首页 > 最新文献

IEEE Internet of Things Journal最新文献

英文 中文
Scheduling With Soft Age of Information Deadlines 信息软时代的日程安排 截止日期
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-11-11 DOI: 10.1109/jiot.2024.3496113
Chengzhang Li, Qingyu Liu, Shaoran Li, Yongce Chen, Y. Thomas Hou, Wenjing Lou, Sastry Kompella
{"title":"Scheduling With Soft Age of Information Deadlines","authors":"Chengzhang Li, Qingyu Liu, Shaoran Li, Yongce Chen, Y. Thomas Hou, Wenjing Lou, Sastry Kompella","doi":"10.1109/jiot.2024.3496113","DOIUrl":"https://doi.org/10.1109/jiot.2024.3496113","url":null,"abstract":"","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GreenTrust: Trust Assessment Using Ensemble Learning in Internet of Microgrid Things 绿色信任:在微电网物联网中使用集合学习进行信任评估
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-11-11 DOI: 10.1109/jiot.2024.3495537
Wajahat Ali, Ikram Ud Din, Ahmad Almogren, Joel J. P. C. Rodrigues
{"title":"GreenTrust: Trust Assessment Using Ensemble Learning in Internet of Microgrid Things","authors":"Wajahat Ali, Ikram Ud Din, Ahmad Almogren, Joel J. P. C. Rodrigues","doi":"10.1109/jiot.2024.3495537","DOIUrl":"https://doi.org/10.1109/jiot.2024.3495537","url":null,"abstract":"","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Information Theoretic Approach to Distributed Detection for Mobile Wireless Sensor Networks Under Byzantine Attack in Entirely Unknown or Complicated Environment: Design, Analysis, and Evaluation of the Attack Strategy 完全未知或复杂环境中拜占庭攻击下移动无线传感器网络分布式检测的信息论方法:攻击策略的设计、分析和评估
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-11-11 DOI: 10.1109/jiot.2024.3494035
Gaoyuan Zhang, Pengfei Wang, Weiguang Wang, Yu Mu, Yiwei Li, Jie Tang, Huanhuan Song, Hong Wen, Shahid Mumtaz
{"title":"An Information Theoretic Approach to Distributed Detection for Mobile Wireless Sensor Networks Under Byzantine Attack in Entirely Unknown or Complicated Environment: Design, Analysis, and Evaluation of the Attack Strategy","authors":"Gaoyuan Zhang, Pengfei Wang, Weiguang Wang, Yu Mu, Yiwei Li, Jie Tang, Huanhuan Song, Hong Wen, Shahid Mumtaz","doi":"10.1109/jiot.2024.3494035","DOIUrl":"https://doi.org/10.1109/jiot.2024.3494035","url":null,"abstract":"","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enabling Distributed Generative Artificial Intelligence in 6G: Mobile Edge Generation 在 6G 中实现分布式生成人工智能:移动边缘生成
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-11-11 DOI: 10.1109/jiot.2024.3493611
Ruikang Zhong, Xidong Mu, Mona Jaber, Yuanwei Liu
{"title":"Enabling Distributed Generative Artificial Intelligence in 6G: Mobile Edge Generation","authors":"Ruikang Zhong, Xidong Mu, Mona Jaber, Yuanwei Liu","doi":"10.1109/jiot.2024.3493611","DOIUrl":"https://doi.org/10.1109/jiot.2024.3493611","url":null,"abstract":"","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Budget-Constrained Resource Allocation and Pricing in VEC: A MSMLMF Stackelberg Game With Contract Incentive Mechanism VEC 中预算受限的资源分配和定价:带有合同激励机制的 MSMLMF 堆栈伯格博弈
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-11-11 DOI: 10.1109/jiot.2024.3486378
Yishan Chen, Jie Wu, Shumei Ye, Wei Li, Zhonghui Xu
{"title":"Budget-Constrained Resource Allocation and Pricing in VEC: A MSMLMF Stackelberg Game With Contract Incentive Mechanism","authors":"Yishan Chen, Jie Wu, Shumei Ye, Wei Li, Zhonghui Xu","doi":"10.1109/jiot.2024.3486378","DOIUrl":"https://doi.org/10.1109/jiot.2024.3486378","url":null,"abstract":"","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Denoising Diffusion Probabilistic Model-Based Digital Twinning of ISAC MIMO Channel 基于去噪扩散概率模型的 ISAC MIMO 信道数字孪化
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-11-11 DOI: 10.1109/jiot.2024.3495212
Jiexin Zhang, Shu Xu, Zhengming Zhang, Chunguo Li, Luxi Yang
{"title":"A Denoising Diffusion Probabilistic Model-Based Digital Twinning of ISAC MIMO Channel","authors":"Jiexin Zhang, Shu Xu, Zhengming Zhang, Chunguo Li, Luxi Yang","doi":"10.1109/jiot.2024.3495212","DOIUrl":"https://doi.org/10.1109/jiot.2024.3495212","url":null,"abstract":"","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergy Optimized Routing Protocol for Multi-Objective Optimization in Underwater Communication Networks 水下通信网络中多目标优化的协同优化路由协议
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-11-11 DOI: 10.1109/jiot.2024.3496298
Kiran Saleem, Lei Wang, Rana Zeeshan Ahmed, Ahmad Almadhor, Gautam Srivastava, Thippa Reddy Gadekallu
{"title":"Synergy Optimized Routing Protocol for Multi-Objective Optimization in Underwater Communication Networks","authors":"Kiran Saleem, Lei Wang, Rana Zeeshan Ahmed, Ahmad Almadhor, Gautam Srivastava, Thippa Reddy Gadekallu","doi":"10.1109/jiot.2024.3496298","DOIUrl":"https://doi.org/10.1109/jiot.2024.3496298","url":null,"abstract":"","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Sample-Efficient Multiagent Reinforcement Learning for Navigation and Collision Avoidance of UAV Swarms in Multitask Environments 多任务环境中无人机群导航和避撞的高采样效率多代理强化学习
IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-11-07 DOI: 10.1109/JIOT.2024.3409169
Jiaming Cheng;Ni Li;Ban Wang;Shuhui Bu;Ming Zhou
Multiagent reinforcement learning (MARL) algorithms have shown promise in the Internet of Things devices, such as unmanned aerial vehicle (UAV) swarms. However, the dynamic nature of large-scale swarm systems, with constantly changing numbers of agents and observed neighbors, poses challenges for MARL adaptation. Existing approaches struggle to extract meaningful features and require a substantial number of experience samples, resulting in low-sample efficiency and high-risk ratios. Moreover, these methods are effective in task-specific scenarios and fail to perform well in multitask settings. To overcome these challenges, this study proposes a high-sample efficient and scalable MARL approach for UAV swarms. The proposed approach incorporates a hypernetwork-based embedding attention (HEA) mechanism for the state representation of the policy network and a multiencoder gated transformer with a multilayer attention (MEGTrMA) mechanism for the value function. The HEA automatically generates weights for each agent to adapt to dynamic scenarios, enhancing representation ability and adaptability while reducing the cost of trial and error for improved learning efficiency. The MEGTrMA captures the contribution of each agent to the global observation, establishing long-term dependencies among them and facilitating stable policy learning in multitask scenarios. Simulation results demonstrate that the proposed method is scalable, generalizable, and high-sample efficient. Compared to learning from scratch, our method significantly reduces training time to less than one-fifth of the initial time by progressively increasing the number of UAVs and their corresponding neighbors. Additionally, the average number of collisions is reduced by an order of magnitude for large-scale UAV swarms.
多代理强化学习(MARL)算法在无人机群等物联网设备中大有可为。然而,大规模蜂群系统具有动态性质,其代理数量和观察到的邻居不断变化,这给 MARL 适应性带来了挑战。现有方法难以提取有意义的特征,而且需要大量经验样本,导致样本效率低、风险率高。此外,这些方法在特定任务场景下有效,但在多任务场景下表现不佳。为了克服这些挑战,本研究为无人机群提出了一种高样本效率和可扩展的 MARL 方法。所提出的方法在策略网络的状态表示方面采用了基于超网络的嵌入注意(HEA)机制,在值函数方面采用了多编码器门控变换器和多层注意(MEGTrMA)机制。HEA 可自动为每个代理生成权重,以适应动态场景,从而增强表示能力和适应性,同时降低试错成本,提高学习效率。MEGTrMA 捕获了每个代理对全局观测的贡献,建立了代理之间的长期依赖关系,促进了多任务场景下的稳定策略学习。仿真结果表明,所提出的方法具有可扩展性、通用性和高样本效率。与从头开始学习相比,我们的方法通过逐步增加无人飞行器及其相应邻居的数量,将训练时间显著缩短到初始时间的五分之一以下。此外,大规模无人机群的平均碰撞次数减少了一个数量级。
{"title":"High-Sample-Efficient Multiagent Reinforcement Learning for Navigation and Collision Avoidance of UAV Swarms in Multitask Environments","authors":"Jiaming Cheng;Ni Li;Ban Wang;Shuhui Bu;Ming Zhou","doi":"10.1109/JIOT.2024.3409169","DOIUrl":"https://doi.org/10.1109/JIOT.2024.3409169","url":null,"abstract":"Multiagent reinforcement learning (MARL) algorithms have shown promise in the Internet of Things devices, such as unmanned aerial vehicle (UAV) swarms. However, the dynamic nature of large-scale swarm systems, with constantly changing numbers of agents and observed neighbors, poses challenges for MARL adaptation. Existing approaches struggle to extract meaningful features and require a substantial number of experience samples, resulting in low-sample efficiency and high-risk ratios. Moreover, these methods are effective in task-specific scenarios and fail to perform well in multitask settings. To overcome these challenges, this study proposes a high-sample efficient and scalable MARL approach for UAV swarms. The proposed approach incorporates a hypernetwork-based embedding attention (HEA) mechanism for the state representation of the policy network and a multiencoder gated transformer with a multilayer attention (MEGTrMA) mechanism for the value function. The HEA automatically generates weights for each agent to adapt to dynamic scenarios, enhancing representation ability and adaptability while reducing the cost of trial and error for improved learning efficiency. The MEGTrMA captures the contribution of each agent to the global observation, establishing long-term dependencies among them and facilitating stable policy learning in multitask scenarios. Simulation results demonstrate that the proposed method is scalable, generalizable, and high-sample efficient. Compared to learning from scratch, our method significantly reduces training time to less than one-fifth of the initial time by progressively increasing the number of UAVs and their corresponding neighbors. Additionally, the average number of collisions is reduced by an order of magnitude for large-scale UAV swarms.","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":null,"pages":null},"PeriodicalIF":8.2,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cooperative Resource Scheduling for Environment Sensing in Satellite-Terrestrial Vehicular Networks 卫星-地面车载网络中环境感知的合作资源调度
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-11-07 DOI: 10.1109/jiot.2024.3493613
Mingcheng He, Huaqing Wu, Xuemin Shen, Weihua Zhuang
{"title":"Cooperative Resource Scheduling for Environment Sensing in Satellite-Terrestrial Vehicular Networks","authors":"Mingcheng He, Huaqing Wu, Xuemin Shen, Weihua Zhuang","doi":"10.1109/jiot.2024.3493613","DOIUrl":"https://doi.org/10.1109/jiot.2024.3493613","url":null,"abstract":"","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vehicle Trajectory Prediction Using Hierarchical LSTM and Graph Attention Network 使用分层 LSTM 和图注意网络预测车辆轨迹
IF 10.6 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-11-07 DOI: 10.1109/jiot.2024.3493208
Jiaqin Wang, Kai Liu, Hantao Li, Qiang Gao, Xiangfen Wang
{"title":"Vehicle Trajectory Prediction Using Hierarchical LSTM and Graph Attention Network","authors":"Jiaqin Wang, Kai Liu, Hantao Li, Qiang Gao, Xiangfen Wang","doi":"10.1109/jiot.2024.3493208","DOIUrl":"https://doi.org/10.1109/jiot.2024.3493208","url":null,"abstract":"","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Internet of Things Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1