首页 > 最新文献

Physical Review Accelerators and Beams最新文献

英文 中文
Emittance growth analysis of laser-driven broad energy spectral proton beams 激光驱动宽能谱质子束的辐照度增长分析
IF 1.7 3区 物理与天体物理 Q3 PHYSICS, NUCLEAR Pub Date : 2024-04-22 DOI: 10.1103/physrevaccelbeams.27.041303
M. J. Wu, D. Y. Li, T. Yang, Y. Z. Li, H. Cheng, Y. D. Xia, Y. Yan, Y. L. Fang, K. Zhu, M. J. Easton, C. Lin, X. Q. Yan
With the rapid development of high-gradient laser plasma acceleration, implementing it in practical applications has become a priority. However, to go from “acceleration” to “accelerator,” a beam line system is required to accurately control the beam parameters according to different irradiation requirements. The laser-accelerated proton beam is characterized by a micron-scale original source size and a small emittance as low as 0.004 mm mrad [T. E. Cowan et al., Phys. Rev. Lett. 92, 204801 (2004)]. However, due to the broad energy spread and large divergence, its initial ultralow emittance will increase rapidly in the subsequent transmission process. This indicates that designing a beamline for laser-driven protons is challenging and differs significantly from that of a conventional accelerator. As a fundamental parameter for beam line design, we have theoretically derived the emittance growth law for laser-driven protons in both drift space and in a focusing element. The results demonstrate that the beam emittance deteriorates sharply with the energy spread and the square of the divergence angle. These theoretical calculations have been verified both in experiments and simulations. This work is helpful for designing subsequent beam lines that pursue high transmission efficiency and achromatic ability.
随着高梯度激光等离子体加速技术的快速发展,将其应用于实际应用已成为当务之急。然而,要实现从 "加速 "到 "加速器 "的转变,就需要有一套光束线系统来根据不同的辐照要求精确控制光束参数。激光加速质子束的特点是原始源尺寸为微米级,发射率低至 0.004 mm mrad [T. E. Cowan 等人,Phys. Rev. Lett.然而,由于能量分布广、发散大,其初始超低发射率会在随后的传输过程中迅速增加。这表明,激光驱动质子的光束线设计具有挑战性,与传统加速器有很大不同。作为光束线设计的基本参数,我们从理论上推导出了激光驱动质子在漂移空间和聚焦元件中的辐照度增长规律。结果表明,光束辐照度随着能量扩散和发散角的平方而急剧恶化。这些理论计算在实验和模拟中都得到了验证。这项工作有助于设计追求高传输效率和消色差能力的后续光束线。
{"title":"Emittance growth analysis of laser-driven broad energy spectral proton beams","authors":"M. J. Wu, D. Y. Li, T. Yang, Y. Z. Li, H. Cheng, Y. D. Xia, Y. Yan, Y. L. Fang, K. Zhu, M. J. Easton, C. Lin, X. Q. Yan","doi":"10.1103/physrevaccelbeams.27.041303","DOIUrl":"https://doi.org/10.1103/physrevaccelbeams.27.041303","url":null,"abstract":"With the rapid development of high-gradient laser plasma acceleration, implementing it in practical applications has become a priority. However, to go from “acceleration” to “accelerator,” a beam line system is required to accurately control the beam parameters according to different irradiation requirements. The laser-accelerated proton beam is characterized by a micron-scale original source size and a small emittance as low as 0.004 mm mrad [T. E. Cowan <i>et al.</i>, <span>Phys. Rev. Lett.</span> <b>92</b>, 204801 (2004)]. However, due to the broad energy spread and large divergence, its initial ultralow emittance will increase rapidly in the subsequent transmission process. This indicates that designing a beamline for laser-driven protons is challenging and differs significantly from that of a conventional accelerator. As a fundamental parameter for beam line design, we have theoretically derived the emittance growth law for laser-driven protons in both drift space and in a focusing element. The results demonstrate that the beam emittance deteriorates sharply with the energy spread and the square of the divergence angle. These theoretical calculations have been verified both in experiments and simulations. This work is helpful for designing subsequent beam lines that pursue high transmission efficiency and achromatic ability.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"99 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140635291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revised Hamiltonian near third-integer resonance and implications for an electron storage ring 三整数共振附近的修订哈密顿方程及其对电子储存环的影响
IF 1.7 3区 物理与天体物理 Q3 PHYSICS, NUCLEAR Pub Date : 2024-04-18 DOI: 10.1103/physrevaccelbeams.27.044001
Ki Moon Nam, Ji-Gwang Hwang, Young Dae Yoon, Yong Woon Parc
In electron storage rings, an accurate description of particle dynamics near third-integer resonance is crucial for various applications. The conventional approach is to extrapolate far-resonance dynamics to near resonance, but the difficulty arises because the nonlinear detuning parameter diverges at this critical point. Here we derive, via a suitable application of the canonical perturbation theory, a revised detuning parameter that is well behaved near resonance. The resultant theory accurately describes the morphology of resonance islands for a wide range of parameter space and facilitates its optimization.
在电子存储环中,准确描述三整数共振附近的粒子动力学对于各种应用至关重要。传统的方法是将远共振动力学推导到近共振,但困难在于非线性失谐参数在这一临界点会发散。在这里,我们通过对典型扰动理论的适当应用,推导出一个在共振附近表现良好的修正失谐参数。由此得出的理论能准确描述共振岛在广泛参数空间内的形态,并有助于对其进行优化。
{"title":"Revised Hamiltonian near third-integer resonance and implications for an electron storage ring","authors":"Ki Moon Nam, Ji-Gwang Hwang, Young Dae Yoon, Yong Woon Parc","doi":"10.1103/physrevaccelbeams.27.044001","DOIUrl":"https://doi.org/10.1103/physrevaccelbeams.27.044001","url":null,"abstract":"In electron storage rings, an accurate description of particle dynamics near third-integer resonance is crucial for various applications. The conventional approach is to extrapolate far-resonance dynamics to near resonance, but the difficulty arises because the nonlinear detuning parameter diverges at this critical point. Here we derive, via a suitable application of the canonical perturbation theory, a revised detuning parameter that is well behaved near resonance. The resultant theory accurately describes the morphology of resonance islands for a wide range of parameter space and facilitates its optimization.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"11 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140616648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of a dual-mode transverse deflecting structure using neural network and multiobjective algorithms 利用神经网络和多目标算法设计双模横向偏转结构
IF 1.7 3区 物理与天体物理 Q3 PHYSICS, NUCLEAR Pub Date : 2024-04-15 DOI: 10.1103/physrevaccelbeams.27.042001
H. Gong, W. Fang, J. Tan, X. Huang, C. Wang, Y. Xu, Z. Zhao
Shanghai Synchrotron Radiation Facility/Shanghai Soft X-ray FEL Facility is currently developing an advanced variable polarization transverse deflecting structure TTDS (two-mode transverse deflecting structure) using a dual-mode rf structure concept. Driven by two different rf power sources, this novel TDS works using both the HEM11 and HEM12 modes for simultaneous vertical and horizontal deflections, consequently, it can provide a time-varying polarization of the electrical field at ultrafast speeds. It is capable of producing circular and elliptical polarizations as well as flexible vector combinations through amplitude and phase modulation from a low-level rf system. The work presented in this paper is focused on the analysis and design of the variable polarization TDS, consisting of dual-mode cells and two dual-mode couplers. Designing and optimizing for dual-mode design and optimization is complex; consequently, an advanced optimization procedure based on neural networks and multiobjective algorithms has been developed. This improves the accuracy and efficiency of the rf structure design process. Through iterations, the dual-mode cells in the final design are optimized for high impedance and other rf performance criteria for both the HEM11 and HEM12 modes. The two couplers for rf power input and output are also optimized. Based on the optimized design and rf sensitivity analysis, the mechanical design has been completed and is now ready for manufacture.
上海同步辐射装置/上海软 X 射线场目前正在利用双模射频结构概念开发一种先进的可变偏振横向偏转结构 TTDS(双模横向偏转结构)。这种新型 TDS 由两种不同的射频电源驱动,同时使用 HEM11 和 HEM12 模式进行垂直和水平偏转,因此能够以超高速提供时变极化电场。通过低电平射频系统的振幅和相位调制,它能够产生圆形和椭圆形极化以及灵活的矢量组合。本文介绍的工作重点是分析和设计由双模单元和两个双模耦合器组成的可变极化 TDS。双模设计和优化非常复杂,因此开发了一种基于神经网络和多目标算法的先进优化程序。这提高了射频结构设计过程的准确性和效率。通过迭代,最终设计中的双模单元针对 HEM11 和 HEM12 两种模式的高阻抗和其他射频性能标准进行了优化。此外,还对用于射频功率输入和输出的两个耦合器进行了优化。在优化设计和射频敏感性分析的基础上,机械设计已经完成,现在可以进行制造。
{"title":"Design of a dual-mode transverse deflecting structure using neural network and multiobjective algorithms","authors":"H. Gong, W. Fang, J. Tan, X. Huang, C. Wang, Y. Xu, Z. Zhao","doi":"10.1103/physrevaccelbeams.27.042001","DOIUrl":"https://doi.org/10.1103/physrevaccelbeams.27.042001","url":null,"abstract":"Shanghai Synchrotron Radiation Facility/Shanghai Soft X-ray FEL Facility is currently developing an advanced variable polarization transverse deflecting structure TTDS (two-mode transverse deflecting structure) using a dual-mode rf structure concept. Driven by two different rf power sources, this novel TDS works using both the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>HEM</mi><mn>11</mn></msub></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>HEM</mi><mn>12</mn></msub></math> modes for simultaneous vertical and horizontal deflections, consequently, it can provide a time-varying polarization of the electrical field at ultrafast speeds. It is capable of producing circular and elliptical polarizations as well as flexible vector combinations through amplitude and phase modulation from a low-level rf system. The work presented in this paper is focused on the analysis and design of the variable polarization TDS, consisting of dual-mode cells and two dual-mode couplers. Designing and optimizing for dual-mode design and optimization is complex; consequently, an advanced optimization procedure based on neural networks and multiobjective algorithms has been developed. This improves the accuracy and efficiency of the rf structure design process. Through iterations, the dual-mode cells in the final design are optimized for high impedance and other rf performance criteria for both the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>HEM</mi><mn>11</mn></msub></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>HEM</mi><mn>12</mn></msub></math> modes. The two couplers for rf power input and output are also optimized. Based on the optimized design and rf sensitivity analysis, the mechanical design has been completed and is now ready for manufacture.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"19 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140616641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental observation of a mode-1 instability driven by Landau cavities in a storage ring 储能环中兰道空腔驱动的模式-1 不稳定性实验观测
IF 1.7 3区 物理与天体物理 Q3 PHYSICS, NUCLEAR Pub Date : 2024-04-12 DOI: 10.1103/physrevaccelbeams.27.044403
F. J. Cullinan, Å. Andersson, J. Breunlin, M. Brosi, P. F. Tavares
Landau cavities used to lengthen the bunches in storage rings necessarily constitute a significant impedance. Because of the particular phase of the field required for bunch lengthening, they are often detuned quite considerably from resonance, more so than the main cavities. As a result, their impedance can excite the first coupled-bunch mode such that it becomes unstable. This phenomenon has previously been predicted [M. Venturini, Phys. Rev. Accel. Beams 21, 114404 (2018)] and characterized in simulations [T. He, Phys. Rev. Accel. Beams 25, 024401 (2022)] but experimental observation is yet to be documented. In this paper, the experimental observation of coupled-bunch modes-±1 excited by the Landau and main cavities in a fourth-generation light-source storage ring is presented. Features of the instability such as amplitude and coherent frequency at saturation have been measured and its dependency on the main rf voltage has been explored. The impact of a parked main cavity has also been investigated.
用于延长储能环中束流的朗道空腔必然会产生很大的阻抗。由于波束延长所需的电场相位特殊,它们往往与共振有相当大的失谐,比主腔的失谐更大。因此,它们的阻抗会激发第一个耦合束模式,使其变得不稳定。这一现象之前已经被预测到[M. Venturini,Phys. Rev. Accel. Beams 21, 114404 (2018)],并在模拟中被描述出来[T. He,Phys. Rev. Accel. Beams 25, 024401 (2022)],但实验观察尚未被记录下来。本文介绍了对第四代光源存储环中朗道腔和主腔激发的耦合束模式-±1的实验观测。测量了不稳定性的特征,如饱和时的振幅和相干频率,并探讨了其与主射频电压的关系。此外,还研究了停放的主腔的影响。
{"title":"Experimental observation of a mode-1 instability driven by Landau cavities in a storage ring","authors":"F. J. Cullinan, Å. Andersson, J. Breunlin, M. Brosi, P. F. Tavares","doi":"10.1103/physrevaccelbeams.27.044403","DOIUrl":"https://doi.org/10.1103/physrevaccelbeams.27.044403","url":null,"abstract":"Landau cavities used to lengthen the bunches in storage rings necessarily constitute a significant impedance. Because of the particular phase of the field required for bunch lengthening, they are often detuned quite considerably from resonance, more so than the main cavities. As a result, their impedance can excite the first coupled-bunch mode such that it becomes unstable. This phenomenon has previously been predicted [M. Venturini, <span>Phys. Rev. Accel. Beams</span> <b>21</b>, 114404 (2018)] and characterized in simulations [T. He, <span>Phys. Rev. Accel. Beams</span> <b>25</b>, 024401 (2022)] but experimental observation is yet to be documented. In this paper, the experimental observation of coupled-bunch modes-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>±</mo><mn>1</mn></math> excited by the Landau and main cavities in a fourth-generation light-source storage ring is presented. Features of the instability such as amplitude and coherent frequency at saturation have been measured and its dependency on the main rf voltage has been explored. The impact of a parked main cavity has also been investigated.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"20 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and early operation of a new-generation internal beam dump for CERN’s Super Proton Synchrotron 欧洲核子研究中心超级质子同步加速器新一代内部束流倾卸装置的设计和早期运行
IF 1.7 3区 物理与天体物理 Q3 PHYSICS, NUCLEAR Pub Date : 2024-04-12 DOI: 10.1103/physrevaccelbeams.27.043001
A. Romero Francia, A. Perillo Marcone, S. Pianese, K. Andersen, G. Arnau Izquierdo, J. A. Briz, D. Carbajo Perez, E. Carlier, T. Coiffet, L. S. Esposito, J. L. Grenard, D. Grenier, J. Humbert, K. Kershaw, J. Lendaro, A. Ortega Rolo, K. Scibor, D. Senajova, S. Sgobba, C. Sharp, D. Steyaert, F. M. Velotti, H. Vincke, V. Vlachoudis, M. Calviani
The Super Proton Synchrotron (SPS) is the last stage in the injector chain for CERN’s Large Hadron Collider, and it also provides proton and ion beams for several fixed-target experiments. The SPS has been in operation since 1976, and it has been upgraded over the years. For the SPS to operate safely, its internal beam dump must be able to repeatedly absorb the energy of the circulating beams without sustaining damage that would affect its function. The latest upgrades of the SPS led to the requirement for its beam dump to absorb proton beams with a momentum spectrum from 14 to 450GeV/c and an average beam power of up to 270kW. This paper presents the technical details of a new design of the SPS beam dump that was installed in one of the long straight sections of the SPS during the 2019–2020 shutdown of CERN’s accelerator complex within the framework of the Large Hadron Collider Injectors Upgrade Project. This new beam dump has been in the operation since May 2021, and it is foreseen that it will operate with a lifetime of 20 years. The key challenges in the design of the beam dump were linked to the high levels of thermal energy to be dissipated—to avoid overheating and damage to the beam dump itself—and high induced levels of radiation, which have implications for personnel access to monitor the beam dump and repair any problems occurring during operation. The design process, therefore, included extensive thermomechanical finite-element simulations of the beam-dump core and its cooling system’s response to normal operation and worst-case scenarios for beam dumping. To ensure high thermal conductivity between the beam-dump core and its water-cooling system, hot isostatic pressing techniques were used in its manufacturing process. A comprehensive set of instrumentation was installed in the beam dump to monitor it during operation and to cross-check the numerical models with operational feedback. The beam dump and its infrastructure design were also optimized to ensure it can be maintained, repaired, or replaced while minimizing the radiation doses received by personnel.
超级质子同步加速器(SPS)是欧洲核子研究中心(CERN)大型强子对撞机喷射器链的最后一级,它还为几个固定靶实验提供质子和离子束。SPS 自 1976 年开始运行,多年来一直在不断升级。为了使 SPS 安全运行,其内部的束流倾卸装置必须能够反复吸收循环束流的能量,而不会受到影响其功能的损坏。SPS 的最新升级要求其束流倾卸装置能够吸收动量谱从 14 GeV/c 到 450 GeV/c 的质子束,平均束流功率高达 ∼ 270 kW。本文介绍了在大型强子对撞机喷射器升级项目框架内,欧洲核子研究中心加速器综合体于2019-2020年停运期间在SPS的一个长直段上安装的新型SPS束流倾卸装置的技术细节。这种新的束流倾卸装置自 2021 年 5 月起开始运行,预计使用寿命为 20 年。束流储存器设计的主要挑战在于需要耗散大量热能,以避免过热和损坏束流储存器本身,同时还要承受高水平的诱导辐射,这对监测束流储存器和修复运行期间出现的任何问题的人员访问造成了影响。因此,在设计过程中,对光束倾泻核心及其冷却系统在正常运行和光束倾泻最坏情况下的反应进行了大量的热力学有限元模拟。为确保束流倾弃堆芯及其水冷系统之间的高导热性,在制造过程中采用了热等静压技术。在光束倾弃装置中安装了一整套仪器,以便在运行期间对其进行监测,并根据运行反馈对数值模型进行交叉检验。此外,还对光束倾弃场及其基础设施设计进行了优化,以确保在最大限度地降低人员所受辐射剂量的同时,还能对其进行维护、修理或更换。
{"title":"Design and early operation of a new-generation internal beam dump for CERN’s Super Proton Synchrotron","authors":"A. Romero Francia, A. Perillo Marcone, S. Pianese, K. Andersen, G. Arnau Izquierdo, J. A. Briz, D. Carbajo Perez, E. Carlier, T. Coiffet, L. S. Esposito, J. L. Grenard, D. Grenier, J. Humbert, K. Kershaw, J. Lendaro, A. Ortega Rolo, K. Scibor, D. Senajova, S. Sgobba, C. Sharp, D. Steyaert, F. M. Velotti, H. Vincke, V. Vlachoudis, M. Calviani","doi":"10.1103/physrevaccelbeams.27.043001","DOIUrl":"https://doi.org/10.1103/physrevaccelbeams.27.043001","url":null,"abstract":"The Super Proton Synchrotron (SPS) is the last stage in the injector chain for CERN’s Large Hadron Collider, and it also provides proton and ion beams for several fixed-target experiments. The SPS has been in operation since 1976, and it has been upgraded over the years. For the SPS to operate safely, its internal beam dump must be able to repeatedly absorb the energy of the circulating beams without sustaining damage that would affect its function. The latest upgrades of the SPS led to the requirement for its beam dump to absorb proton beams with a momentum spectrum from 14 to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>450</mn><mtext> </mtext><mtext> </mtext><mi>GeV</mi><mo>/</mo><mi>c</mi></mrow></math> and an average beam power of up to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>∼</mo><mn>270</mn><mtext> </mtext><mtext> </mtext><mi>kW</mi></math>. This paper presents the technical details of a new design of the SPS beam dump that was installed in one of the long straight sections of the SPS during the 2019–2020 shutdown of CERN’s accelerator complex within the framework of the Large Hadron Collider Injectors Upgrade Project. This new beam dump has been in the operation since May 2021, and it is foreseen that it will operate with a lifetime of 20 years. The key challenges in the design of the beam dump were linked to the high levels of thermal energy to be dissipated—to avoid overheating and damage to the beam dump itself—and high induced levels of radiation, which have implications for personnel access to monitor the beam dump and repair any problems occurring during operation. The design process, therefore, included extensive thermomechanical finite-element simulations of the beam-dump core and its cooling system’s response to normal operation and worst-case scenarios for beam dumping. To ensure high thermal conductivity between the beam-dump core and its water-cooling system, hot isostatic pressing techniques were used in its manufacturing process. A comprehensive set of instrumentation was installed in the beam dump to monitor it during operation and to cross-check the numerical models with operational feedback. The beam dump and its infrastructure design were also optimized to ensure it can be maintained, repaired, or replaced while minimizing the radiation doses received by personnel.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"58 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Undulator linear taper control at the European X-Ray Free-Electron Laser facility 欧洲 X 射线自由电子激光设施的减速器线性锥度控制
IF 1.7 3区 物理与天体物理 Q3 PHYSICS, NUCLEAR Pub Date : 2024-04-12 DOI: 10.1103/physrevaccelbeams.27.042801
Sergey Tomin, Jan Kaiser, Nils Maris Lockmann, Torsten Wohlenberg, Igor Zagorodnov
Undulator tapering controls the resonance properties of the free-electron laser (FEL) amplification process. Wakefield energy losses in an undulator’s vacuum chamber are one of the factors that determine the undulator’s linear taper. While another contribution to energy losses, namely the losses due to spontaneous radiation, can be calculated analytically, estimating wakefield energy losses requires detailed knowledge of the chamber geometry and the electron beam current profile. We introduce a method for the automatic estimation of wakefield energy losses, which leverages noninvasive THz diagnostics, a current profile reconstruction algorithm enhanced with machine learning, and a recently developed analytical wakefield function for the European XFEL’s undulator beamline. The correctness of this method was validated by directly measuring wakefield-induced electron beam energy losses in the undulator section. This, in turn, enables the prediction of the optimal linear taper in the undulator.
衰减器的锥度控制着自由电子激光(FEL)放大过程的共振特性。衰减器真空室中的汪洋能量损失是决定衰减器线性锥度的因素之一。能量损失的另一个因素,即自发辐射造成的损失,可以通过分析计算得出,而估算汪场能量损失则需要详细了解真空室的几何形状和电子束电流曲线。我们介绍了一种自动估算唤醒场能量损失的方法,该方法利用了非侵入式太赫兹诊断、通过机器学习增强的电流剖面重构算法以及最近为欧洲 XFEL 的起落架光束线开发的分析性唤醒场函数。这种方法的正确性通过直接测量起落架部分的唤醒场诱导电子束能量损失得到了验证。这反过来又使我们能够预测起爆器中的最佳线性锥度。
{"title":"Undulator linear taper control at the European X-Ray Free-Electron Laser facility","authors":"Sergey Tomin, Jan Kaiser, Nils Maris Lockmann, Torsten Wohlenberg, Igor Zagorodnov","doi":"10.1103/physrevaccelbeams.27.042801","DOIUrl":"https://doi.org/10.1103/physrevaccelbeams.27.042801","url":null,"abstract":"Undulator tapering controls the resonance properties of the free-electron laser (FEL) amplification process. Wakefield energy losses in an undulator’s vacuum chamber are one of the factors that determine the undulator’s linear taper. While another contribution to energy losses, namely the losses due to spontaneous radiation, can be calculated analytically, estimating wakefield energy losses requires detailed knowledge of the chamber geometry and the electron beam current profile. We introduce a method for the automatic estimation of wakefield energy losses, which leverages noninvasive THz diagnostics, a current profile reconstruction algorithm enhanced with machine learning, and a recently developed analytical wakefield function for the European XFEL’s undulator beamline. The correctness of this method was validated by directly measuring wakefield-induced electron beam energy losses in the undulator section. This, in turn, enables the prediction of the optimal linear taper in the undulator.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"244 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beam gas curtain monitor: Vacuum studies for LHC integration and operation 光束气幕监测器:用于大型强子对撞机集成和运行的真空研究
IF 1.7 3区 物理与天体物理 Q3 PHYSICS, NUCLEAR Pub Date : 2024-04-12 DOI: 10.1103/physrevaccelbeams.27.043201
C. Castro Sequeiro, M. Ady, G. Bregliozzi, N. Chatzigeorgiou, A. R. Churchman, R. Kersevan, T. Lefevre, S. Mazzoni, G. Pigny, A. Rossi, M. Sameed, G. Schneider, O. Sedlacek, K. Sidorowski, C. Vazquez Pelaez, R. Veness, L. Zygaropoulos, O. Stringer, A. Webber-Date, C. P. Welsch, H. Zhang, P. Forck, S. Udrea
A beam gas curtain (BGC) monitor has been designed to obtain information about the relative position between the LHC proton beam and the hollow electron lens electron beam through a minimally invasive process. Its working principle relies on intersecting the path of both beams with a supersonic gas curtain, introduced transversely into the LHC beamline, to produce a fluorescence signal. As an intermediate project stage (phase II), a preliminary version of the BGC monitor has been installed into the LHC beamline. To ensure the successful integration of the monitor and subsequent operation under LHC ultrahigh vacuum conditions, a series of vacuum studies have been performed. These can be classified as follows: An off-line laboratory test campaign, to assess BGC behavior during pump down and gas injections; simulations and analytical calculations, to evaluate BGC behavior and estimate the impact of its installation and operation in the LHC. This document will briefly present the off-line tests campaign, followed by a more extensive description of the simulations performed.
光束气帘(BGC)监测器的设计目的是通过微创过程获取关于大型强子对撞机质子束与空心电子透镜电子束之间相对位置的信息。其工作原理是将两束质子束的路径与横向引入大型强子对撞机光束线的超音速气幕相交,从而产生荧光信号。作为项目的中间阶段(第二阶段),BGC 监测器的初步版本已安装到大型强子对撞机光束线中。为确保监测器的成功集成以及随后在大型强子对撞机超高真空条件下的运行,进行了一系列真空研究。这些研究可分为以下几类:离线实验室测试活动,评估BGC在抽气和气体注入时的行为;模拟和分析计算,评估BGC的行为,并估计其安装和在大型强子对撞机中运行的影响。本文件将简要介绍离线测试活动,然后更广泛地介绍所进行的模拟。
{"title":"Beam gas curtain monitor: Vacuum studies for LHC integration and operation","authors":"C. Castro Sequeiro, M. Ady, G. Bregliozzi, N. Chatzigeorgiou, A. R. Churchman, R. Kersevan, T. Lefevre, S. Mazzoni, G. Pigny, A. Rossi, M. Sameed, G. Schneider, O. Sedlacek, K. Sidorowski, C. Vazquez Pelaez, R. Veness, L. Zygaropoulos, O. Stringer, A. Webber-Date, C. P. Welsch, H. Zhang, P. Forck, S. Udrea","doi":"10.1103/physrevaccelbeams.27.043201","DOIUrl":"https://doi.org/10.1103/physrevaccelbeams.27.043201","url":null,"abstract":"A beam gas curtain (BGC) monitor has been designed to obtain information about the relative position between the LHC proton beam and the hollow electron lens electron beam through a minimally invasive process. Its working principle relies on intersecting the path of both beams with a supersonic gas curtain, introduced transversely into the LHC beamline, to produce a fluorescence signal. As an intermediate project stage (phase II), a preliminary version of the BGC monitor has been installed into the LHC beamline. To ensure the successful integration of the monitor and subsequent operation under LHC ultrahigh vacuum conditions, a series of vacuum studies have been performed. These can be classified as follows: An off-line laboratory test campaign, to assess BGC behavior during pump down and gas injections; simulations and analytical calculations, to evaluate BGC behavior and estimate the impact of its installation and operation in the LHC. This document will briefly present the off-line tests campaign, followed by a more extensive description of the simulations performed.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"14 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Terahertz-driven acceleration of subrelativistic electron beams using tapered rectangular dielectric-lined waveguides 利用锥形矩形介质衬里波导实现次相对论电子束的太赫兹驱动加速
IF 1.7 3区 物理与天体物理 Q3 PHYSICS, NUCLEAR Pub Date : 2024-04-11 DOI: 10.1103/physrevaccelbeams.27.041302
Laurence J. R. Nix, Joseph T. Bradbury, Christopher T. Shaw, Morgan T. Hibberd, Darren M. Graham, Robert B. Appleby, Graeme Burt, Rosa Letizia, Steven P. Jamison
We investigate the use of tapered rectangular dielectric-lined waveguides (DLWs) for the acceleration of low-energy, subrelativistic, electron bunches by the interaction with multicycle narrowband terahertz (THz) pulses. A key challenge exists in this subrelativistic regime; the electron velocity changes significantly as energy is gained. To keep electrons in the accelerating phase, the phase velocity must also be increased to match. We present simulations which demonstrate that the dielectric thickness can be kept constant and the width of the dielectric lining can be tapered along the direction of travel to vary the phase velocity, an approach only possible by the use of a rectangular waveguide geometry. The properties of tapered DLWs are discussed and following this, a design process is presented to demonstrate that the way this tapering can be optimized for different pulse and beam parameters. The minimum accelerating gradient for electron bunch capture is derived and compared to simulations. As examples of this design process, designs are considered based on considerations of the THz source, incoming electron beam, and manufacturing tolerances. A maximum THz pulse energy of 22.5μJ in the DLW was considered, which represents what is readily achievable using mJ-level regenerative amplifier laser systems together with optical-to-terahertz conversion in lithium niobate crystals. This will be more than double the energy of a 100 keV electron beam, increasing it to 205 keV. We describe the optimization process and present a detailed exploration of the beam dynamics, discussing how the performance will further improve with compressed bunches.
我们研究了如何利用锥形矩形介质衬里波导(DLW),通过与多周期窄带太赫兹(THz)脉冲的相互作用,加速低能量、亚相对论电子束。亚相对论机制存在一个关键挑战:随着能量的增加,电子速度会发生显著变化。要使电子保持在加速阶段,还必须提高相位速度以与之相匹配。我们的模拟结果表明,电介质厚度可以保持不变,而电介质衬里的宽度可以沿行进方向逐渐变细,从而改变相位速度,这种方法只有通过使用矩形波导几何形状才能实现。本文讨论了锥形 DLW 的特性,随后介绍了一个设计过程,以演示如何根据不同的脉冲和光束参数优化锥形 DLW。得出了电子束捕获的最小加速梯度,并与模拟结果进行了比较。作为设计过程的示例,我们考虑了基于太赫兹源、输入电子束和制造公差的设计。在 DLW 中考虑的最大太赫兹脉冲能量为 22.5 μJ,这代表了利用 mJ 级再生放大器激光系统以及铌酸锂晶体中的光-太赫兹转换可以轻易实现的能量。这将是 100 千伏电子束能量的两倍多,将其提高到 205 千伏。我们介绍了优化过程,并对电子束动力学进行了详细探讨,讨论了如何通过压缩束来进一步提高性能。
{"title":"Terahertz-driven acceleration of subrelativistic electron beams using tapered rectangular dielectric-lined waveguides","authors":"Laurence J. R. Nix, Joseph T. Bradbury, Christopher T. Shaw, Morgan T. Hibberd, Darren M. Graham, Robert B. Appleby, Graeme Burt, Rosa Letizia, Steven P. Jamison","doi":"10.1103/physrevaccelbeams.27.041302","DOIUrl":"https://doi.org/10.1103/physrevaccelbeams.27.041302","url":null,"abstract":"We investigate the use of tapered rectangular dielectric-lined waveguides (DLWs) for the acceleration of low-energy, subrelativistic, electron bunches by the interaction with multicycle narrowband terahertz (THz) pulses. A key challenge exists in this subrelativistic regime; the electron velocity changes significantly as energy is gained. To keep electrons in the accelerating phase, the phase velocity must also be increased to match. We present simulations which demonstrate that the dielectric thickness can be kept constant and the width of the dielectric lining can be tapered along the direction of travel to vary the phase velocity, an approach only possible by the use of a rectangular waveguide geometry. The properties of tapered DLWs are discussed and following this, a design process is presented to demonstrate that the way this tapering can be optimized for different pulse and beam parameters. The minimum accelerating gradient for electron bunch capture is derived and compared to simulations. As examples of this design process, designs are considered based on considerations of the THz source, incoming electron beam, and manufacturing tolerances. A maximum THz pulse energy of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>22.5</mn><mtext> </mtext><mtext> </mtext><mi mathvariant=\"normal\">μ</mi><mi mathvariant=\"normal\">J</mi></mrow></math> in the DLW was considered, which represents what is readily achievable using mJ-level regenerative amplifier laser systems together with optical-to-terahertz conversion in lithium niobate crystals. This will be more than double the energy of a 100 keV electron beam, increasing it to 205 keV. We describe the optimization process and present a detailed exploration of the beam dynamics, discussing how the performance will further improve with compressed bunches.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"58 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breakdown insensitive acceleration regime in a metamaterial accelerating structure 超材料加速结构中的击穿不敏感加速机制
IF 1.7 3区 物理与天体物理 Q3 PHYSICS, NUCLEAR Pub Date : 2024-04-08 DOI: 10.1103/physrevaccelbeams.27.041301
Dillon Merenich, Brendan Leung, Gaurab Rijal, Xueying Lu, Scott Doran, Gongxiaohui Chen, Wanming Liu, Chunguang Jing, John Power, Charles Whiteford, Eric Wisniewski
A new regime in radiofrequency (rf) breakdown, named the breakdown insensitive acceleration regime (BIAR), was observed in an 11.7 GHz metamaterial structure for wakefield acceleration driven by rf pulses with a duration of a few nanoseconds. In the BIAR, rf breakdown occurs without interrupting potential beam acceleration, resulting in greater resilience to breakdown. We have investigated the possibility that BIAR can support higher gradients by characterizing the breakdown in a high-power test. The peak gradient reached 190MV/m when the structure was powered by 6 ns long rf pulses with 115 MW peak power. The short rf pulses were extracted from 65 MeV electron bunch trains with a total charge of up to 210 nC. This work has revealed the benefits of short-pulse acceleration by characterizing rf breakdown in the previously unexplored parameter space.
在一个 11.7 GHz 的超材料结构中观察到了一种新的射频击穿机制,被命名为击穿不敏感加速机制(BIAR),用于由持续时间为几纳秒的射频脉冲驱动的唤醒场加速。在 BIAR 中,射频击穿发生时不会中断潜在的光束加速,因此具有更强的抗击穿能力。我们通过分析高功率测试中的击穿特征,研究了 BIAR 支持更高梯度的可能性。当结构由峰值功率为 115 兆瓦的 6 毫微秒长射频脉冲供电时,峰值梯度达到 190 MV/m。短射频脉冲是从总电荷高达 210 nC 的 65 MeV 电子束列车中提取的。这项工作揭示了短脉冲加速的好处,即在以前未探索过的参数空间中描述射频击穿的特征。
{"title":"Breakdown insensitive acceleration regime in a metamaterial accelerating structure","authors":"Dillon Merenich, Brendan Leung, Gaurab Rijal, Xueying Lu, Scott Doran, Gongxiaohui Chen, Wanming Liu, Chunguang Jing, John Power, Charles Whiteford, Eric Wisniewski","doi":"10.1103/physrevaccelbeams.27.041301","DOIUrl":"https://doi.org/10.1103/physrevaccelbeams.27.041301","url":null,"abstract":"A new regime in radiofrequency (rf) breakdown, named the breakdown insensitive acceleration regime (BIAR), was observed in an 11.7 GHz metamaterial structure for wakefield acceleration driven by rf pulses with a duration of a few nanoseconds. In the BIAR, rf breakdown occurs without interrupting potential beam acceleration, resulting in greater resilience to breakdown. We have investigated the possibility that BIAR can support higher gradients by characterizing the breakdown in a high-power test. The peak gradient reached <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>190</mn><mtext> </mtext><mtext> </mtext><mi>MV</mi><mo>/</mo><mi mathvariant=\"normal\">m</mi></mrow></math> when the structure was powered by 6 ns long rf pulses with 115 MW peak power. The short rf pulses were extracted from 65 MeV electron bunch trains with a total charge of up to 210 nC. This work has revealed the benefits of short-pulse acceleration by characterizing rf breakdown in the previously unexplored parameter space.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"94 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Longitudinal compression of a macrorelativistic electron beam 宏观相对论电子束的纵向压缩
IF 1.7 3区 物理与天体物理 Q3 PHYSICS, NUCLEAR Pub Date : 2024-04-08 DOI: 10.1103/physrevaccelbeams.27.044402
An Li, Jiaru Shi, Hao Zha, Qiang Gao, Liuyuan Zhou, Huaibi Chen
We present a novel concept of longitudinal bunch train compression that can manipulate a relativistic electron beam across hundreds of meters. This concept holds the potential to compress the electron beam produced by a conditional linear accelerator at a high ratio, elevating its power to a level comparable with large induction accelerators. The method employs the spiral motion of electrons in a uniform magnetic field to fold hundreds-of-meters-long trajectories into a compact setup. The interval between bunches can be fine-tuned by modulating their spiral movement. We explore this method with the particle dynamic simulation. Compared to setups of similar size, such as a chicane, our method can compress bunches at considerably larger scales. Consequently, it opens up new possibilities for generating high-power beams using compact devices at lower costs.
我们提出了一种新颖的纵向束流压缩概念,它可以操纵跨越数百米的相对论电子束。这一概念可将有条件直线加速器产生的电子束以高比率压缩,将其功率提升到与大型感应加速器相当的水平。这种方法利用电子在均匀磁场中的螺旋运动,将数百米长的轨迹折叠成一个紧凑的装置。电子束之间的间隔可以通过调节其螺旋运动进行微调。我们通过粒子动态模拟来探索这种方法。与类似大小的设置(如驰道)相比,我们的方法可以在更大的尺度上压缩线束。因此,它为使用紧凑型设备以较低成本产生高功率光束提供了新的可能性。
{"title":"Longitudinal compression of a macrorelativistic electron beam","authors":"An Li, Jiaru Shi, Hao Zha, Qiang Gao, Liuyuan Zhou, Huaibi Chen","doi":"10.1103/physrevaccelbeams.27.044402","DOIUrl":"https://doi.org/10.1103/physrevaccelbeams.27.044402","url":null,"abstract":"We present a novel concept of longitudinal bunch train compression that can manipulate a relativistic electron beam across hundreds of meters. This concept holds the potential to compress the electron beam produced by a conditional linear accelerator at a high ratio, elevating its power to a level comparable with large induction accelerators. The method employs the spiral motion of electrons in a uniform magnetic field to fold hundreds-of-meters-long trajectories into a compact setup. The interval between bunches can be fine-tuned by modulating their spiral movement. We explore this method with the particle dynamic simulation. Compared to setups of similar size, such as a chicane, our method can compress bunches at considerably larger scales. Consequently, it opens up new possibilities for generating high-power beams using compact devices at lower costs.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"71 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical Review Accelerators and Beams
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1