首页 > 最新文献

中国材料进展最新文献

英文 中文
In-Situ SEM and EBSD Analysis on Plastic Behavior of Laser Beam Welding Ti-6Al-4V Alloy [激光焊接Ti-6Al-4V钛合金塑性行为的原位SEM/EBSD分析] In-Situ SEM and EBSD Analysis on Plastic Behavior of Laser Beam Welding Ti-6Al-4V Alloy [激光焊接Ti-6Al-4V钛合金塑性行为的原位SEM/EBSD分析]
Q3 Energy Pub Date : 2019-01-01 DOI: 10.7502/J.ISSN.1674-3962.2019.03.10
N. Dang, L. Liu, C. Lavogiez, E. Maire, C. Ma, L. Zhou
EBSD and in-situ SEM were used to study the plastic behavior of laser beam welding Ti-6Al-4V. Due to the high weld temperature(exceeding the β-transus) and high cooling rate, β→α' martensitic transformation occurs. Within the fusion zone, only acicular morphology exists, while in 1st heat affected zone(HAZ) and 2nd HAZ, these acicular laths globalize, which show an obvious microstructural gradient. The result of the in-situ plastic deformation shows the deformation can be divided into 2 stages. In the first stage of the deformation, either slipping or twinning can occur. It depends on whether the initial orientation can respect //TA(tensile axis) by rotating the grains or not. While in the second stage, only slipping can be found. © 2019, The Editorial Board of Materials China. All right reserved.
采用EBSD和原位扫描电镜研究了激光焊接Ti-6Al-4V的塑性行为。由于焊缝温度高(超过β-横截面)和冷却速度快,发生β→α′马氏体转变。熔合区内仅存在针状板条,而在第一热影响区(HAZ)和第二热影响区(HAZ),针状板条呈球状,呈现出明显的显微组织梯度。现场塑性变形结果表明,变形可分为2个阶段。在变形的第一阶段,可能发生滑移或孪生。这取决于初始取向能否通过旋转晶粒来尊重TA(拉伸轴)。而在第二阶段,只能找到滑动。©2019,《材料中国》编辑委员会。版权所有。
{"title":"In-Situ SEM and EBSD Analysis on Plastic Behavior of Laser Beam Welding Ti-6Al-4V Alloy [激光焊接Ti-6Al-4V钛合金塑性行为的原位SEM/EBSD分析]","authors":"N. Dang, L. Liu, C. Lavogiez, E. Maire, C. Ma, L. Zhou","doi":"10.7502/J.ISSN.1674-3962.2019.03.10","DOIUrl":"https://doi.org/10.7502/J.ISSN.1674-3962.2019.03.10","url":null,"abstract":"EBSD and in-situ SEM were used to study the plastic behavior of laser beam welding Ti-6Al-4V. Due to the high weld temperature(exceeding the β-transus) and high cooling rate, β→α' martensitic transformation occurs. Within the fusion zone, only acicular morphology exists, while in 1st heat affected zone(HAZ) and 2nd HAZ, these acicular laths globalize, which show an obvious microstructural gradient. The result of the in-situ plastic deformation shows the deformation can be divided into 2 stages. In the first stage of the deformation, either slipping or twinning can occur. It depends on whether the initial orientation can respect //TA(tensile axis) by rotating the grains or not. While in the second stage, only slipping can be found. © 2019, The Editorial Board of Materials China. All right reserved.","PeriodicalId":53495,"journal":{"name":"Materials China","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71345257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on Microstructure and Mechanical Properties of 5182 Aluminium Alloy with Surface Mechanical Attrition Treatment 5182铝合金表面机械磨损处理的组织与力学性能研究
Q3 Energy Pub Date : 2017-02-01 DOI: 10.7502/J.ISSN.1674-3962.2017.02.06
Ying-Xuan Xu, Xiangchen Meng, Gen Li, B. Jin, Bingjun Ge, T. Xie, Yong Liu, Jian Lv
{"title":"Research on Microstructure and Mechanical Properties of 5182 Aluminium Alloy with Surface Mechanical Attrition Treatment","authors":"Ying-Xuan Xu, Xiangchen Meng, Gen Li, B. Jin, Bingjun Ge, T. Xie, Yong Liu, Jian Lv","doi":"10.7502/J.ISSN.1674-3962.2017.02.06","DOIUrl":"https://doi.org/10.7502/J.ISSN.1674-3962.2017.02.06","url":null,"abstract":"","PeriodicalId":53495,"journal":{"name":"Materials China","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41855070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-Dimensional X-Ray Diffraction Technique for Metals Science 金属科学三维x射线衍射技术
Q3 Energy Pub Date : 2017-01-01 DOI: 10.7502/J.ISSN.1674-3962.2017.03.04
Yubin Zhang, G. Fan
Thethree-dimensionalX-raydifraction(3DXRD)isanew,advancedtechniqueformaterialscharacterization.This techniqueutilizeshigh-energysynchrotronX-raystocharacterizethe3Dcrystalographicstructureandstrain/stressstateofbulk materials.Asthemeasurementisnon-destructive,themicrostructuralevolutionasafunctionoftimecanbefolowed,ieit alows4D(x,y,zcharacterizations,t).ThehighbrilianceofsynchrotronX-raysensuresthatdifractionsignalsfrom volumesofmicrometerscalecanbequicklydetectedanddistinguishedfromthebackgroundnoise,ieitsspatialresolutioncan bemicrometerscaleandthemeasurementcanbeconductedwithinareasonabletimeframe(afewhours).The3DXRD microscopehasoriginalybeendevelopedincooperationbetweenformerRisNationalLaboratoryandtheEuropeanSynchrotron RadiationFacility.Curently,thistechniquehasbeenimplementedinseverallargesynchrotronfacilities,egtheAdvanced PhotonSource(APS)inUSAandtheSpring-8inJapan.Anotherfamilyof3DXRDtechniquethatutilizeswhitebeam synchrotronX-rayshasalsobeendevelopedinparalelincooperationbetweenOakRidgeNationalLaboratoryandAPS.This articlereviewsthe3DXRDtechnique.Thecontentincludestheideabehindthetechnique,theprincipleandspecification (spatial,angular,temporalresolutionsandsampleenvironmentetc)ofthetechnique.Severalapplicationsofthetechniquesin metalurgyaregiven,including:grain-scaledstressanalysisduringtensiledeformation,recrystalizationgrowthkinetics, recrystalizationnucleation,growthofindividualrecrystalizedgrain,graingrowthafterrecrystalization,andlocalresidualstrain/ stressanalysis.Therecentdevelopmentofthe3DXRDtechniqueanditspotentialuseformaterialsscienceinthefuturewilbe brieflydiscussedattheend.
Thethree-dimensionalX-raydifraction (3 dxrd) isanew advancedtechniqueformaterialscharacterization。该技术利用高能同步x射线来表征块状材料的三维晶体结构和应变/应力状态。Asthemeasurementisnon-destructive, themicrostructuralevolutionasafunctionoftimecanbefolowede它alows4D (x, y, zcharacterizations t)。同步x射线传感器的高亮度意味着可以快速检测到微米级体积的衍射信号并与背景噪声区分开来,它的空间分辨率可以达到微米级,并且可以在合理的时间范围内(几小时)进行测量。3d xrd显微镜最初是由英国国家实验室和欧洲同步辐射设施合作开发的。现thistechniquehasbeenimplementedinseverallargesynchrotronfacilities eg先进PhotonSource inUSAandtheSpring-8inJapan (APS)。Anotherfamilyof3DXRDtechniquethatutilizeswhitebeam synchrotronX-rayshasalsobeendevelopedinparalelincooperationbetweenOakRidgeNationalLaboratoryandAPS。这articlereviewsthe3DXRDtechnique。Thecontentincludestheideabehindthetechnique theprincipleandspecification(空间、角、temporalresolutionsandsampleenvironmentetc)ofthetechnique。给出了该技术在冶金中的几个应用,包括:拉伸变形过程中的晶粒尺度应力分析、再结晶生长动力学、再结晶成核、个别再结晶晶粒的生长、再结晶后的晶粒生长和局部残余应变/应力分析。Therecentdevelopmentofthe3DXRDtechniqueanditspotentialuseformaterialsscienceinthefuturewilbe brieflydiscussedattheend。
{"title":"Three-Dimensional X-Ray Diffraction Technique for Metals Science","authors":"Yubin Zhang, G. Fan","doi":"10.7502/J.ISSN.1674-3962.2017.03.04","DOIUrl":"https://doi.org/10.7502/J.ISSN.1674-3962.2017.03.04","url":null,"abstract":"Thethree-dimensionalX-raydifraction(3DXRD)isanew,advancedtechniqueformaterialscharacterization.This techniqueutilizeshigh-energysynchrotronX-raystocharacterizethe3Dcrystalographicstructureandstrain/stressstateofbulk materials.Asthemeasurementisnon-destructive,themicrostructuralevolutionasafunctionoftimecanbefolowed,ieit alows4D(x,y,zcharacterizations,t).ThehighbrilianceofsynchrotronX-raysensuresthatdifractionsignalsfrom volumesofmicrometerscalecanbequicklydetectedanddistinguishedfromthebackgroundnoise,ieitsspatialresolutioncan bemicrometerscaleandthemeasurementcanbeconductedwithinareasonabletimeframe(afewhours).The3DXRD microscopehasoriginalybeendevelopedincooperationbetweenformerRisNationalLaboratoryandtheEuropeanSynchrotron RadiationFacility.Curently,thistechniquehasbeenimplementedinseverallargesynchrotronfacilities,egtheAdvanced PhotonSource(APS)inUSAandtheSpring-8inJapan.Anotherfamilyof3DXRDtechniquethatutilizeswhitebeam synchrotronX-rayshasalsobeendevelopedinparalelincooperationbetweenOakRidgeNationalLaboratoryandAPS.This articlereviewsthe3DXRDtechnique.Thecontentincludestheideabehindthetechnique,theprincipleandspecification (spatial,angular,temporalresolutionsandsampleenvironmentetc)ofthetechnique.Severalapplicationsofthetechniquesin metalurgyaregiven,including:grain-scaledstressanalysisduringtensiledeformation,recrystalizationgrowthkinetics, recrystalizationnucleation,growthofindividualrecrystalizedgrain,graingrowthafterrecrystalization,andlocalresidualstrain/ stressanalysis.Therecentdevelopmentofthe3DXRDtechniqueanditspotentialuseformaterialsscienceinthefuturewilbe brieflydiscussedattheend.","PeriodicalId":53495,"journal":{"name":"Materials China","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71345217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The gradient nano structure of Mg alloys 镁合金的梯度纳米结构
Q3 Energy Pub Date : 2016-11-01 DOI: 10.7502/J.ISSN.1674-3962.2016.11.03
Shuangwu Xia, Yong Liu, Jian Lv
{"title":"The gradient nano structure of Mg alloys","authors":"Shuangwu Xia, Yong Liu, Jian Lv","doi":"10.7502/J.ISSN.1674-3962.2016.11.03","DOIUrl":"https://doi.org/10.7502/J.ISSN.1674-3962.2016.11.03","url":null,"abstract":"","PeriodicalId":53495,"journal":{"name":"Materials China","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71345205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Surfactant-assisted ball milling - A new technique for preparing rare-earth permanent magnet nanomaterials 表面活性剂辅助球磨-制备稀土永磁纳米材料的新技术
Q3 Energy Pub Date : 2015-11-01 DOI: 10.7502/J.ISSN.1674-3962.2015.11.02
Liu Jiaping, Y. Ming, Zhang Jian
{"title":"Surfactant-assisted ball milling - A new technique for preparing rare-earth permanent magnet nanomaterials","authors":"Liu Jiaping, Y. Ming, Zhang Jian","doi":"10.7502/J.ISSN.1674-3962.2015.11.02","DOIUrl":"https://doi.org/10.7502/J.ISSN.1674-3962.2015.11.02","url":null,"abstract":"","PeriodicalId":53495,"journal":{"name":"Materials China","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71345194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress of shape memory polymers in biomedical applications 形状记忆聚合物在生物医学中的应用进展
Q3 Energy Pub Date : 2015-01-01 DOI: 10.7502/J.ISSN.1674-3962.2015.03.02
Hu Jinlia
Shape memory polymer has been a new bio-medical smart material. The performances of shape memory polymer can be tailored to meet the multi-requirements of biomedical area. Base on different applications,shape memory polymer can display a deployable property,shape fix and recovery property and controllable shape recovery velocity and shape recovery force. Many triggers can be used by direct or remote way to activate the shape memory properties such as heat,light,electronic,magnetic to achieve the biomedical functions. The shape memory polymers can also be designed to get the biodegradability,biocompatibility,and so on. This paper will review the structure,properties,classification of shape memory polymers and summarise the biomedical applications based on different medical fields and shape memory performances.
形状记忆聚合物是一种新型的生物医学智能材料。形状记忆聚合物的性能可以根据生物医学领域的多种需求进行定制。根据不同的应用,形状记忆聚合物具有可展开性能、形状固定和恢复性能以及可控制的形状恢复速度和形状恢复力。许多触发器可以通过直接或远程的方式激活形状记忆特性,如热、光、电、磁等,以实现生物医学功能。形状记忆聚合物还可以设计成具有生物可降解性、生物相容性等特点。本文综述了形状记忆聚合物的结构、性能、分类,并从不同的医学领域和形状记忆性能方面综述了形状记忆聚合物在生物医学上的应用。
{"title":"Progress of shape memory polymers in biomedical applications","authors":"Hu Jinlia","doi":"10.7502/J.ISSN.1674-3962.2015.03.02","DOIUrl":"https://doi.org/10.7502/J.ISSN.1674-3962.2015.03.02","url":null,"abstract":"Shape memory polymer has been a new bio-medical smart material. The performances of shape memory polymer can be tailored to meet the multi-requirements of biomedical area. Base on different applications,shape memory polymer can display a deployable property,shape fix and recovery property and controllable shape recovery velocity and shape recovery force. Many triggers can be used by direct or remote way to activate the shape memory properties such as heat,light,electronic,magnetic to achieve the biomedical functions. The shape memory polymers can also be designed to get the biodegradability,biocompatibility,and so on. This paper will review the structure,properties,classification of shape memory polymers and summarise the biomedical applications based on different medical fields and shape memory performances.","PeriodicalId":53495,"journal":{"name":"Materials China","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71345179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic Nanofibrous Scaffolds Enhancing Bone Regeneration 仿生纳米纤维支架增强骨再生
Q3 Energy Pub Date : 2013-01-01 DOI: 10.7502/J.ISSN.1674-3962.2013.10.02
B. Lei, P. Ma
Population aging,bone diseases and accidents result in a large number of patients with serious bone loss and defects. The efficient bone tissue repair and regeneration have been important topics in clinical medicine. Here,biomedical materials play an important role in bone regeneration. However,current clinical bone-repair biomaterials such as autografts,allografts and synthetic materials( metals,ceramics and polymers) suffer from various shortcomings,having limited applications in bone repair. In bone tissue engineering research,biodegradable scaffolds along with cells and growth factors have shown high potential in facilitating bone regeneration as a potential new therapy for bone loss in the clinic. In the past decade,due to their structure and morphology that mimic the native extracellular matrix,nanofibrous scaffolds have been shown to be capable of facilitating cell proliferation,osteogenic differentiation of stem cells,and bone regeneration in vivo compared to control scaffolds. In this paper,we will review the fabrication technologies of biomimetic nanofibrous scaffolds and their applications in enhancing cellular function,osteogenic differentiation,and bone tissue regeneration.
人口老龄化、骨病和意外事故导致大量患者出现严重的骨质流失和缺损。高效的骨组织修复与再生一直是临床医学研究的重要课题。生物医学材料在骨再生中发挥着重要作用。然而,目前临床的骨修复生物材料,如自体移植物、同种异体移植物和合成材料(金属、陶瓷和聚合物)都存在各种缺点,在骨修复中的应用有限。在骨组织工程研究中,生物可降解支架连同细胞和生长因子在促进骨再生方面显示出很高的潜力,是临床治疗骨质流失的一种潜在的新疗法。在过去的十年中,由于纳米纤维支架的结构和形态模仿天然细胞外基质,与对照支架相比,纳米纤维支架已被证明能够促进细胞增殖、干细胞成骨分化和体内骨再生。本文就仿生纳米纤维支架的制备技术及其在增强细胞功能、成骨分化和骨组织再生等方面的应用进行综述。
{"title":"Biomimetic Nanofibrous Scaffolds Enhancing Bone Regeneration","authors":"B. Lei, P. Ma","doi":"10.7502/J.ISSN.1674-3962.2013.10.02","DOIUrl":"https://doi.org/10.7502/J.ISSN.1674-3962.2013.10.02","url":null,"abstract":"Population aging,bone diseases and accidents result in a large number of patients with serious bone loss and defects. The efficient bone tissue repair and regeneration have been important topics in clinical medicine. Here,biomedical materials play an important role in bone regeneration. However,current clinical bone-repair biomaterials such as autografts,allografts and synthetic materials( metals,ceramics and polymers) suffer from various shortcomings,having limited applications in bone repair. In bone tissue engineering research,biodegradable scaffolds along with cells and growth factors have shown high potential in facilitating bone regeneration as a potential new therapy for bone loss in the clinic. In the past decade,due to their structure and morphology that mimic the native extracellular matrix,nanofibrous scaffolds have been shown to be capable of facilitating cell proliferation,osteogenic differentiation of stem cells,and bone regeneration in vivo compared to control scaffolds. In this paper,we will review the fabrication technologies of biomimetic nanofibrous scaffolds and their applications in enhancing cellular function,osteogenic differentiation,and bone tissue regeneration.","PeriodicalId":53495,"journal":{"name":"Materials China","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71345168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Martensitic and magnetic transformation behavior of Ni50Mn38-xIn12Fex polycrystalline alloys Ni50Mn38-xIn12Fex多晶合金的马氏体及磁相变行为
Q3 Energy Pub Date : 2013-01-01 DOI: 10.7502/J.ISSN.1674-3962.2013.02.07
Zhigang Wu, X. Ren, Yinong Liu
{"title":"Martensitic and magnetic transformation behavior of Ni50Mn38-xIn12Fex polycrystalline alloys","authors":"Zhigang Wu, X. Ren, Yinong Liu","doi":"10.7502/J.ISSN.1674-3962.2013.02.07","DOIUrl":"https://doi.org/10.7502/J.ISSN.1674-3962.2013.02.07","url":null,"abstract":"","PeriodicalId":53495,"journal":{"name":"Materials China","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71345158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Morph-Genetic Materials Inspired from Butterfly Wing Scales 形态遗传材料的灵感来自蝴蝶翅鳞
Q3 Energy Pub Date : 2012-01-01 DOI: 10.1007/978-3-642-24685-2_2
Di Zhang, Jiajun Gu, Wang Zhang
{"title":"Morph-Genetic Materials Inspired from Butterfly Wing Scales","authors":"Di Zhang, Jiajun Gu, Wang Zhang","doi":"10.1007/978-3-642-24685-2_2","DOIUrl":"https://doi.org/10.1007/978-3-642-24685-2_2","url":null,"abstract":"","PeriodicalId":53495,"journal":{"name":"Materials China","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-642-24685-2_2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51081637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Green Plate Making Technology Based on Nano-Materials 基于纳米材料的绿色制版技术
Q3 Energy Pub Date : 2010-12-01 DOI: 10.4028/www.scientific.net/AMR.174.447
Hai Zhou, Yanlei Song
Laser phototypesetting and computer to plate (CTP) technologies are widely used in print industry. These technologies are based on the complex photosensitive image process. The exposing and development processes result in waste of photosensitive materials and environment pollution. Green plate making technology is not based on photosensitive materials but nano-materials. The image process of the technology is to jet the nano-composite transfer printing material on super hydrophilic print plate with special nano and micro-structure. Then the oleophilic image area and hydrophilic non image area are formed by adjusting interface characters between the nano-composite transfer printing material and super hydrophilic print plate. The plate is used for printing without exposing and development. Without photosensitive image process, the technology has many advantages such as no operation in darkroom, simple process, environmental friendly and low cost. The key problems of print resolution and press life have been solved effectively by preparation of nano composite transfer printing material and super hydrophilic print plate. In this paper, the research process of the nano composite material and the print plate are presented.
激光照排和计算机制版(CTP)技术在印刷工业中得到广泛应用。这些技术都是基于复杂的感光图像处理。曝光显影过程造成了光敏材料的浪费和环境污染。绿色制版技术不是基于光敏材料,而是基于纳米材料。该技术的成像过程是将纳米复合转移印花材料喷射到具有特殊纳米微结构的超亲水性印版上。然后通过调整纳米复合转移印花材料与超亲水印版之间的界面特性,形成亲油图像区和亲水非图像区。印版用于不曝光和显影的印刷。该技术无需进行感光图像处理,具有无需暗室操作、工艺简单、环保、成本低等优点。通过制备纳米复合转移印花材料和超亲水性印版,有效地解决了印刷分辨率和印刷机寿命等关键问题。本文介绍了纳米复合材料和印制板的研究过程。
{"title":"Green Plate Making Technology Based on Nano-Materials","authors":"Hai Zhou, Yanlei Song","doi":"10.4028/www.scientific.net/AMR.174.447","DOIUrl":"https://doi.org/10.4028/www.scientific.net/AMR.174.447","url":null,"abstract":"Laser phototypesetting and computer to plate (CTP) technologies are widely used in print industry. These technologies are based on the complex photosensitive image process. The exposing and development processes result in waste of photosensitive materials and environment pollution. Green plate making technology is not based on photosensitive materials but nano-materials. The image process of the technology is to jet the nano-composite transfer printing material on super hydrophilic print plate with special nano and micro-structure. Then the oleophilic image area and hydrophilic non image area are formed by adjusting interface characters between the nano-composite transfer printing material and super hydrophilic print plate. The plate is used for printing without exposing and development. Without photosensitive image process, the technology has many advantages such as no operation in darkroom, simple process, environmental friendly and low cost. The key problems of print resolution and press life have been solved effectively by preparation of nano composite transfer printing material and super hydrophilic print plate. In this paper, the research process of the nano composite material and the print plate are presented.","PeriodicalId":53495,"journal":{"name":"Materials China","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4028/www.scientific.net/AMR.174.447","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70642318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
期刊
中国材料进展
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1