Higher-order networks encode the many-body interactions existing in complex systems, such as the brain, protein complexes, and social interactions. Simplicial complexes are higher-order networks that allow a comprehensive investigation of the interplay between topology and dynamics. However, simplicial complexes have the limitation that they only capture undirected higher-order interactions while in real-world scenarios, often there is a need to introduce the direction of simplices, extending the popular notion of direction of edges. On graphs and networks the Magnetic Laplacian, a special case of connection Laplacian, is becoming a popular operator to address edge directionality. Here we tackle the challenge of handling directionality in simplicial complexes by formulating higher-order connection Laplacians taking into account the configurations induced by the simplices’ directions. Specifically, we define all the connection Laplacians of directed simplicial complexes of dimension two and we discuss the induced higher-order diffusion dynamics by considering instructive synthetic examples of simplicial complexes. The proposed higher-order diffusion processes can be adopted in real scenarios when we want to consider higher-order diffusion displaying non-trivial frustration effects due to conflicting directionalities of the incident simplices.
{"title":"Higher-order connection Laplacians for directed simplicial complexes","authors":"Xue Gong, Desmond J Higham, Konstantinos Zygalakis, Ginestra Bianconi","doi":"10.1088/2632-072x/ad353b","DOIUrl":"https://doi.org/10.1088/2632-072x/ad353b","url":null,"abstract":"Higher-order networks encode the many-body interactions existing in complex systems, such as the brain, protein complexes, and social interactions. Simplicial complexes are higher-order networks that allow a comprehensive investigation of the interplay between topology and dynamics. However, simplicial complexes have the limitation that they only capture undirected higher-order interactions while in real-world scenarios, often there is a need to introduce the direction of simplices, extending the popular notion of direction of edges. On graphs and networks the Magnetic Laplacian, a special case of connection Laplacian, is becoming a popular operator to address edge directionality. Here we tackle the challenge of handling directionality in simplicial complexes by formulating higher-order connection Laplacians taking into account the configurations induced by the simplices’ directions. Specifically, we define all the connection Laplacians of directed simplicial complexes of dimension two and we discuss the induced higher-order diffusion dynamics by considering instructive synthetic examples of simplicial complexes. The proposed higher-order diffusion processes can be adopted in real scenarios when we want to consider higher-order diffusion displaying non-trivial frustration effects due to conflicting directionalities of the incident simplices.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":"35 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140572522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-27DOI: 10.1088/2632-072x/ad32da
Pavle Cajic, Dominic Agius, Oliver M Cliff, James M Shine, Joseph T Lizier, Ben D Fulcher
The participation coefficient is a widely used metric of the diversity of a node’s connections with respect to a modular partition of a network. An information-theoretic formulation of this concept of connection diversity, referred to here as participation entropy, has been introduced as the Shannon entropy of the distribution of module labels across a node’s connected neighbors. While diversity metrics have been studied theoretically in other literatures, including to index species diversity in ecology, many of these results have not previously been applied to networks. Here we show that the participation coefficient is a first-order approximation to participation entropy and use the desirable additive properties of entropy to develop new metrics of connection diversity with respect to multiple labelings of nodes in a network, as joint and conditional participation entropies. The information-theoretic formalism developed here allows new and more subtle types of nodal connection patterns in complex networks to be studied.
{"title":"On the information-theoretic formulation of network participation","authors":"Pavle Cajic, Dominic Agius, Oliver M Cliff, James M Shine, Joseph T Lizier, Ben D Fulcher","doi":"10.1088/2632-072x/ad32da","DOIUrl":"https://doi.org/10.1088/2632-072x/ad32da","url":null,"abstract":"The participation coefficient is a widely used metric of the diversity of a node’s connections with respect to a modular partition of a network. An information-theoretic formulation of this concept of connection diversity, referred to here as participation entropy, has been introduced as the Shannon entropy of the distribution of module labels across a node’s connected neighbors. While diversity metrics have been studied theoretically in other literatures, including to index species diversity in ecology, many of these results have not previously been applied to networks. Here we show that the participation coefficient is a first-order approximation to participation entropy and use the desirable additive properties of entropy to develop new metrics of connection diversity with respect to multiple labelings of nodes in a network, as joint and conditional participation entropies. The information-theoretic formalism developed here allows new and more subtle types of nodal connection patterns in complex networks to be studied.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":"38 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140312412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-25DOI: 10.1088/2632-072x/ad30bf
Luca Mungo, Alexandra Brintrup, Diego Garlaschelli, François Lafond
Network reconstruction is a well-developed sub-field of network science, but it has only recently been applied to production networks, where nodes are firms and edges represent customer-supplier relationships. We review the literature that has flourished to infer the topology of these networks by partial, aggregate, or indirect observation of the data. We discuss why this is an important endeavour, what needs to be reconstructed, what makes it different from other network reconstruction problems, and how different researchers have approached the problem. We conclude with a research agenda.
{"title":"Reconstructing supply networks","authors":"Luca Mungo, Alexandra Brintrup, Diego Garlaschelli, François Lafond","doi":"10.1088/2632-072x/ad30bf","DOIUrl":"https://doi.org/10.1088/2632-072x/ad30bf","url":null,"abstract":"Network reconstruction is a well-developed sub-field of network science, but it has only recently been applied to production networks, where nodes are firms and edges represent customer-supplier relationships. We review the literature that has flourished to infer the topology of these networks by partial, aggregate, or indirect observation of the data. We discuss why this is an important endeavour, what needs to be reconstructed, what makes it different from other network reconstruction problems, and how different researchers have approached the problem. We conclude with a research agenda.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":"31 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140312543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-21DOI: 10.1088/2632-072x/ad3262
Md Sayeed Anwar, Dibakar Ghosh, Timoteo Carletti
Synchronization has received a lot of attention from the scientific community for systems evolving on static networks or higher-order structures, such as hypergraphs and simplicial complexes. In many relevant real-world applications, the latter are not static but do evolve in time, in this work we thus discuss the impact of the time-varying nature of higher-order structures in the emergence of global synchronization. To achieve this goal, we extend the master stability formalism to account, in a general way, for the additional contributions arising from the time evolution of the higher-order structure supporting the dynamical systems. The theory is successfully challenged against two illustrative examples, the Stuart–Landau nonlinear oscillator and the Lorenz chaotic oscillator.
{"title":"Global synchronization on time-varying higher-order structures","authors":"Md Sayeed Anwar, Dibakar Ghosh, Timoteo Carletti","doi":"10.1088/2632-072x/ad3262","DOIUrl":"https://doi.org/10.1088/2632-072x/ad3262","url":null,"abstract":"Synchronization has received a lot of attention from the scientific community for systems evolving on static networks or higher-order structures, such as hypergraphs and simplicial complexes. In many relevant real-world applications, the latter are not static but do evolve in time, in this work we thus discuss the impact of the time-varying nature of higher-order structures in the emergence of global synchronization. To achieve this goal, we extend the master stability formalism to account, in a general way, for the additional contributions arising from the time evolution of the higher-order structure supporting the dynamical systems. The theory is successfully challenged against two illustrative examples, the Stuart–Landau nonlinear oscillator and the Lorenz chaotic oscillator.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":"69 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140312291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}