首页 > 最新文献

Molecular Pharmaceutics最新文献

英文 中文
SPECT Imaging of Cardiac Inflammation by Targeting IL4 Receptor-α on Macrophages.
IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-13 DOI: 10.1021/acs.molpharmaceut.4c01336
Danzha Zheng, Mengyan Hu, Wenwen Wang, Shan Chen, Zhangyongxue Zhou, Yuhu Lv, Dawei Jiang, Jianjun Chen, Xiaoli Lan, Chunxia Qin

The inflammation response is a prominent sign of myocardial infarction (MI), mediating the process of cardiac fibrosis and ventricular remodeling. Inflammation visualization holds new promise for guiding cardiac anti-inflammatory therapy. Interleukin-4 receptor α (IL4Rα) interacts with IL4, closely related to macrophage polarization. This study aimed to evaluate the feasibility of a technetium-99m (99mTc) labeled IL4Rα antibody probe ([99mTc]Tc-HYNIC-CM310) for targeting postinfarction macrophage SPECT imaging. [99mTc]Tc-HYNIC-CM310 was prepared by radiolabeling an IL4Rα-specific monoclonal antibody (CM310) with 99mTc. Images were acquired at 0.5, 6, 12, 24, and 36 h postinjection on the next day after MI and the sham model preparation, and a biodistribution study was performed at 36 h. The mean percentage of injected dose per gram (%ID/g) of various tissues was obtained by drawing the regions of interest. [18F]FDG myocardial metabolism and inflammation imaging were performed for comparison and verification. Immunofluorescence costaining and flow cytometry were conducted to validate the coexpression of IL4Rα and macrophages. The radiolabeling yield of [99mTc]Tc-HYNIC-CM310 was approximately 88.31% ± 1.70%, and the radiochemical purity was 93.70% ± 0.38%. The accumulation of [99mTc]Tc-HYNIC-CM310 in infarcted myocardium was increased starting at 12 h postinjection. The tracer uptake was significantly higher in the infarcted myocardium than the same site in sham-operated rats (P < 0.05). The tracer uptake region was consistent with the cardiac metabolic defect and inflammatory region seen by [18F]FDG PET. Immunofluorescence staining and flow cytometry confirmed the colocalization of IL4Rα+ cells and macrophage markers in the infarcted myocardium. We successfully prepared and validated the SPECT probe [99mTc]Tc-HYNIC-CM310 for precise visualization of macrophages, offering a new opportunity for guiding the treatment of cardiac inflammation.

{"title":"SPECT Imaging of Cardiac Inflammation by Targeting IL4 Receptor-α on Macrophages.","authors":"Danzha Zheng, Mengyan Hu, Wenwen Wang, Shan Chen, Zhangyongxue Zhou, Yuhu Lv, Dawei Jiang, Jianjun Chen, Xiaoli Lan, Chunxia Qin","doi":"10.1021/acs.molpharmaceut.4c01336","DOIUrl":"https://doi.org/10.1021/acs.molpharmaceut.4c01336","url":null,"abstract":"<p><p>The inflammation response is a prominent sign of myocardial infarction (MI), mediating the process of cardiac fibrosis and ventricular remodeling. Inflammation visualization holds new promise for guiding cardiac anti-inflammatory therapy. Interleukin-4 receptor α (IL4Rα) interacts with IL4, closely related to macrophage polarization. This study aimed to evaluate the feasibility of a technetium-99m (<sup>99m</sup>Tc) labeled IL4Rα antibody probe ([<sup>99m</sup>Tc]Tc-HYNIC-CM310) for targeting postinfarction macrophage SPECT imaging. [<sup>99m</sup>Tc]Tc-HYNIC-CM310 was prepared by radiolabeling an IL4Rα-specific monoclonal antibody (CM310) with <sup>99m</sup>Tc. Images were acquired at 0.5, 6, 12, 24, and 36 h postinjection on the next day after MI and the sham model preparation, and a biodistribution study was performed at 36 h. The mean percentage of injected dose per gram (%ID/g) of various tissues was obtained by drawing the regions of interest. [<sup>18</sup>F]FDG myocardial metabolism and inflammation imaging were performed for comparison and verification. Immunofluorescence costaining and flow cytometry were conducted to validate the coexpression of IL4Rα and macrophages. The radiolabeling yield of [<sup>99m</sup>Tc]Tc-HYNIC-CM310 was approximately 88.31% ± 1.70%, and the radiochemical purity was 93.70% ± 0.38%. The accumulation of [<sup>99m</sup>Tc]Tc-HYNIC-CM310 in infarcted myocardium was increased starting at 12 h postinjection. The tracer uptake was significantly higher in the infarcted myocardium than the same site in sham-operated rats (<i>P</i> < 0.05). The tracer uptake region was consistent with the cardiac metabolic defect and inflammatory region seen by [<sup>18</sup>F]FDG PET. Immunofluorescence staining and flow cytometry confirmed the colocalization of IL4Rα<sup>+</sup> cells and macrophage markers in the infarcted myocardium. We successfully prepared and validated the SPECT probe [<sup>99m</sup>Tc]Tc-HYNIC-CM310 for precise visualization of macrophages, offering a new opportunity for guiding the treatment of cardiac inflammation.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solubility Enhancement of Active Pharmaceutical Ingredients through Liquid Hydrotrope Addition: A Thermodynamic Analysis.
IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-13 DOI: 10.1021/acs.molpharmaceut.4c01117
Sahar Nasrallah, Mirjana Minceva

The poor water solubility of active pharmaceutical ingredients (APIs) poses a significant challenge in pharmaceutical development, affecting their bioavailability and therapeutic efficacy. Consequently, there is an urgent demand for strategies to improve API solubility, with hydrotropy emerging as one of the most effective approaches. Hydrotropes, which can act as excipients in pharmaceutical formulations, enhance solubility by solubilizing hydrophobic compounds in aqueous solutions through mechanisms other than micellar solubilization. However, identifying the right hydrotropic agent requires a screening from a large pool of candidates. This work aims to analyze hydrotropy from a thermodynamic perspective by investigating the influence of the molecular interactions among the API, hydrotrope, and water on the API solubility in water at different temperatures. For this systematic study, hypothetical ternary systems were used and only liquid hydrotropes were considered. Utilizing the Two-Suffix Margules equation to model the liquid phase nonideality, the study revealed that strong API-hydrotrope interactions notably enhance the API solubility in water. Additionally, the interaction between the hydrotrope and water significantly influences API solubility; weaker hydrotrope-water interactions allow for increased API solubility in water. However, when hydrotrope-water interactions are stronger than API-hydrotrope interactions, this effect is diminished. The theoretical findings were validated using solubility experimental data of syringic acid with alkanediols in water from the literature. The results of this work will aid in selecting suitable liquid hydrotropes for enhancing the API solubility in aqueous solutions.

{"title":"Solubility Enhancement of Active Pharmaceutical Ingredients through Liquid Hydrotrope Addition: A Thermodynamic Analysis.","authors":"Sahar Nasrallah, Mirjana Minceva","doi":"10.1021/acs.molpharmaceut.4c01117","DOIUrl":"https://doi.org/10.1021/acs.molpharmaceut.4c01117","url":null,"abstract":"<p><p>The poor water solubility of active pharmaceutical ingredients (APIs) poses a significant challenge in pharmaceutical development, affecting their bioavailability and therapeutic efficacy. Consequently, there is an urgent demand for strategies to improve API solubility, with hydrotropy emerging as one of the most effective approaches. Hydrotropes, which can act as excipients in pharmaceutical formulations, enhance solubility by solubilizing hydrophobic compounds in aqueous solutions through mechanisms other than micellar solubilization. However, identifying the right hydrotropic agent requires a screening from a large pool of candidates. This work aims to analyze hydrotropy from a thermodynamic perspective by investigating the influence of the molecular interactions among the API, hydrotrope, and water on the API solubility in water at different temperatures. For this systematic study, hypothetical ternary systems were used and only liquid hydrotropes were considered. Utilizing the Two-Suffix Margules equation to model the liquid phase nonideality, the study revealed that strong API-hydrotrope interactions notably enhance the API solubility in water. Additionally, the interaction between the hydrotrope and water significantly influences API solubility; weaker hydrotrope-water interactions allow for increased API solubility in water. However, when hydrotrope-water interactions are stronger than API-hydrotrope interactions, this effect is diminished. The theoretical findings were validated using solubility experimental data of syringic acid with alkanediols in water from the literature. The results of this work will aid in selecting suitable liquid hydrotropes for enhancing the API solubility in aqueous solutions.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water's Dual Role as a Chemical Catalyst and Physical Stabilizer in Deamidation of Lyophilized Proteins Studied via Molecular Dynamics Simulations.
IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-13 DOI: 10.1021/acs.molpharmaceut.4c01185
Shaoxin Feng, Günther H J Peters, Evgenyi Shalaev

Water plays a critical role in chemical degradations, such as deamidation, in freeze-dried proteins. Two distinct patterns for deamidation in relation to water have been reported, that is a "hockey stick"-type behavior with a water-independent deamidation rate, followed by a sharp increase above a water content threshold, and an inverted bell-shaped profile. To understand the underlying mechanism, molecular dynamics simulations are employed to study the explicit water distributions around reactive sites for amorphous and crystalline insulin as well as amorphous IgG1. The simulated water distribution on the protein surface is first validated by successfully predicting water vapor sorption isotherms for both amorphous and crystalline insulin. The "hockey stick"-type behavior is explained by a water threshold level beyond which there are two (Asn-Gly sequence in IgG1) or three (Asn at the C-terminus in insulin) water molecules assisting the cyclization reactions. Regarding the inverted bell-shaped profile for amorphous IgG1, the initial decreases in deamidation rate with increasing water content at low water levels can be rationalized by a lower density and higher free volume of IgG1 at a lower water content. When the free volume exceeds a percolation threshold, the produced ammonia gas can easily diffuse away, lowering the back reaction rate and thus raising the overall reaction rate. The "free volume" mechanism can also be applied to the abnormal stability ranking orders of crystalline and amorphous insulin. The faster deamidation and dimerization rates in insulin crystals compared to amorphous insulin as reported by Pikal and Rigsbee are due to the lower density and higher free volume (above the percolation threshold) in crystalline insulin, assuming that dehydration of insulin crystals does not result in a major collapse of the crystal structure.

{"title":"Water's Dual Role as a Chemical Catalyst and Physical Stabilizer in Deamidation of Lyophilized Proteins Studied via Molecular Dynamics Simulations.","authors":"Shaoxin Feng, Günther H J Peters, Evgenyi Shalaev","doi":"10.1021/acs.molpharmaceut.4c01185","DOIUrl":"https://doi.org/10.1021/acs.molpharmaceut.4c01185","url":null,"abstract":"<p><p>Water plays a critical role in chemical degradations, such as deamidation, in freeze-dried proteins. Two distinct patterns for deamidation in relation to water have been reported, that is a \"hockey stick\"-type behavior with a water-independent deamidation rate, followed by a sharp increase above a water content threshold, and an inverted bell-shaped profile. To understand the underlying mechanism, molecular dynamics simulations are employed to study the explicit water distributions around reactive sites for amorphous and crystalline insulin as well as amorphous IgG1. The simulated water distribution on the protein surface is first validated by successfully predicting water vapor sorption isotherms for both amorphous and crystalline insulin. The \"hockey stick\"-type behavior is explained by a water threshold level beyond which there are two (Asn-Gly sequence in IgG1) or three (Asn at the C-terminus in insulin) water molecules assisting the cyclization reactions. Regarding the inverted bell-shaped profile for amorphous IgG1, the initial decreases in deamidation rate with increasing water content at low water levels can be rationalized by a lower density and higher free volume of IgG1 at a lower water content. When the free volume exceeds a percolation threshold, the produced ammonia gas can easily diffuse away, lowering the back reaction rate and thus raising the overall reaction rate. The \"free volume\" mechanism can also be applied to the abnormal stability ranking orders of crystalline and amorphous insulin. The faster deamidation and dimerization rates in insulin crystals compared to amorphous insulin as reported by Pikal and Rigsbee are due to the lower density and higher free volume (above the percolation threshold) in crystalline insulin, assuming that dehydration of insulin crystals does not result in a major collapse of the crystal structure.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulating the Physical Form of Mannitol Crystallizing in Frozen Solutions: The Role of Cosolute and Processing.
IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-12 DOI: 10.1021/acs.molpharmaceut.4c01481
Chaowang Zeng, Jinghan Li, Jiawanjun Shi, Simon Bates, Bhushan Munjal, Raj Suryanarayanan

Mannitol is widely employed as a bulking agent in lyophilized formulations. Our goal was to evaluate the role of noncrystallizing cosolutes in inhibiting mannitol crystallization and preventing the formation of mannitol hemihydrate (MHH) in frozen solutions. The individual influence of two common stabilizers (sucrose and trehalose) and three model proteins (lysozyme, bovine serum albumin, and immunoglobulin G) on the crystallization behavior of mannitol was investigated by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). Sugars exerted a more pronounced crystallization inhibitory effect than proteins. In the presence of sugars, mannitol predominantly crystallized as MHH while the proteins facilitated the crystallization of δ-mannitol. Annealing the frozen solutions at -25 °C favored MHH crystallization. A higher annealing temperature of -10 °C accelerated mannitol crystallization and promoted the formation of the anhydrous δ-polymorph. The crystallization inhibitory effect of proteins was surmounted with annealing, while at a high sugar concentration, a substantial fraction of mannitol was retained amorphous even after annealing.

{"title":"Modulating the Physical Form of Mannitol Crystallizing in Frozen Solutions: The Role of Cosolute and Processing.","authors":"Chaowang Zeng, Jinghan Li, Jiawanjun Shi, Simon Bates, Bhushan Munjal, Raj Suryanarayanan","doi":"10.1021/acs.molpharmaceut.4c01481","DOIUrl":"https://doi.org/10.1021/acs.molpharmaceut.4c01481","url":null,"abstract":"<p><p>Mannitol is widely employed as a bulking agent in lyophilized formulations. Our goal was to evaluate the role of noncrystallizing cosolutes in inhibiting mannitol crystallization and preventing the formation of mannitol hemihydrate (MHH) in frozen solutions. The individual influence of two common stabilizers (sucrose and trehalose) and three model proteins (lysozyme, bovine serum albumin, and immunoglobulin G) on the crystallization behavior of mannitol was investigated by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). Sugars exerted a more pronounced crystallization inhibitory effect than proteins. In the presence of sugars, mannitol predominantly crystallized as MHH while the proteins facilitated the crystallization of δ-mannitol. Annealing the frozen solutions at -25 °C favored MHH crystallization. A higher annealing temperature of -10 °C accelerated mannitol crystallization and promoted the formation of the anhydrous δ-polymorph. The crystallization inhibitory effect of proteins was surmounted with annealing, while at a high sugar concentration, a substantial fraction of mannitol was retained amorphous even after annealing.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitroaromatic Compounds Dictate Electrochemical Properties of Escherichia coli by Manipulating the Cellular Membrane.
IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-11 DOI: 10.1021/acs.molpharmaceut.4c01537
Neha Yadav, Santosh K Misra

Nitroaromatic compounds (NACs) are generally used as starting materials and/or generated as byproducts during the manufacturing of dyes, fertilizers, and therapeutic agents. Though NACs are beneficial when used appropriately, inadequate management, disposal, and application methods have led to their introduction to bacterial ecosystems where NACs act as mutagenic agents and may even contribute to antimicrobial resistance. Many of these bacterial systems are known to have different pathways to adapt to the presence of NACs such as altering the lipid composition of cellular membranes and intracellular degradation of NACs. In general, these processes require sophisticated techniques and skilled human resources to detect the changes by conventional characterization techniques. Hence, alternative methods are needed to investigate the short-term effects of NACs on bacterial cells with better precision. Herein, we report that bacterial cells adapt to the presence of NACs initially by incorporation in the cellular membrane, which can be predicted by further altered electrical and electrochemical properties of the cells. It was observed that the whole cell bacteria were negatively charged entities that could generate varying levels of surface charges on being incubated with model NACs of biomedical importance viz. niclosamide and p-nitrophenol. Such variations were also reflected in dye entrapment assays performed by using lipidic membranes collected from NAC-treated bacterial cells after the cells. Further studies with gel electrophoresis and differential pulse voltammetry revealed the significant alterations in electrochemical properties of NAC-incubated bacterial cells. Overall, results indicate that bacterial adaptation to NACs was found to be closely linked to variations in the electrochemical properties of the bacterial cells. These outcomes advance our understanding of influences imparted by NACs during bacterial infections and might facilitate the way for developing therapies to combat antibacterial resistance in the near future.

{"title":"Nitroaromatic Compounds Dictate Electrochemical Properties of <i><i>Escherichia coli</i></i> by Manipulating the Cellular Membrane.","authors":"Neha Yadav, Santosh K Misra","doi":"10.1021/acs.molpharmaceut.4c01537","DOIUrl":"https://doi.org/10.1021/acs.molpharmaceut.4c01537","url":null,"abstract":"<p><p>Nitroaromatic compounds (NACs) are generally used as starting materials and/or generated as byproducts during the manufacturing of dyes, fertilizers, and therapeutic agents. Though NACs are beneficial when used appropriately, inadequate management, disposal, and application methods have led to their introduction to bacterial ecosystems where NACs act as mutagenic agents and may even contribute to antimicrobial resistance. Many of these bacterial systems are known to have different pathways to adapt to the presence of NACs such as altering the lipid composition of cellular membranes and intracellular degradation of NACs. In general, these processes require sophisticated techniques and skilled human resources to detect the changes by conventional characterization techniques. Hence, alternative methods are needed to investigate the short-term effects of NACs on bacterial cells with better precision. Herein, we report that bacterial cells adapt to the presence of NACs initially by incorporation in the cellular membrane, which can be predicted by further altered electrical and electrochemical properties of the cells. It was observed that the whole cell bacteria were negatively charged entities that could generate varying levels of surface charges on being incubated with model NACs of biomedical importance viz. niclosamide and <i>p</i>-nitrophenol. Such variations were also reflected in dye entrapment assays performed by using lipidic membranes collected from NAC-treated bacterial cells after the cells. Further studies with gel electrophoresis and differential pulse voltammetry revealed the significant alterations in electrochemical properties of NAC-incubated bacterial cells. Overall, results indicate that bacterial adaptation to NACs was found to be closely linked to variations in the electrochemical properties of the bacterial cells. These outcomes advance our understanding of influences imparted by NACs during bacterial infections and might facilitate the way for developing therapies to combat antibacterial resistance in the near future.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
68Ga-FAPI Small Animal PET/CT in Rats with Peritoneal Fibrosis and the Therapeutic Effect of Sodium Butyrate.
IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-11 DOI: 10.1021/acs.molpharmaceut.4c00998
Jingyi Chen, Zibei Wan, Mengxia Cao, Yuexi Huang, Yan Li, Weihua Wu, Chunmei Guo, Zhanwen Huang, Santao Ou

Peritoneal fibrosis (PF) is a common complication in peritoneal dialysis patients with end-stage renal disease. This study established a rat model of PF, used 68Ga-FAPI PET/CT imaging to visualize PF, and evaluated the therapeutic effects and mechanism of action of sodium butyrate. The rat model of PF (n = 20) was induced by hyperglycemic peritoneal dialysate combined with lipopolysaccharide, the control group (n = 20) was given the same amount of normal saline, and the intervention group (n = 20) was given sodium butyrate by intraperitoneal injection. At 2, 4, 6, and 8 weeks, a peritoneal equilibration test was performed, and peritoneal tissues were collected for histological staining. Three rats from each group were randomly selected for 68Ga-FAPI small animal PET/CT imaging. Compared with control rats, model group rats presented a decreased ultrafiltration volume, increased maximum glucose transport (P < 0.05), increased peritoneal thickness and fibrosis area, and upregulated α-SMA, COL I, TGF-β1, Smad3, and p-Smad3 expression in peritoneal tissues (P < 0.05) in a time-dependent manner. The sodium butyrate group improved peritoneal transport function (P < 0.05), alleviated collagen deposition, and downregulated α-SMA, COL I, TGF-β1, Smad3, and p-Smad3 while increasing Smad7 expression in peritoneal tissues (P < 0.05). 68Ga uptake was markedly increased in the model group (P < 0.05) but was reduced after sodium butyrate treatment (P < 0.05). The SUVmax was positively correlated with peritoneal thickness; maximum glucose transport; and α-SMA, COL I, and FAP-α expression (r = 0.871, 0.845, 0.843, 0.659, 0.926) but negatively correlated with ultrafiltration volume (r= -0.894). In summary, 68Ga-FAPI PET/CT could be a promising noninvasive approach for assessing peritoneal fibrosis that is superior to and safer than peritoneal biopsy. Sodium butyrate may attenuate peritoneal fibrosis by regulating the TGF-β1/Smad3 signaling pathway.

{"title":"<sup>68</sup>Ga-FAPI Small Animal PET/CT in Rats with Peritoneal Fibrosis and the Therapeutic Effect of Sodium Butyrate.","authors":"Jingyi Chen, Zibei Wan, Mengxia Cao, Yuexi Huang, Yan Li, Weihua Wu, Chunmei Guo, Zhanwen Huang, Santao Ou","doi":"10.1021/acs.molpharmaceut.4c00998","DOIUrl":"https://doi.org/10.1021/acs.molpharmaceut.4c00998","url":null,"abstract":"<p><p>Peritoneal fibrosis (PF) is a common complication in peritoneal dialysis patients with end-stage renal disease. This study established a rat model of PF, used <sup>68</sup>Ga-FAPI PET/CT imaging to visualize PF, and evaluated the therapeutic effects and mechanism of action of sodium butyrate. The rat model of PF (<i>n</i> = 20) was induced by hyperglycemic peritoneal dialysate combined with lipopolysaccharide, the control group (<i>n</i> = 20) was given the same amount of normal saline, and the intervention group (<i>n</i> = 20) was given sodium butyrate by intraperitoneal injection. At 2, 4, 6, and 8 weeks, a peritoneal equilibration test was performed, and peritoneal tissues were collected for histological staining. Three rats from each group were randomly selected for <sup>68</sup>Ga-FAPI small animal PET/CT imaging. Compared with control rats, model group rats presented a decreased ultrafiltration volume, increased maximum glucose transport (<i>P</i> < 0.05), increased peritoneal thickness and fibrosis area, and upregulated α-SMA, COL I, TGF-β1, Smad3, and p-Smad3 expression in peritoneal tissues (<i>P</i> < 0.05) in a time-dependent manner. The sodium butyrate group improved peritoneal transport function (<i>P</i> < 0.05), alleviated collagen deposition, and downregulated α-SMA, COL I, TGF-β1, Smad3, and p-Smad3 while increasing Smad7 expression in peritoneal tissues (<i>P</i> < 0.05). <sup>68</sup>Ga uptake was markedly increased in the model group (<i>P</i> < 0.05) but was reduced after sodium butyrate treatment (<i>P</i> < 0.05). The SUVmax was positively correlated with peritoneal thickness; maximum glucose transport; and α-SMA, COL I, and FAP-α expression (<i>r</i> = 0.871, 0.845, 0.843, 0.659, 0.926) but negatively correlated with ultrafiltration volume (<i>r</i>= -0.894). In summary, <sup>68</sup>Ga-FAPI PET/CT could be a promising noninvasive approach for assessing peritoneal fibrosis that is superior to and safer than peritoneal biopsy. Sodium butyrate may attenuate peritoneal fibrosis by regulating the TGF-β1/Smad3 signaling pathway.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to "Enhancing the Antitumor Effect of Doxorubicin with Photosensitive Metal-Organic Framework Nanoparticles against Breast Cancer".
IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-11 DOI: 10.1021/acs.molpharmaceut.5c00049
Qianqian Jiang, Mengmeng Zhang, Quanwei Sun, Dengke Yin, Zihua Xuan, Ye Yang
{"title":"Correction to \"Enhancing the Antitumor Effect of Doxorubicin with Photosensitive Metal-Organic Framework Nanoparticles against Breast Cancer\".","authors":"Qianqian Jiang, Mengmeng Zhang, Quanwei Sun, Dengke Yin, Zihua Xuan, Ye Yang","doi":"10.1021/acs.molpharmaceut.5c00049","DOIUrl":"https://doi.org/10.1021/acs.molpharmaceut.5c00049","url":null,"abstract":"","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Triglyceride Prodrugs of a Model Immunomodulator: Conjugation through the Phenol of Mycophenolic Acid (MPA) Markedly Promotes Lymphatic Drug Transport.
IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-11 DOI: 10.1021/acs.molpharmaceut.4c01272
Luojuan Hu, Tim Quach, Dan Zheng, Nathania J Leong, Garima Sharma, Shea Fern Lim, Daniel Bonner, Natalie L Trevaskis, Jamie S Simpson, Sifei Han, Christopher J H Porter

Enhanced transport of immunomodulators via the lymphatics may increase drug exposure to therapeutic targets in the immune system. Our laboratory has demonstrated a triglyceride (TG) mimetic prodrug approach to enhance the lymphatic delivery of a model immunomodulator, mycophenolic acid (MPA), via conjugation of the carboxylic acid of MPA to a TG backbone, where the so formed prodrug is able to incorporate into intestinal TG deacylation-reacylation and lymph lipoprotein transport pathways (up to 37% of the administered dose being absorbed via the lymphatics). In the current study, another conjugation site in the molecule of MPA, i.e., the phenolic group, was explored for its potential to optimize the lymphatic transport profiles of TG mimetic prodrugs of MPA. This offers an unusual opportunity to directly compare the utility of TG prodrugs formed via conjugation to an acid versus a phenol in the same core molecule, which has not been examined previously for other parent drugs. A series of linkers were examined to connect the MPA moiety with the TG backbone. Lymphatic transport was assessed in mesenteric lymph duct cannulated rats, and drug exposure in the mesenteric lymph nodes was examined following oral administration to mice. Compared to the data observed previously for MPA prodrugs conjugated via the carboxylic acid, the new phenol-conjugated prodrugs showed clearly different profiles in terms of the linker chemistry. Prodrugs with shorter chain alkyl spacers (e.g., C4 and C6) supported minimal lymphatic transport (<3% of the dose recovered in lymph). When the chain lengths were longer (≥C10), the prodrugs demonstrated much higher potential for lymphatic transport (up to approximately 55% of dose). Although effectively promoting lymphatic transport, TG mimetic prodrugs with alkyl chain linkers did not necessarily result in marked increases in the exposure of MPA in the mesenteric lymph nodes in mice. Subsequently a number of self-immolative linkers conjugated via the phenol were explored to promote MPA liberation from the prodrugs, and these constructs demonstrated enhanced lymph node exposure. This study provides further insight into structure-lymphatic transport relationships for lymph-directing lipid mimetic prodrugs.

{"title":"Optimizing Triglyceride Prodrugs of a Model Immunomodulator: Conjugation through the Phenol of Mycophenolic Acid (MPA) Markedly Promotes Lymphatic Drug Transport.","authors":"Luojuan Hu, Tim Quach, Dan Zheng, Nathania J Leong, Garima Sharma, Shea Fern Lim, Daniel Bonner, Natalie L Trevaskis, Jamie S Simpson, Sifei Han, Christopher J H Porter","doi":"10.1021/acs.molpharmaceut.4c01272","DOIUrl":"https://doi.org/10.1021/acs.molpharmaceut.4c01272","url":null,"abstract":"<p><p>Enhanced transport of immunomodulators via the lymphatics may increase drug exposure to therapeutic targets in the immune system. Our laboratory has demonstrated a triglyceride (TG) mimetic prodrug approach to enhance the lymphatic delivery of a model immunomodulator, mycophenolic acid (MPA), via conjugation of the carboxylic acid of MPA to a TG backbone, where the so formed prodrug is able to incorporate into intestinal TG deacylation-reacylation and lymph lipoprotein transport pathways (up to 37% of the administered dose being absorbed via the lymphatics). In the current study, another conjugation site in the molecule of MPA, i.e., the phenolic group, was explored for its potential to optimize the lymphatic transport profiles of TG mimetic prodrugs of MPA. This offers an unusual opportunity to directly compare the utility of TG prodrugs formed via conjugation to an acid versus a phenol in the same core molecule, which has not been examined previously for other parent drugs. A series of linkers were examined to connect the MPA moiety with the TG backbone. Lymphatic transport was assessed in mesenteric lymph duct cannulated rats, and drug exposure in the mesenteric lymph nodes was examined following oral administration to mice. Compared to the data observed previously for MPA prodrugs conjugated via the carboxylic acid, the new phenol-conjugated prodrugs showed clearly different profiles in terms of the linker chemistry. Prodrugs with shorter chain alkyl spacers (e.g., C4 and C6) supported minimal lymphatic transport (<3% of the dose recovered in lymph). When the chain lengths were longer (≥C10), the prodrugs demonstrated much higher potential for lymphatic transport (up to approximately 55% of dose). Although effectively promoting lymphatic transport, TG mimetic prodrugs with alkyl chain linkers did not necessarily result in marked increases in the exposure of MPA in the mesenteric lymph nodes in mice. Subsequently a number of self-immolative linkers conjugated via the phenol were explored to promote MPA liberation from the prodrugs, and these constructs demonstrated enhanced lymph node exposure. This study provides further insight into structure-lymphatic transport relationships for lymph-directing lipid mimetic prodrugs.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional Liposome Delivery System Based on Ursodeoxycholic Acid Sodium for the Encapsulation of Silibinin and Combined Treatment of Alcoholic Liver Injury.
IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-11 DOI: 10.1021/acs.molpharmaceut.4c01197
Yulu Wang, Minghao Yuan, Sihui Li, Jiamei Tang, Yan Wan, Xue Liang, Yiping Guo, Li Guo

Alcohol liver disease (ALD) is a chronic liver disorder resulting from long-term heavy alcohol consumption. The pathogenesis of ALD is multifactorial, and existing therapeutic agents primarily target specific aspects of the disease while presenting significant side effects, including drug-induced liver injury and hepatobiliary disease. Silibinin (SLB) has attracted widespread attention for its hepatoprotective effects and favorable safety profile. However, inherent limitations associated with SLB, such as poor solubility and bioavailability, have significantly limited its clinical application. Drug delivery systems, including liposomes, offer promising potential for the delivery of hydrophobic drugs. However, the selection of an appropriate delivery vehicle requires optimization. Ursodeoxycholic acid sodium (UAS) serves as a promising alternative to cholesterol in liposomal formulations, offering a potential strategy to mitigate the health risks associated with cholesterol. In this study, UAS was employed as the liposomal membrane material to prepare a UAS liposome loaded with SLB (SUL), and its efficacy and mechanism of action in alcoholic-induced liver injury were subsequently evaluated. The experimental results demonstrated that SUL exhibited a uniform particle size distribution, good stability, and an effective release profile in vitro. Following oral administration, SUL effectively inhibited alcohol-induced liver damage, oxidative stress, and fat accumulation. In addition, SUL regulated the expression of the kelch-1ike ECH- associated protein l (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1) proteins, thereby exerting antioxidative stress effects. Furthermore, it also modulated apoptosis-related factors, including B-cell lymphoma-2 (Bcl-2), BCL-2-associated X (Bax), cysteinyl aspartate specific proteinase-3 (Caspase-3), and cleaved caspase-3, to mitigate hepatocyte apoptosis. In summary, SUL demonstrates enhanced therapeutic efficacy against ALD, offering a novel approach for the clinical application of SLB in the prevention and treatment of ALD.

{"title":"Multifunctional Liposome Delivery System Based on Ursodeoxycholic Acid Sodium for the Encapsulation of Silibinin and Combined Treatment of Alcoholic Liver Injury.","authors":"Yulu Wang, Minghao Yuan, Sihui Li, Jiamei Tang, Yan Wan, Xue Liang, Yiping Guo, Li Guo","doi":"10.1021/acs.molpharmaceut.4c01197","DOIUrl":"https://doi.org/10.1021/acs.molpharmaceut.4c01197","url":null,"abstract":"<p><p>Alcohol liver disease (ALD) is a chronic liver disorder resulting from long-term heavy alcohol consumption. The pathogenesis of ALD is multifactorial, and existing therapeutic agents primarily target specific aspects of the disease while presenting significant side effects, including drug-induced liver injury and hepatobiliary disease. Silibinin (SLB) has attracted widespread attention for its hepatoprotective effects and favorable safety profile. However, inherent limitations associated with SLB, such as poor solubility and bioavailability, have significantly limited its clinical application. Drug delivery systems, including liposomes, offer promising potential for the delivery of hydrophobic drugs. However, the selection of an appropriate delivery vehicle requires optimization. Ursodeoxycholic acid sodium (UAS) serves as a promising alternative to cholesterol in liposomal formulations, offering a potential strategy to mitigate the health risks associated with cholesterol. In this study, UAS was employed as the liposomal membrane material to prepare a UAS liposome loaded with SLB (SUL), and its efficacy and mechanism of action in alcoholic-induced liver injury were subsequently evaluated. The experimental results demonstrated that SUL exhibited a uniform particle size distribution, good stability, and an effective release profile <i>in vitro</i>. Following oral administration, SUL effectively inhibited alcohol-induced liver damage, oxidative stress, and fat accumulation. In addition, SUL regulated the expression of the kelch-1ike ECH- associated protein l (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1) proteins, thereby exerting antioxidative stress effects. Furthermore, it also modulated apoptosis-related factors, including B-cell lymphoma-2 (Bcl-2), BCL-2-associated X (Bax), cysteinyl aspartate specific proteinase-3 (Caspase-3), and cleaved caspase-3, to mitigate hepatocyte apoptosis. In summary, SUL demonstrates enhanced therapeutic efficacy against ALD, offering a novel approach for the clinical application of SLB in the prevention and treatment of ALD.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Site-Specific MiniAp4-Trastuzumab Conjugate Prevents Brain Metastasis.
IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-10 DOI: 10.1021/acs.molpharmaceut.4c01091
Mariam Masmudi-Martín, Benjamí Oller-Salvia, María Perea, Meritxell Teixidó, Manuel Valiente, Ernest Giralt, Macarena Sánchez-Navarro

Monoclonal antibodies (mAbs) are changing cancer treatments. However, the presence of the blood-brain barrier (BBB) and the blood-tumor barrier (BTB) limits the use of mAbs to treat brain cancer or brain metastasis. Molecules that hijack endogenous transport mechanisms on the brain endothelium (brain shuttles) have been shown to increase the transport of large molecules and nanoparticles across the BBB. Among these shuttles, protease-resistant peptides such as MiniAp-4 are particularly efficient. Here, we report the synthesis, characterization, and evaluation of site-specific mAb-brainshuttle antibody conjugates (ASC) based on the anti-HER2 mAb trastuzumab (Tz) and four molecules of MiniAp-4. The ASCs preserve the binding and cell cycle arrest capacity of Tz. MiniAp-4 ASC displays enhanced transport across an in vitro BBB cellular model with respect to Tz and Tz conjugated to Angiopep-2, the brain shuttle that has advanced the most in clinical trials. More importantly, evaluation of Tz-MiniAp4 in a murine brain metastasis model demonstrated that the protease-resistant peptide showed preferential transport across the BBB/BTB, displaying a marked therapeutic effect and protecting against metastasis development. The technology described herein could be applied to any antibody of interest to treat central nervous system-related diseases. MiniAp-4 enhances the brain transport of the monoclonal antibody trastuzumab, preventing brain metastasis.

{"title":"A Site-Specific MiniAp4-Trastuzumab Conjugate Prevents Brain Metastasis.","authors":"Mariam Masmudi-Martín, Benjamí Oller-Salvia, María Perea, Meritxell Teixidó, Manuel Valiente, Ernest Giralt, Macarena Sánchez-Navarro","doi":"10.1021/acs.molpharmaceut.4c01091","DOIUrl":"10.1021/acs.molpharmaceut.4c01091","url":null,"abstract":"<p><p>Monoclonal antibodies (mAbs) are changing cancer treatments. However, the presence of the blood-brain barrier (BBB) and the blood-tumor barrier (BTB) limits the use of mAbs to treat brain cancer or brain metastasis. Molecules that hijack endogenous transport mechanisms on the brain endothelium (brain shuttles) have been shown to increase the transport of large molecules and nanoparticles across the BBB. Among these shuttles, protease-resistant peptides such as MiniAp-4 are particularly efficient. Here, we report the synthesis, characterization, and evaluation of site-specific mAb-brainshuttle antibody conjugates (ASC) based on the anti-HER2 mAb trastuzumab (Tz) and four molecules of MiniAp-4. The ASCs preserve the binding and cell cycle arrest capacity of Tz. MiniAp-4 ASC displays enhanced transport across an <i>in vitro</i> BBB cellular model with respect to Tz and Tz conjugated to Angiopep-2, the brain shuttle that has advanced the most in clinical trials. More importantly, evaluation of Tz-MiniAp4 in a murine brain metastasis model demonstrated that the protease-resistant peptide showed preferential transport across the BBB/BTB, displaying a marked therapeutic effect and protecting against metastasis development. The technology described herein could be applied to any antibody of interest to treat central nervous system-related diseases. MiniAp-4 enhances the brain transport of the monoclonal antibody trastuzumab, preventing brain metastasis.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Pharmaceutics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1