Formation of higher-order supramolecular complexes has emerged as a common principle underlying activity of a number of immune and regulated cell-death signalling pathways in animals, plants and fungi. Some of these signalosomes employ functional amyloid motifs in their assembly process. The description of such systems in fungi finds its origin in earlier studies on a fungal prion termed [Het-s], originally identified as a non-Mendelian cytoplasmic infectious element. Janine Beisson has been a key contributor to such early studies. Recent work on this and related systems offers a more integrated view framing this prion in a broader picture including related signalling systems described in animals. We propose here an auto-commentary centred on three recent studies on amyloid signalling in microbes. Collectively, these studies increase our understanding of fold conservation in functional amyloids and the structural basis of seeding, highlight the relation of fungal amyloid motifs to mammalian RHIM (RIP homotypic interaction motif) and expand the concept of Nod-like receptor-based amyloid signalosomes to the prokaryote reign.
Since the discovery of bovine spongiform encephalopathy (BSE), researchers have orally challenged cattle with infected brain material to study various aspects of disease pathogenesis. Unlike most other pathogens, oral BSE challenge does not always result in the expected clinical presentation and pathology. In a recent study, steers were challenged orally with BSE and all developed clinical signs and were sacrificed and tested. However, despite a similar incubation and clinical presentation, one of the steers did not have detectable PrPSc in its brain. Samples from this animal were analysed for genetic differences as well as for the presence of in vitro PrPSc seeding activity or infectivity to determine the BSE status of this animal and the potential reasons that it was different. Seeding activity was detected in the brainstem of the abnormal steer but it was approximately one million times less than that found in the normal BSE positive steers. Intra-cranial challenge of bovinized transgenic mice resulted in no transmission of disease. The abnormal steer had different genetic sequences in non-coding regions of the PRNP gene but detection of similar genotypes in Canadian BSE field cases, that showed the expected brain pathology, suggested these differences may not be the primary cause of the abnormal result. Breed composition analysis showed a higher Hereford content in the abnormal steer as well as in two Canadian atypical BSE field cases and several additional abnormal experimental animals. This study could point towards a possible impact of breed composition on BSE pathogenesis.
Prions are self-propagating proteins that cause fatal neurodegenerative diseases in humans. However, increasing evidence suggests that eukaryotic cells exploit prion conformational conversion for functional purposes. A recent study delineated a group of twenty prion-like proteins in humans, characterized by the presence of low-complexity glutamine-rich sequences with overlapping coiled-coil (CCs) motifs. This is the case of Mediator complex subunit 15 (MED15), which is overexpressed in a wide range of human cancers. Biophysical studies demonstrated that the prion-like domain (PrLD) of MED15 forms homodimers in solution, sustained by CCs interactions. Furthermore, the same coiled-coil (CC) region plays a crucial role in the PrLD structural transition to a transmissible β-sheet amyloid state. In this review, we discuss the role of CCs motifs and their contribution to amyloid transitions in human prion-like domains (PrLDs), while providing a comprehensive overview of six predicted human prion-like proteins involved in transcription, gene expression, or DNA damage response and associated with human disease, whose PrLDs contain or overlap with CCs sequences. Finally, we try to rationalize how these molecular signatures might relate to both their function and involvement in disease.
Chronic Wasting Disease (CWD), a well-described transmissible spongiform encephalopathy of the Cervidae family, is associated with the aggregation of an abnormal isoform (PrPCWD) of the naturally occurring host prion protein (PrPC). Variations in the PrP gene (PRNP) have been associated with CWD rate of infection and disease progression. We analysed 568 free-ranging white-tailed deer (Odocoileus virginianus) from 9 CWD-positive Michigan counties for PRNP polymorphisms. Sampling included 185 CWD-positive, 332 CWD non-detected, and an additional 51 CWD non-detected paired to CWD-positives by sex, age, and harvest location. We found 12 polymorphic sites of which 5 were non-synonymous and resulted in a change in amino acid composition. Thirteen haplotypes were predicted, of which 11 have previously been described. Using logistic regression, consistent with other studies, we found haplotypes C (OR = 0.488, 95% CI = 0.321-0.730, P < 0.001) and F (OR = 0.122, 95% CI = 0.007-0.612, P < 0.05) and diplotype BC (OR = 0.340, 95% CI = 0.154-0.709, P < 0.01) were less likely to be found in deer infected with CWD. As has also been documented in other studies, the presence of a serine at amino acid 96 was less likely to be found in deer infected with CWD (P < 0.001, OR = 0.360 and 95% CI = 0.227-0.556). Identification of PRNP polymorphisms associated with reduced vulnerability to CWD in Michigan deer and their spatial distribution can help managers design surveillance programmesand identify and prioritize areas for CWD management.
Insertion or deletion of single copy of octapeptide repeat (OR) in human PrP protein are considered as polymorphism, while of insertions of more numbers of OR and deletion of two copies of OR are associated with genetic prion diseases.Here, we reported a 58-year-old female patient who displayed clinical manifestations of Parkinson's disease (PD) but contained deletion mutation of single copy of OR in one PRNP allele. The patient complained involuntary tremor of left upper limb for 18 months and her symptoms aggravation for 6 months at the time referring to Chinese National CJD surveillance system. The tremor was pronounced at rest, exacerbated by stress and disappear during sleep. Her symptoms were partially relieved after receiving medicament for PD. Neurological examination recorded involuntary movement of left hand and gear-like muscle tension of left upper limb. Coordination movement reported positive of Romberg sign and unstable in heel-keen test. EEG recorded a mild abnormality, but without periodic sharp wave complexes (PSWC). MRI showed a mild write matter demyelination. CSF protein 14-3-3 was negative. PRNP sequencing revealed heterozygosity of single copy deletion on ORs (R1-2-3-4/R1-2-2-3-4).No family history of neurodegenerative disease was recorded. Such case with a single copy of OR deletion in PRNP displaying the feature of PD is rarely reported in Chinese mainland.
Creutzfeldt-Jakob disease (CJD) is a rare and fatal condition that leads to progressive neurodegeneration due to gliosis, vacuolation of central nervous system tissue, and loss of neurons. Microglia play a crucial role in maintaining Central Nervous System (CNS) homoeostasis, both in health and disease, through phagocytosis and cytokine production. In the context of CJD, the immunomodulatory function of microglia turns it into a cell of particular interest. Microglia would be activated by infectious prion proteins, initially acquiring a phagocytic and anti-inflammatory profile (M2), and producing cytokines such as IL-4, IL-10, and TGF-β. Therefore, microglia are seen as a key target for the development of new treatment approaches, with many emerging strategies to guide it towards a beneficial role upon neuroinflammation, by manipulating its metabolic pathways. In such a setting, many cellular targets in microglia that can be involved in phenotype modulation, such as membrane receptors, have been identified and pointed out as possible targets for further experiments and therapeutic approaches. In this article, we review the major findings about the role of microglia in CJD, including its relationship to some risk factors associated with the development of the disease. Furthermore, considering its central role in neural immunity, we explore microglial connection with other elements of the immune system and cell signalling, such as inflammasomes, the complement and purinergic systems, and the latest finding strategies to guide these cells from harmful to beneficial roles.
Methionine/methionine type 1 (MM1-type) sporadic Creutzfeldt-Jakob disease (sCJD), known as the 'classic type,' shows typical clinicopathological sCJD findings. In general, patients reach an akinetic mutism state within a few months of disease onset and die soon after if supportive therapies are not administered. Here, we describe remarkable neuropathologic observations of MM1-type sCJD in a 48-year-old, Japanese man with an unusually prolonged akinetic mutism state. In the early disease stages, the patient exhibited abnormal behaviour with gait disturbance and rapidly progressive cognitive dysfunction. Diffusion-weighted magnetic resonance imaging revealed extensive cerebral cortical hyperintensity. Prion protein (PrP) gene analysis revealed no mutations, and the polymorphic codon 129 exhibited methionine homozygosity. Although the patient remained stable with tube feeding for more than 2 years after reaching the akinetic mutism state, he died because of central respiratory failure 30 months after disease onset. Neuropathologic investigation showed extensive devastating lesions, such as status spongiosus, and typical spongiform changes could no longer be observed in the cerebral neocortex. Conspicuous pyramidal tract degeneration was observed. However, the regions commonly preserved in MM1-type sCJD pathology were still relatively preserved. Immunostaining revealed extensive diffuse synaptic-type PrP deposition in the grey matter. The pathological findings suggested that sCJD is a neurodegenerative disease that shows system degeneration; there are primary and secondary degenerative regions and distinct preserved regions, even in cases with prolonged disease duration. In addition, it is considered that there is a limited survival period for MM1-type sCJD, even if active symptomatic treatment is provided.
Swallowing function in long-term survivors of Creutzfeldt-Jakob disease (CJD) has not been elucidated. Herein, we report a patient with MM2-cortical-type sporadic CJD (MM2C-type sCJD) with long-term preservation of pharyngeal swallowing function using videofluoroscopic (VF) examination of swallowing. A 55-year-old woman was admitted to hospital because of dyscalculia and memory disturbance 3 years after the onset of these symptoms. Neurological examination revealed dementia, extrapyramidal signs, and delusion. Diffusion-weighted MRI revealed bilateral hyperintensity in the basal ganglia and frontal, temporal, and parietal cortices. No mutation with the methionine homozygote at codon 129 was found on PRNP gene analysis. VF was performed 68 months after the onset. Although bolus transport from the oral cavity to the pharynx worsened, the pharyngeal swallowing function was preserved even 68 months after onset. Serial MRI examinations revealed no apparent atrophy of the brainstem. Single photon emission computed tomography revealed that the regional cerebral blood flow in the brainstem was preserved. These findings suggest that pseudobulbar palsy is the pathophysiology underlying dysphagia in long-term survivors of MM2C-type sCJD, probably owing to preserved brainstem function even in a state of akinetic mutism.

