Background: Intestinal fibrosis is a common complication in inflammatory bowel disease (IBD), which still lacks of reliable markers and therapeutic options. Cellular senescence has been considered an important mechanism of intestinal fibrosis, but the underlying molecular link remains elusive.
Methods: Tissues were stained using α-smooth muscle actin (α-SMA), fibronectin, and collagen I as markers of myofibroblastic differentiation. Cellular senescence was confirmed through Lamin B1 staining, senescence-associated β-galactosidase staining, and the expression of senescence-associated secretory phenotype (SASP) factors. We explored the relationship between senescence of intestinal epithelial cells (IECs) and intestinal fibrosis, as well as the molecular mechanism underlying this interaction. The effects of irisin on cellular senescence and fibrosis were determined.
Results: Here, we identify engulfment and cell motility protein 1 (ELMO1) as a novel biomarker for intestinal cellular senescence and fibrosis. In fibrostrictured tissues from patients and murine models with IBD, significantly high levels of cellular senescence score and factors were noted, which positively correlated with the fibrotic regulator fibronectin. Senescent IECs, not fibroblast itself, released SASP factors to regulate fibroblast activation. Prolonging exposure to severe and persistent injurious stimuli decreased ELMO1 expression, which dampened SIRT1 deacetylase activity, enhanced NF-κB (p65) acetylation, and thereby accelerated cellular senescence. Deletion of ELMO1 led to senescent IECs accumulation and triggered premature fibrosis in murine colitis. Furthermore, irisin, inhibiting the degradation of ELMO1, could downregulate p65 acetylation, reduce IECs senescence, and prevent incipient intestinal fibrosis in murine colitis models.
Conclusions: This study reveals ELMO1 downregulation is an early symbol of intestinal senescence and fibrosis, and the altered ELMO1-SIRT1-p65 pathway plays an important role in intestinal cellular senescence and IBD-related fibrosis.
[This corrects the article DOI: 10.1093/gastro/goae014.].
Background: There have been no studies on predicting human epidermal growth factor receptor 2 (HER2) status in patients with resectable gastric cancer (GC) in the neoadjuvant and perioperative settings. We aimed to investigate the use of preoperative contrast-enhanced computed tomography (CECT) imaging features combined with clinical characteristics for predicting HER2 expression in GC.
Methods: We retrospectively enrolled 301 patients with GC who underwent curative resection and preoperative CECT. HER2 status was confirmed by postoperative immunohistochemical analysis with or without fluorescence in situ hybridization. A prediction model was developed using CECT imaging features and clinical characteristics that were independently associated with HER2 status using multivariate logistic regression analysis. Receiver operating characteristic curves were constructed and the performance of the prediction model was evaluated. The bootstrap method was used for internal validation.
Results: Three CECT imaging features and one serum tumor marker were independently associated with HER2 status in GC: enhancement ratio in the arterial phase (odds ratio [OR] = 4.535; 95% confidence interval [CI], 2.220-9.264), intratumoral necrosis (OR = 2.64; 95% CI, 1.180-5.258), tumor margin (OR = 3.773; 95% CI, 1.968-7.235), and cancer antigen 125 (CA125) level (OR = 5.551; 95% CI, 1.361-22.651). A prediction model derived from these variables showed an area under the receiver operating characteristic curve of 0.802 (95% CI, 0.740-0.864) for predicting HER2 status in GC. The established model was stable, and the parameters were accurately estimated.
Conclusions: Enhancement ratio in the arterial phase, intratumoral necrosis, tumor margin, and CA125 levels were independently associated with HER2 status in GC. The prediction model derived from these factors may be used preoperatively to estimate HER2 status in GC and guide clinical treatment.