-incision. We also showed that both surgery models increased conditioned place preference for ketoprofen while preference for sucrose was only reduced at 24 h post-laparotomy. Laporatomy, but not paw incision, induced a decrease in body weight at 24 h post-surgery. Neither surgery model affected fluid intake.</p></div><div><h3>Conclusion</h3><p>Our results indicate that post-surgery hypersensitivity and behavioral deficits may differ by the incision site. Furthermore, factors associated with the surgery including length of the incision, duration of the anesthesia, and the layers that received stitches may affect subsequent spontaneous behaviors. These findings may help to improve drug development or the choice of the effective analgesic, depending on the surgery type.</p></div>","PeriodicalId":52177,"journal":{"name":"Neurobiology of Pain","volume":"12 ","pages":"Article 100103"},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0e/27/main.PMC9755018.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10404949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-01DOI: 10.1016/j.ynpai.2022.100094
Wanakorn Rattanawong , Alan Rapoport , Anan Srikiatkhachorn
Chronic migraine is one of the most devastating headache disorders. The estimated prevalence is 1.4–2.2% in the population. The factors which may predispose to the process of migraine progression include high frequency of migraine attacks, medication overuse, comorbid pain syndromes, and obesity. Several studies showed that chronic migraine results in the substantial anatomical and physiological changes in the brain. Despite no clear explanation regarding the pathophysiologic process leading to the progression, certain features such as increased sensory sensitivity, cutaneous allodynia, impaired habituation, identify the neuronal hyperexcitability as the plausible mechanism. In this review, we describe two main mechanisms which can lead to this hyperexcitability. The first is persistent sensitization caused by repetitive and prolonged trigeminal nociceptive activation. This process results in changes in several brain networks related to both pain and non-pain behaviours. The second mechanism is the decrease in endogenous brainstem inhibitory control, hence increasing the excitability of neurons in the trigeminal noceptive system and cerebral cortex. The combination of increased pain matrix connectivity, including hypothalamic hyperactivity and a weak serotonergic system, may contribute to migraine chronification.
{"title":"Neurobiology of migraine progression","authors":"Wanakorn Rattanawong , Alan Rapoport , Anan Srikiatkhachorn","doi":"10.1016/j.ynpai.2022.100094","DOIUrl":"10.1016/j.ynpai.2022.100094","url":null,"abstract":"<div><p>Chronic migraine is one of the most devastating headache disorders. The estimated prevalence is 1.4–2.2% in the population. The factors which may predispose to the process of migraine progression include high frequency of migraine attacks, medication overuse, comorbid pain syndromes, and obesity. Several studies showed that chronic migraine results in the substantial anatomical and physiological changes in the brain. Despite no clear explanation regarding the pathophysiologic process leading to the progression, certain features such as increased sensory sensitivity, cutaneous allodynia, impaired habituation, identify the neuronal hyperexcitability as the plausible mechanism. In this review, we describe two main mechanisms which can lead to this hyperexcitability. The first is persistent sensitization caused by repetitive and prolonged trigeminal nociceptive activation. This process results in changes in several brain networks related to both pain and non-pain behaviours. The second mechanism is the decrease in endogenous brainstem inhibitory control, hence increasing the excitability of neurons in the trigeminal noceptive system and cerebral cortex. The combination of increased pain matrix connectivity, including hypothalamic hyperactivity and a weak serotonergic system, may contribute to migraine chronification.</p></div>","PeriodicalId":52177,"journal":{"name":"Neurobiology of Pain","volume":"12 ","pages":"Article 100094"},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6b/e5/main.PMC9204797.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40026632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-01DOI: 10.1016/j.ynpai.2022.100099
Zachariah Bertels, Isaac J. Dripps, Pal Shah, Laura S. Moye, Alycia F. Tipton, Kendra Siegersma, Amynah A. Pradhan
Migraine is one of the most common pain disorders and causes disability in millions of people every year. Delta opioid receptors (DOR) have been identified as a novel therapeutic target for migraine and other headache disorders. DORs are present in both peripheral and central regions and it is unclear which receptor populations regulate migraine-associated effects. The aim of this study was to determine if DOR expressed in peripheral nociceptors regulates headache associated endpoints and the effect of delta agonists within these mouse models. We used a conditional knockout, in which DOR was selectively deleted from Nav1.8 expressing cells. Nav1.8-DOR mice and loxP control littermates were tested in models of chronic migraine-associated allodynia, opioid-induced hyperalgesia, migraine-associated negative affect, and aura. Nav1.8-DOR and loxP mice had comparable effect sizes in all of these models. The anti-allodynic effect of the DOR agonist, SNC80, was slightly diminished in the nitroglycerin model of migraine. Intriguingly, in the OIH model the peripheral effects of SNC80 were completely lost in Nav1.8-DOR mice while the cephalic effects remained intact. Regardless of genotype, SNC80 continued to inhibit conditioned place aversion associated with nitroglycerin and decreased cortical spreading depression events associated with migraine aura. These results suggest that DOR in Nav1.8-expressing nociceptors do not critically regulate the anti-migraine effects of delta agonist; and that brain-penetrant delta agonists would be a more effective drug development strategy.
{"title":"Delta opioid receptors in Nav1.8 expressing peripheral neurons partially regulate the effect of delta agonist in models of migraine and opioid-induced hyperalgesia","authors":"Zachariah Bertels, Isaac J. Dripps, Pal Shah, Laura S. Moye, Alycia F. Tipton, Kendra Siegersma, Amynah A. Pradhan","doi":"10.1016/j.ynpai.2022.100099","DOIUrl":"10.1016/j.ynpai.2022.100099","url":null,"abstract":"<div><p>Migraine is one of the most common pain disorders and causes disability in millions of people every year. Delta opioid receptors (DOR) have been identified as a novel therapeutic target for migraine and other headache disorders. DORs are present in both peripheral and central regions and it is unclear which receptor populations regulate migraine-associated effects. The aim of this study was to determine if DOR expressed in peripheral nociceptors regulates headache associated endpoints and the effect of delta agonists within these mouse models. We used a conditional knockout, in which DOR was selectively deleted from Nav1.8 expressing cells. Nav1.8-DOR mice and loxP control littermates were tested in models of chronic migraine-associated allodynia, opioid-induced hyperalgesia, migraine-associated negative affect, and aura. Nav1.8-DOR and loxP mice had comparable effect sizes in all of these models. The anti-allodynic effect of the DOR agonist, SNC80, was slightly diminished in the nitroglycerin model of migraine. Intriguingly, in the OIH model the peripheral effects of SNC80 were completely lost in Nav1.8-DOR mice while the cephalic effects remained intact. Regardless of genotype, SNC80 continued to inhibit conditioned place aversion associated with nitroglycerin and decreased cortical spreading depression events associated with migraine aura. These results suggest that DOR in Nav1.8-expressing nociceptors do not critically regulate the anti-migraine effects of delta agonist; and that brain-penetrant delta agonists would be a more effective drug development strategy.</p></div>","PeriodicalId":52177,"journal":{"name":"Neurobiology of Pain","volume":"12 ","pages":"Article 100099"},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/61/22/main.PMC9289726.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40524429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-01DOI: 10.1016/j.ynpai.2022.100096
Zhaohua Guo , Jintao Zhang , Xuemei Liu , Jacqueline Unsinger , Richard S Hotchkiss , Yu-Qing Cao
Low-dose interleukin-2 (LD-IL-2) treatment has been shown to effectively reverse chronic migraine-related behaviors and the sensitization of trigeminal ganglion (TG) neurons through expansion and activation of peripheral regulatory T cells (Tregs) in mice. In this study, we investigated the molecular mechanisms underlying the effects of LD-IL-2 and Treg cells. LD-IL-2 treatment increases the production of cytokines interleukin-10 (IL-10) and transforming growth factor beta-1 (TGFβ1) in T cells, especially Treg cells, suggesting that they may mediate the therapeutic effect of LD-IL-2. Indeed, neutralizing antibodies against either IL-10 or TGFβ completely blocked the effects of LD-IL-2 on the facial mechanical hypersensitivity as well as the sensitization of TG neurons resulting from repeated nitroglycerin (NTG, a reliable trigger of migraine in patients) administration in mice, indicating that LD-IL-2 and Treg cells engage both peripheral IL-10 and TGFβ signaling pathways to reverse chronic-migraine related sensitizations. In an in vitro assay, incubation of TG culture with exogenous IL-10 or TGFβ1 fully reversed NTG-induced sensitization of TG neurons, suggesting that the IL-10 and TGFβ1 signaling in TG neurons contribute to LD-IL-2′s therapeutic effects. Collectively, these results not only elucidate the molecular mechanisms through which LD-IL-2 and Treg cells reverse chronic-migraine related sensitizations, but also suggest that the IL-10 and TGFβ1 signaling pathways in TG neurons are potential targets for chronic migraine therapy.
{"title":"Low-dose interleukin-2 reverses chronic migraine-related sensitizations through peripheral interleukin-10 and transforming growth factor beta-1 signaling","authors":"Zhaohua Guo , Jintao Zhang , Xuemei Liu , Jacqueline Unsinger , Richard S Hotchkiss , Yu-Qing Cao","doi":"10.1016/j.ynpai.2022.100096","DOIUrl":"10.1016/j.ynpai.2022.100096","url":null,"abstract":"<div><p>Low-dose interleukin-2 (LD-IL-2) treatment has been shown to effectively reverse chronic migraine-related behaviors and the sensitization of trigeminal ganglion (TG) neurons through expansion and activation of peripheral regulatory T cells (Tregs) in mice. In this study, we investigated the molecular mechanisms underlying the effects of LD-IL-2 and Treg cells. LD-IL-2 treatment increases the production of cytokines interleukin-10 (IL-10) and transforming growth factor beta-1 (TGFβ1) in T cells, especially Treg cells, suggesting that they may mediate the therapeutic effect of LD-IL-2. Indeed, neutralizing antibodies against either IL-10 or TGFβ completely blocked the effects of LD-IL-2 on the facial mechanical hypersensitivity as well as the sensitization of TG neurons resulting from repeated nitroglycerin (NTG, a reliable trigger of migraine in patients) administration in mice, indicating that LD-IL-2 and Treg cells engage both peripheral IL-10 and TGFβ signaling pathways to reverse chronic-migraine related sensitizations. In an <em>in vitro</em> assay, incubation of TG culture with exogenous IL-10 or TGFβ1 fully reversed NTG-induced sensitization of TG neurons, suggesting that the IL-10 and TGFβ1 signaling in TG neurons contribute to LD-IL-2′s therapeutic effects. Collectively, these results not only elucidate the molecular mechanisms through which LD-IL-2 and Treg cells reverse chronic-migraine related sensitizations, but also suggest that the IL-10 and TGFβ1 signaling pathways in TG neurons are potential targets for chronic migraine therapy.</p></div>","PeriodicalId":52177,"journal":{"name":"Neurobiology of Pain","volume":"12 ","pages":"Article 100096"},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6e/42/main.PMC9207571.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40224133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}