首页 > 最新文献

Permafrost and Periglacial Processes最新文献

英文 中文
Temperature evolution and runoff contribution of three rock glaciers in Switzerland under future climate forcing 未来气候强迫下瑞士三座岩石冰川的温度演化和径流贡献
IF 5 3区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2022-05-18 DOI: 10.1002/ppp.2149
L. Pruessner, M. Huss, D. Farinotti
With ongoing climate change water availability in the source regions of alpine streams are at stake. In particular, dry mountain regions which currently rely on glacial meltwater will need to adapt. Since rock glaciers are more resilient to climate change and occur in nearly all high‐mountain catchments around the globe with some form of glacierization, it is of interest to investigate their contribution to runoff under different climate scenarios. Three well‐monitored rock glacier sites in the Swiss Alps (Murtèl, Ritigraben, and Schafberg) have been investigated under the climate change scenarios corresponding to low, medium and high greenhouse gas emissions to determine how their runoff contribution is affected. By the end of the 21st century, runoff from permafrost melting could account for 5–12% (12.0% for Murtèl, 7.0% for Ritigraben, and 5.0% for Schafberg) of monthly catchment runoff at maximum in an average year, and up to 50% in extreme years. For the low‐emission scenario, little change in the runoff contribution from rock glaciers is found, while the medium‐emission scenario shows increased variability and a shift in the seasonal runoff peak to earlier in the year. The high‐emission scenario indicates a further increase in the variability of the permafrost runoff contribution and also the development of a secondary seasonal peak in autumn, most prominently in the late century.
随着气候变化的持续,高山溪流源头地区的水资源供应岌岌可危。特别是目前依赖冰川融水的干旱山区需要适应。由于岩石冰川对气候变化的抵抗力更强,并且几乎出现在全球所有高山流域,并伴有某种形式的冰川作用,因此研究它们在不同气候情景下对径流的贡献是有意义的。在与低、中、高温室气体排放相对应的气候变化情景下,对瑞士阿尔卑斯山的三个监测良好的岩石冰川点(Murtèl、Ritigraben和Schafberg)进行了调查,以确定其径流贡献如何受到影响。到21世纪末,永久冻土融化产生的径流可能占月集水区径流的5-12%(Murtèl为12.0%,Ritigraben为7.0%,Schafberg为5.0%),平均年份最大,极端年份最高可达50%。对于低排放情景,岩石冰川的径流贡献几乎没有变化,而中等排放情景显示出变化增加,季节性径流峰值向年初转移。高排放情景表明,永久冻土径流贡献的可变性进一步增加,秋季出现第二个季节性峰值,最突出的是在本世纪末。
{"title":"Temperature evolution and runoff contribution of three rock glaciers in Switzerland under future climate forcing","authors":"L. Pruessner, M. Huss, D. Farinotti","doi":"10.1002/ppp.2149","DOIUrl":"https://doi.org/10.1002/ppp.2149","url":null,"abstract":"With ongoing climate change water availability in the source regions of alpine streams are at stake. In particular, dry mountain regions which currently rely on glacial meltwater will need to adapt. Since rock glaciers are more resilient to climate change and occur in nearly all high‐mountain catchments around the globe with some form of glacierization, it is of interest to investigate their contribution to runoff under different climate scenarios. Three well‐monitored rock glacier sites in the Swiss Alps (Murtèl, Ritigraben, and Schafberg) have been investigated under the climate change scenarios corresponding to low, medium and high greenhouse gas emissions to determine how their runoff contribution is affected. By the end of the 21st century, runoff from permafrost melting could account for 5–12% (12.0% for Murtèl, 7.0% for Ritigraben, and 5.0% for Schafberg) of monthly catchment runoff at maximum in an average year, and up to 50% in extreme years. For the low‐emission scenario, little change in the runoff contribution from rock glaciers is found, while the medium‐emission scenario shows increased variability and a shift in the seasonal runoff peak to earlier in the year. The high‐emission scenario indicates a further increase in the variability of the permafrost runoff contribution and also the development of a secondary seasonal peak in autumn, most prominently in the late century.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44624786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The vertical distribution of soil organic carbon and nitrogen in a permafrost‐affected wetland on the Qinghai–Tibet Plateau: Implications for Holocene development and environmental change 青藏高原多年冻土带湿地土壤有机碳和氮的垂直分布:对全新世发育和环境变化的启示
IF 5 3区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2022-05-18 DOI: 10.1002/ppp.2146
Qingfeng Wang, H. Jin, Qingbai Wu, Ting-jun Zhang, Ziqiang Yuan, Xiaoying Li, Jiao Ming, Chengsong Yang, R. Serban, Yadong Huang
Currently, we know little about accumulation of soil carbon and nitrogen in permafrost‐affected wetlands on the Qinghai–Tibet Plateau (QTP). In this study, we analyze the vertical distribution of concentrations, stocks, and apparent accumulation rates of soil organic carbon (SOC) and total nitrogen (TN) in a wetland underlain by ice‐rich permafrost in the Headwater Area of the Yellow River (HAYR) on the northeastern QTP in the context of Holocene environmental change. SOC and TN stocks at depths of 0–216 cm were 80.0 kg C m−2 and 6.7 kg N m−2, respectively. During the past 7.3 kyr, the general regional climate trend in the HAYR was cooling and drying, as indicated by the decline in chemical weathering in the soil profile. Overall, SOC and TN concentrations increased during this period. Meanwhile, an intense period of SOC and TN accumulation occurred at 1,110–720 yr BP, in contrast to much lower apparent accumulation rates of SOC and TN for the other periods during the past 7.3 kyr. This suggests that the accumulation of SOC and TN in permafrost‐affected wetlands was also affected by local environmental factors, such as soil material deposition rate, in addition to climatic controls as exerted mainly by temperature and precipitation. This study may help integrate relevant studies on plateau wetlands into global models and estimates to better simulate and predict interactions between the carbon cycle and climate changes on a global scale.
目前,我们对青藏高原多年冻土影响湿地的土壤碳氮积累知之甚少。在本研究中,我们分析了全新世环境变化背景下黄河源头富冰多年冻土湿地土壤有机碳(SOC)和总氮(TN)的浓度、储量和表观积累率的垂直分布。0–216深处的SOC和TN储量 cm分别为80.0 kg C m−2和6.7 kg N m−2。在过去的7.3 kyr期间,HAYR的总体区域气候趋势是冷却和干燥,这表明土壤剖面中化学风化的减少。总的来说,SOC和TN浓度在这一时期有所增加。同时,在1110–720时出现了SOC和TN的强烈积累期 yr BP,相比之下,在过去7.3 kyr的其他时期,SOC和TN的表观积累率要低得多。这表明,受永久冻土影响的湿地中SOC和TN的积累也受到当地环境因素的影响,如土壤物质沉积速率,以及主要由温度和降水施加的气候控制。这项研究可能有助于将高原湿地的相关研究纳入全球模型和估计,以更好地模拟和预测全球范围内碳循环与气候变化之间的相互作用。
{"title":"The vertical distribution of soil organic carbon and nitrogen in a permafrost‐affected wetland on the Qinghai–Tibet Plateau: Implications for Holocene development and environmental change","authors":"Qingfeng Wang, H. Jin, Qingbai Wu, Ting-jun Zhang, Ziqiang Yuan, Xiaoying Li, Jiao Ming, Chengsong Yang, R. Serban, Yadong Huang","doi":"10.1002/ppp.2146","DOIUrl":"https://doi.org/10.1002/ppp.2146","url":null,"abstract":"Currently, we know little about accumulation of soil carbon and nitrogen in permafrost‐affected wetlands on the Qinghai–Tibet Plateau (QTP). In this study, we analyze the vertical distribution of concentrations, stocks, and apparent accumulation rates of soil organic carbon (SOC) and total nitrogen (TN) in a wetland underlain by ice‐rich permafrost in the Headwater Area of the Yellow River (HAYR) on the northeastern QTP in the context of Holocene environmental change. SOC and TN stocks at depths of 0–216 cm were 80.0 kg C m−2 and 6.7 kg N m−2, respectively. During the past 7.3 kyr, the general regional climate trend in the HAYR was cooling and drying, as indicated by the decline in chemical weathering in the soil profile. Overall, SOC and TN concentrations increased during this period. Meanwhile, an intense period of SOC and TN accumulation occurred at 1,110–720 yr BP, in contrast to much lower apparent accumulation rates of SOC and TN for the other periods during the past 7.3 kyr. This suggests that the accumulation of SOC and TN in permafrost‐affected wetlands was also affected by local environmental factors, such as soil material deposition rate, in addition to climatic controls as exerted mainly by temperature and precipitation. This study may help integrate relevant studies on plateau wetlands into global models and estimates to better simulate and predict interactions between the carbon cycle and climate changes on a global scale.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46217112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Impacts of ecological succession and climate warming on permafrost aggradation in drained lake basins of the Tuktoyaktuk Coastlands, Northwest Territories, Canada 生态演替和气候变暖对加拿大西北地区图克托亚图克海岸干流湖盆多年冻土退化的影响
IF 5 3区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2022-04-13 DOI: 10.1002/ppp.2143
T. Lantz, Yu Zhang, S. Kokelj
Rapidly increasing air temperatures will alter permafrost conditions across the Arctic, but variation in soils, vegetation, snow conditions, and their effects on ground thermal regime complicate prediction across spatial and temporal scales. Processes that result in the emergence of new surfaces (lake drainage, channel migration, isostatic uplift, etc.) provide an opportunity to assess the factors influencing permafrost aggradation and terrain evolution under a warming climate. In this study we describe ground temperatures, vegetation, and snow and soil conditions at six drained lake basins (DLBs) that have exposed new terrain in the Tuktoyaktuk Coastlands in the last 20–100 years. We also use one‐dimensional thermal modeling to assess the impact of ecological succession and future climate scenarios on permafrost conditions in historical and future DLBs. Our field observations show that deep snow pack and shallow organic layers at shrub‐dominated DLBs promote increased thaw depth and ground temperatures compared to a sedge‐dominated DLB and two ancient DLB reference sites. Modeling of past and future drainages shows that climate warming projected under RCP 8.5 will reduce rates of permafrost aggradation and thickness, and drive top‐down thaw that could degrade permafrost in shrub‐dominated DLBs by the end of the century. Permafrost at sedge‐dominated sites was more resilient to warming under RCP 8.5, with the onset of top‐down thaw delayed until about 2080. Together, this indicates that the effects of ecological succession on organic soil development and snow drifting will strongly influence the aggradation and resilience of permafrost in DLBs. Our analysis suggests that DLBs and other emergent landscapes will be the first permafrost‐free environments to develop under a warming climate in the continuous permafrost zone.
气温的快速上升将改变整个北极的永久冻土条件,但土壤、植被、雪况的变化及其对地表热状况的影响使空间和时间尺度的预测复杂化。导致新表面出现的过程(湖泊排水、河道迁移、均衡隆起等)为评估气候变暖下影响永久冻土沉积和地形演变的因素提供了机会。在这项研究中,我们描述了六个排水湖盆(DLB)的地面温度、植被、雪和土壤条件,这些湖盆在过去20–100年中暴露了图克托亚克图克海岸的新地形 年。我们还使用一维热建模来评估生态演替和未来气候情景对历史和未来DLB中永久冻土条件的影响。我们的实地观察表明,与莎草为主的DLB和两个古老的DLB参考点相比,灌木为主的DLBs的深层积雪和浅层有机层促进了融化深度和地面温度的增加。对过去和未来排水系统的建模表明,根据RCP 8.5预测的气候变暖将降低永久冻土的沉积率和厚度,并推动自上而下的解冻,这可能会在本世纪末使灌木主导的DLB中的永久冻土退化。莎草为主的地区的永久冻土在RCP 8.5下对变暖更有抵抗力,自上而下解冻的开始推迟到2080年左右。总之,这表明生态演替对有机土壤发育和飘雪的影响将强烈影响DLBs中永久冻土的沉积和恢复力。我们的分析表明,DLB和其他新兴景观将是连续多年冻土区在气候变暖的情况下发展起来的第一个无多年冻土环境。
{"title":"Impacts of ecological succession and climate warming on permafrost aggradation in drained lake basins of the Tuktoyaktuk Coastlands, Northwest Territories, Canada","authors":"T. Lantz, Yu Zhang, S. Kokelj","doi":"10.1002/ppp.2143","DOIUrl":"https://doi.org/10.1002/ppp.2143","url":null,"abstract":"Rapidly increasing air temperatures will alter permafrost conditions across the Arctic, but variation in soils, vegetation, snow conditions, and their effects on ground thermal regime complicate prediction across spatial and temporal scales. Processes that result in the emergence of new surfaces (lake drainage, channel migration, isostatic uplift, etc.) provide an opportunity to assess the factors influencing permafrost aggradation and terrain evolution under a warming climate. In this study we describe ground temperatures, vegetation, and snow and soil conditions at six drained lake basins (DLBs) that have exposed new terrain in the Tuktoyaktuk Coastlands in the last 20–100 years. We also use one‐dimensional thermal modeling to assess the impact of ecological succession and future climate scenarios on permafrost conditions in historical and future DLBs. Our field observations show that deep snow pack and shallow organic layers at shrub‐dominated DLBs promote increased thaw depth and ground temperatures compared to a sedge‐dominated DLB and two ancient DLB reference sites. Modeling of past and future drainages shows that climate warming projected under RCP 8.5 will reduce rates of permafrost aggradation and thickness, and drive top‐down thaw that could degrade permafrost in shrub‐dominated DLBs by the end of the century. Permafrost at sedge‐dominated sites was more resilient to warming under RCP 8.5, with the onset of top‐down thaw delayed until about 2080. Together, this indicates that the effects of ecological succession on organic soil development and snow drifting will strongly influence the aggradation and resilience of permafrost in DLBs. Our analysis suggests that DLBs and other emergent landscapes will be the first permafrost‐free environments to develop under a warming climate in the continuous permafrost zone.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49216576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A systematic evaluation of electrical resistivity tomography for permafrost interface detection using forward modeling 电阻率层析成像用于永冻土界面探测的正演模型系统评价
IF 5 3区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2022-04-12 DOI: 10.1002/ppp.2141
T. Herring, A. Lewkowicz
The accuracy of electrical resistivity tomography (ERT) as a method for locating frozen‐to‐unfrozen interfaces in permafrost environments was investigated systematically for simplified scenarios using forward modeling. The impacts of varying the resistivity, thickness, and lateral continuity of the frozen region, altering the thickness of the surface thaw layer, and of differing array types were evaluated in relation to the detection and positioning of frozen–unfrozen interfaces. The results from these simple scenarios show that boundaries between frozen and unfrozen ground are more accurately indicated by maximum gradients rather than a fixed threshold value based on the resistivity at the base of the surface thawed layer. The resistivity of the frozen region plays a significant role in interpreted boundary locations, with high resistivity values causing a decrease in model sensitivity at depth and increased uncertainty in the interpreted base of the frozen zone, particularly in laterally continuous permafrost. Error in the interpreted base of the frozen zone also increases for thicker permafrost bodies, while thaw layer thickness plays a less significant role. In laterally discontinuous permafrost, wider frozen bodies cause the boundary at the base of the frozen region to become less distinct. Array type affected the appearance of the inverted resistivity models and the frozen–unfrozen boundaries located using the threshold method, but boundary locations were comparable among array types when the maximum gradient method was used. This synthetic modeling showed that the boundaries between unfrozen and frozen regions in ERT images should be interpreted with caution, particularly in ice‐rich, laterally continuous permafrost where sensitivity at depth is low. We conclude that forward modeling is a useful tool for permafrost investigations, both for assessing the likelihood of achieving ERT survey goals prior to fieldwork, and as an interpretive aid after field data have been acquired.
使用正演建模,系统地研究了电阻率层析成像(ERT)作为一种定位永久冻土环境中冻结到未冻结界面的方法的准确性。评估了冻结区域电阻率、厚度和横向连续性的变化、表面解冻层厚度的变化以及不同阵列类型对冻结-未冻结界面检测和定位的影响。这些简单场景的结果表明,冻结和未冻结地面之间的边界由最大梯度更准确地指示,而不是基于表面解冻层底部电阻率的固定阈值。冻结区的电阻率在解释的边界位置中起着重要作用,高电阻率值导致深度处模型灵敏度降低,冻结区解释基底的不确定性增加,特别是在横向连续的永久冻土中。冻土层厚度越厚,冻土带基底的解释误差也越大,而融化层厚度的作用越小。在横向不连续的永久冻土中,更宽的冻结体导致冻结区域底部的边界变得不那么明显。阵列类型影响反演电阻率模型的外观和使用阈值方法定位的冻结-未冻结边界,但当使用最大梯度方法时,阵列类型之间的边界位置是可比较的。该合成模型表明,应谨慎解释ERT图像中未冻结和冻结区域之间的边界,特别是在深度敏感性较低的富冰、横向连续的永久冻土中。我们得出的结论是,正向建模是永久冻土调查的有用工具,既可以在实地调查前评估实现ERT调查目标的可能性,也可以在获得实地数据后作为解释性辅助。
{"title":"A systematic evaluation of electrical resistivity tomography for permafrost interface detection using forward modeling","authors":"T. Herring, A. Lewkowicz","doi":"10.1002/ppp.2141","DOIUrl":"https://doi.org/10.1002/ppp.2141","url":null,"abstract":"The accuracy of electrical resistivity tomography (ERT) as a method for locating frozen‐to‐unfrozen interfaces in permafrost environments was investigated systematically for simplified scenarios using forward modeling. The impacts of varying the resistivity, thickness, and lateral continuity of the frozen region, altering the thickness of the surface thaw layer, and of differing array types were evaluated in relation to the detection and positioning of frozen–unfrozen interfaces. The results from these simple scenarios show that boundaries between frozen and unfrozen ground are more accurately indicated by maximum gradients rather than a fixed threshold value based on the resistivity at the base of the surface thawed layer. The resistivity of the frozen region plays a significant role in interpreted boundary locations, with high resistivity values causing a decrease in model sensitivity at depth and increased uncertainty in the interpreted base of the frozen zone, particularly in laterally continuous permafrost. Error in the interpreted base of the frozen zone also increases for thicker permafrost bodies, while thaw layer thickness plays a less significant role. In laterally discontinuous permafrost, wider frozen bodies cause the boundary at the base of the frozen region to become less distinct. Array type affected the appearance of the inverted resistivity models and the frozen–unfrozen boundaries located using the threshold method, but boundary locations were comparable among array types when the maximum gradient method was used. This synthetic modeling showed that the boundaries between unfrozen and frozen regions in ERT images should be interpreted with caution, particularly in ice‐rich, laterally continuous permafrost where sensitivity at depth is low. We conclude that forward modeling is a useful tool for permafrost investigations, both for assessing the likelihood of achieving ERT survey goals prior to fieldwork, and as an interpretive aid after field data have been acquired.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46337395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Variations of permafrost under freezing and thawing conditions in the coastal catchment Fuglebekken (Hornsund, Spitsbergen, Svalbard) Fuglebekken(Hornsund、Spitsbergen、Svalbard)沿海集水区冻融条件下永久冻土的变化
IF 5 3区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2022-04-06 DOI: 10.1002/ppp.2147
M. Majdański, W. Dobiński, A. Marciniak, B. Owoc, M. Glazer, M. Osuch, T. Wawrzyniak
Two seismic field surveys were organized in the Fuglebekken coastal catchment of Hornsund, Spitsbergen, Svalbard, to map frozen and unfrozen ground and assess the spatial and temporal state of the permafrost. Surveys were conducted during maximum thawing in September and maximum freezing in April of the following year. The obtained seismic wavefields were interpreted using three methods: the dispersion of surface waves, seismic refraction, and travel time tomography. The seismic experiments were supported by nearby boreholes with continuous thermal monitoring. In the frozen survey, a gradual increase in ice content of water‐filled sediments was found, farther from the coast. In September the shallow sensors in the boreholes validated positive ground temperatures down to 3.0 m depth, with below‐zero temperatures at greater depths. However, seismic tomography indicated that the ground was unfrozen down to 30 m. The ground probably remained unfrozen due to intrusion of high‐salinity seawater, even though it had been below 0°C. In April, in the area 300 m and farther from the coast, the ground below 3 m depth was frozen, except for a 19‐m‐deep open talik identified in a borehole at the slope of Fugle Mountain. We attribute the complex spatial extent, form, and condition of permafrost in the Fuglebekken coastal catchment to multiple factors, including variable solar energy, snow and ground cover, thermal and humidity properties of the soil, subsurface water flow, and seawater intrusion. The presented combination of seismic methods provides a new robust and precise approach to assess the spatial variability of permafrost in a coastal environment. The proposed interpretation shows deep percolation of subsurface flow into permafrost and its seasonal unfreezing at a depth of 30 m in both the zone of saltwater intrusion and the slope area.
在斯瓦尔巴群岛斯匹次卑尔根岛Hornsund的Fuglebekken沿海集水区组织了两次地震现场调查,以绘制冻土和未冻土的地图,并评估永久冻土的时空状态。调查是在9月最大解冻期和次年4月最大冻结期进行的。得到的地震波场用三种方法解释:表面波色散、地震折射和走时层析成像。地震试验由附近钻孔连续热监测支持。在冰冻调查中,发现在离海岸较远的地方,充满水的沉积物中的冰含量逐渐增加。9月,钻孔中的浅层传感器检测到3.0 m深度的地面温度为正,在更深的深度温度低于零。然而,地震层析成像显示,地面在30米以下是解冻的。地面可能由于高盐度海水的侵入而保持不冻结,即使它低于0°C。4月,在距离海岸300米及更远的地区,除了在富格尔山斜坡的一个钻孔中发现的一个19米深的露天通道外,3米深以下的地面都被冻结了。我们将Fuglebekken沿海集水区多年冻土复杂的空间范围、形态和条件归因于多种因素,包括可变的太阳能、积雪和地表覆盖、土壤的热湿特性、地下水流和海水入侵。提出的地震方法组合为评估沿海环境中永久冻土的空间变异性提供了一种新的可靠而精确的方法。所提出的解释表明,在盐水侵入区和斜坡区,地下水流深度渗透到永久冻土中,其季节性解冻深度为30 m。
{"title":"Variations of permafrost under freezing and thawing conditions in the coastal catchment Fuglebekken (Hornsund, Spitsbergen, Svalbard)","authors":"M. Majdański, W. Dobiński, A. Marciniak, B. Owoc, M. Glazer, M. Osuch, T. Wawrzyniak","doi":"10.1002/ppp.2147","DOIUrl":"https://doi.org/10.1002/ppp.2147","url":null,"abstract":"Two seismic field surveys were organized in the Fuglebekken coastal catchment of Hornsund, Spitsbergen, Svalbard, to map frozen and unfrozen ground and assess the spatial and temporal state of the permafrost. Surveys were conducted during maximum thawing in September and maximum freezing in April of the following year. The obtained seismic wavefields were interpreted using three methods: the dispersion of surface waves, seismic refraction, and travel time tomography. The seismic experiments were supported by nearby boreholes with continuous thermal monitoring. In the frozen survey, a gradual increase in ice content of water‐filled sediments was found, farther from the coast. In September the shallow sensors in the boreholes validated positive ground temperatures down to 3.0 m depth, with below‐zero temperatures at greater depths. However, seismic tomography indicated that the ground was unfrozen down to 30 m. The ground probably remained unfrozen due to intrusion of high‐salinity seawater, even though it had been below 0°C. In April, in the area 300 m and farther from the coast, the ground below 3 m depth was frozen, except for a 19‐m‐deep open talik identified in a borehole at the slope of Fugle Mountain. We attribute the complex spatial extent, form, and condition of permafrost in the Fuglebekken coastal catchment to multiple factors, including variable solar energy, snow and ground cover, thermal and humidity properties of the soil, subsurface water flow, and seawater intrusion. The presented combination of seismic methods provides a new robust and precise approach to assess the spatial variability of permafrost in a coastal environment. The proposed interpretation shows deep percolation of subsurface flow into permafrost and its seasonal unfreezing at a depth of 30 m in both the zone of saltwater intrusion and the slope area.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47158214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Effects of thermosyphons on the thermal regime and stability of cast‐in‐place piles in permafrost regions on the Qinghai‐Tibet Plateau 热虹吸对青藏高原多年冻土区灌注桩热状态及稳定性的影响
IF 5 3区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2022-04-05 DOI: 10.1002/ppp.2144
Yan-hui You, Qihao Yu, Xinbin Wang, Lei Guo, Kun Chen, Qingbai Wu
The thermal effects of cast‐in‐place piles on the surrounding permafrost frequently induce deformation or failure of piles in permafrost regions. Because piles are directly inserted into the permafrost layer, the thermal disturbance of the piles is more straightforward than that of road embankments to the permafrost. Thermosyphons have proven to be effective in stabilizing the embankments of highways and railways in permafrost regions. However, the effects of thermosyphons on the thermal regime and stability of the cast‐in‐place piles remain unclear. The foundation soils of most piles in permafrost regions along the Qinghai‐Tibet Power Transmission Line were cooled by thermosyphons, and the results of a 7‐year‐period monitoring of ground temperature and deformation of a pile are presented in this paper. The results showed that the extent of thawed permafrost during the installation of the pile extended more than 5 m away from the pile. Thermosyphons shortened the refreezing time by more than 2 months. Thermosyphons cooled the surrounding permafrost to temperatures below the ambient ground temperature at the end of the cold seasons, and the temperature difference lasted until the end of the warm seasons owing to cold reserves formed in the cold season. The thermosyphons mitigated the thermal effects of the concrete pile owing to their higher thermal conductivity. Thermosyphons also significantly decreased the rate of active layer thickening around the pile compared to that observed in a natural field under a warming climate. Generally, thermosyphons stabilized the piles during the observation period by cooling the permafrost around the pile and producing a greater adfreeze force to counteract the frost heave force and subsequently support the tower. Additional thermosyphons or insulation measures may be necessary to ensure the long‐term stability of piles, considering a faster degradation of the ambient permafrost than expected. The results may provide insights into the design and maintenance of cast‐in‐place piles in warm permafrost regions.
在多年冻土区,灌注桩对周围多年冻土区的热效应经常引起桩的变形或破坏。由于桩直接插入永冻层,桩的热扰动比路堤对永冻层的热扰动更直接。热虹吸已被证明在稳定永久冻土区公路和铁路的路堤方面是有效的。然而,热虹吸对灌注桩热状态和稳定性的影响尚不清楚。本文介绍了青藏输电沿线多年冻土区大部分桩的地基土采用热虹吸降温的方法,并对某桩的地温和变形进行了7年的监测。结果表明:桩基安装过程中,多年冻土融化范围向桩外延伸5 m以上;热虹吸使再冻时间缩短了2个月以上。在寒冷季节结束时,热虹吸将周围的永久冻土冷却到低于环境地温的温度,由于寒冷季节形成的冷储备,这种温差一直持续到温暖季节结束。热虹吸管由于其较高的导热性,减轻了混凝土桩的热效应。与在气候变暖的自然环境中观察到的情况相比,热虹吸管也显著降低了桩周围活性层增厚的速度。一般来说,在观测期间,热虹吸通过冷却桩周围的永久冻土,产生更大的冻结力来抵消冻胀力,从而支撑塔楼,从而稳定了桩。考虑到周围永久冻土的退化速度比预期的要快,可能需要额外的热虹吸或保温措施来确保桩的长期稳定性。研究结果可能为温暖的永久冻土区灌注桩的设计和维护提供见解。
{"title":"Effects of thermosyphons on the thermal regime and stability of cast‐in‐place piles in permafrost regions on the Qinghai‐Tibet Plateau","authors":"Yan-hui You, Qihao Yu, Xinbin Wang, Lei Guo, Kun Chen, Qingbai Wu","doi":"10.1002/ppp.2144","DOIUrl":"https://doi.org/10.1002/ppp.2144","url":null,"abstract":"The thermal effects of cast‐in‐place piles on the surrounding permafrost frequently induce deformation or failure of piles in permafrost regions. Because piles are directly inserted into the permafrost layer, the thermal disturbance of the piles is more straightforward than that of road embankments to the permafrost. Thermosyphons have proven to be effective in stabilizing the embankments of highways and railways in permafrost regions. However, the effects of thermosyphons on the thermal regime and stability of the cast‐in‐place piles remain unclear. The foundation soils of most piles in permafrost regions along the Qinghai‐Tibet Power Transmission Line were cooled by thermosyphons, and the results of a 7‐year‐period monitoring of ground temperature and deformation of a pile are presented in this paper. The results showed that the extent of thawed permafrost during the installation of the pile extended more than 5 m away from the pile. Thermosyphons shortened the refreezing time by more than 2 months. Thermosyphons cooled the surrounding permafrost to temperatures below the ambient ground temperature at the end of the cold seasons, and the temperature difference lasted until the end of the warm seasons owing to cold reserves formed in the cold season. The thermosyphons mitigated the thermal effects of the concrete pile owing to their higher thermal conductivity. Thermosyphons also significantly decreased the rate of active layer thickening around the pile compared to that observed in a natural field under a warming climate. Generally, thermosyphons stabilized the piles during the observation period by cooling the permafrost around the pile and producing a greater adfreeze force to counteract the frost heave force and subsequently support the tower. Additional thermosyphons or insulation measures may be necessary to ensure the long‐term stability of piles, considering a faster degradation of the ambient permafrost than expected. The results may provide insights into the design and maintenance of cast‐in‐place piles in warm permafrost regions.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42234143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Modeling the role of lateral surface flow in low‐relief polygonal tundra 低起伏多角形冻土带侧面流作用的模拟
IF 5 3区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2022-03-31 DOI: 10.1002/ppp.2145
A. Jan
Ice‐wedge polygon troughs play an important role in controlling the hydrology of low‐relief polygonal tundra regions. Lateral surface flow is confined to troughs only, but it is often neglected in model projections of permafrost thermal hydrology. Recent field and modeling studies have shown that, after rain events, increases in trough water levels are significantly more than the observed precipitation, highlighting the role of lateral surface flow in the polygonal tundra. Therefore, understanding how trough lateral surface flow can influence polygonal tundra thermal hydrology is important, especially under projected changes in temperatures and rainfall in the Arctic regions. Using an integrated cryohydrology model, this study presents plot‐scale end‐of‐century projections of ice‐wedge polygon water budget components and active layer thickness with and without trough lateral surface flow under the Representative Concentration Pathway 8.5 scenario. Trough lateral surface flow is incorporated through a newly developed empirical model, evaluated against field measurements. The numerical scenario that includes trough lateral surface flow simulates discharge (outflow from a polygon) and recharge (rain‐induced inflow to a polygon trough from upslope areas), while the scenario that does not include trough lateral surface flow ignores recharge. The results show considerable reduction (about 100–150%) in evapotranspiration and discharge in rainy years in the scenarios ignoring trough lateral surface flow, but less effect on soil water storage, in comparison with the scenario with trough lateral surface flow. In addition, the results demonstrate long‐term changes (~10–15 cm increase) in active layer thickness when trough lateral surface flow is modeled. This study highlights the importance of including lateral surface flow processes to better understand the long‐term thermal and hydrological changes in low‐relief polygonal tundra regions under a changing climate.
冰楔多边形槽在控制低海拔多边形苔原地区的水文方面发挥着重要作用。多年冻土热力水文模型预测中,地表侧向流仅限于槽内,但常被忽略。最近的实地和建模研究表明,降雨事件后,槽水位的增加明显超过观测到的降水量,这突出了多边苔原中横向地表流的作用。因此,了解槽侧向表面流如何影响多边形苔原的热水文非常重要,尤其是在北极地区预计温度和降雨量变化的情况下。本研究使用综合冷冻水文学模型,在代表性浓度路径8.5情景下,对冰楔多边形水预算成分和活动层厚度(有无槽侧向表面流)进行了世纪末的绘图预测。通过一个新开发的经验模型,结合现场测量,对槽横向表面流进行评估。包括槽侧向表面流的数值场景模拟排放(从多边形流出)和补给(由降雨引起的从上坡区流入多边形槽的流入),而不包括槽侧向地面流的场景忽略补给。结果表明,在忽略槽面侧流的情况下,雨季的蒸散量和流量显著减少(约100-150%),但与槽面侧流量的情况相比,对土壤蓄水的影响较小。此外,结果显示了长期变化(~10-15 cm增加)。这项研究强调了纳入横向地表流过程的重要性,以更好地了解气候变化下低海拔多边形苔原地区的长期热变化和水文变化。
{"title":"Modeling the role of lateral surface flow in low‐relief polygonal tundra","authors":"A. Jan","doi":"10.1002/ppp.2145","DOIUrl":"https://doi.org/10.1002/ppp.2145","url":null,"abstract":"Ice‐wedge polygon troughs play an important role in controlling the hydrology of low‐relief polygonal tundra regions. Lateral surface flow is confined to troughs only, but it is often neglected in model projections of permafrost thermal hydrology. Recent field and modeling studies have shown that, after rain events, increases in trough water levels are significantly more than the observed precipitation, highlighting the role of lateral surface flow in the polygonal tundra. Therefore, understanding how trough lateral surface flow can influence polygonal tundra thermal hydrology is important, especially under projected changes in temperatures and rainfall in the Arctic regions. Using an integrated cryohydrology model, this study presents plot‐scale end‐of‐century projections of ice‐wedge polygon water budget components and active layer thickness with and without trough lateral surface flow under the Representative Concentration Pathway 8.5 scenario. Trough lateral surface flow is incorporated through a newly developed empirical model, evaluated against field measurements. The numerical scenario that includes trough lateral surface flow simulates discharge (outflow from a polygon) and recharge (rain‐induced inflow to a polygon trough from upslope areas), while the scenario that does not include trough lateral surface flow ignores recharge. The results show considerable reduction (about 100–150%) in evapotranspiration and discharge in rainy years in the scenarios ignoring trough lateral surface flow, but less effect on soil water storage, in comparison with the scenario with trough lateral surface flow. In addition, the results demonstrate long‐term changes (~10–15 cm increase) in active layer thickness when trough lateral surface flow is modeled. This study highlights the importance of including lateral surface flow processes to better understand the long‐term thermal and hydrological changes in low‐relief polygonal tundra regions under a changing climate.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46605915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Challenging the southern boundary of active rock glaciers in West Greenland 挑战西格陵兰活跃岩石冰川的南部边界
IF 5 3区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2022-03-07 DOI: 10.1002/ppp.2139
J. Abermann, K. Langley
Rock glaciers (RGs) are landscape features impacting the composition and magnitude of runoff and, given their ice content, they are used as indicators for past and present climate conditions. While our knowledge of RG coverage has improved over recent years in many mountainous regions, there is very little information available for RGs in Greenland. Here, we provide evidence for an active RG in West Greenland, about 230 km south of what previously has been identified as the southern limit of active RGs. We present field evidence such as bottom temperature of the snow pack and surface displacements and indicate how these results could be utilized in further studies to better assess RG distribution or their ice content.
岩石冰川是影响径流组成和大小的景观特征,鉴于其含冰量,它们被用作过去和现在气候条件的指标。尽管近年来我们对许多山区RG覆盖率的了解有所提高,但格陵兰岛RG的可用信息很少。在这里,我们提供了西格陵兰活跃RG的证据,约230 在先前被确定为活动RG的南部界限以南公里处。我们提供了现场证据,如积雪的底部温度和表面位移,并指出如何在进一步的研究中利用这些结果来更好地评估RG分布或其含冰量。
{"title":"Challenging the southern boundary of active rock glaciers in West Greenland","authors":"J. Abermann, K. Langley","doi":"10.1002/ppp.2139","DOIUrl":"https://doi.org/10.1002/ppp.2139","url":null,"abstract":"Rock glaciers (RGs) are landscape features impacting the composition and magnitude of runoff and, given their ice content, they are used as indicators for past and present climate conditions. While our knowledge of RG coverage has improved over recent years in many mountainous regions, there is very little information available for RGs in Greenland. Here, we provide evidence for an active RG in West Greenland, about 230 km south of what previously has been identified as the southern limit of active RGs. We present field evidence such as bottom temperature of the snow pack and surface displacements and indicate how these results could be utilized in further studies to better assess RG distribution or their ice content.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49026863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strength and the cracking behavior of frozen sandstone containing ice‐filled flaws under uniaxial compression 含冰填裂隙冻结砂岩单轴压缩强度与开裂行为
IF 5 3区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2022-03-04 DOI: 10.1002/ppp.2142
H. Jia, L. Han, T. Zhao, Q. Sun, Xian-jun Tan
Understanding the mechanical properties of frozen flawed rock masses is fundamental to conducting safe rock engineering in frozen rock strata. However, there has been scarce research in this area, especially on key issues such as the strength and deformability of frozen flawed rock masses and failure processes under load. In this paper, frozen flawed sandstone was subjected to uniaxial compression and the cracking process was observed. The influences of flaw inclination angle and freezing temperature on the strength and cracking behavior of frozen flawed sandstone under load were determined. The results show that: (a) the strength of frozen flawed sandstone increases with increases in flaw inclination and decreases in temperature; (b) the flaw inclination has a dramatic influence on both the crack coalescence behavior and the final failure form of frozen flawed samples under compression; and (c) the significant influence of freezing temperature on the cracking behavior of frozen flawed sandstone is caused by the interaction between flaw ice and its surrounding rock. Strengthening of flawed sandstone by freezing results because (i) pore ice provides support and cohesion at the pore scale, while (ii) at the crack scale ice can support the flaw and resist its deformation during compression, and cementation of the ice–rock interface provides normal and tangential cracking resistance.
了解冻结缺陷岩体的力学性质是在冻结岩层中进行安全岩石工程的基础。然而,这方面的研究很少,尤其是关于冻结缺陷岩体的强度和变形能力以及荷载作用下的破坏过程等关键问题。本文对冻结缺陷砂岩进行了单轴压缩,观察了其破裂过程。测定了裂纹倾角和冻结温度对冻结缺陷砂岩在荷载作用下的强度和开裂行为的影响。结果表明:(a)冻结缺陷砂岩的强度随裂纹倾角的增大和温度的降低而增大;(b) 裂纹倾斜度对压缩条件下冻结缺陷试样的裂纹聚结行为和最终失效形式都有显著影响;(c)冻结温度对冻结缺陷砂岩破裂行为的显著影响是由缺陷冰与其围岩之间的相互作用引起的。通过冻结对有缺陷的砂岩进行加固是因为(i)孔隙冰在孔隙尺度上提供支撑和内聚力,而(ii)在裂缝尺度上,冰可以支撑缺陷并抵抗其在压缩过程中的变形,冰-岩石界面的胶结提供了法向和切向抗裂性。
{"title":"Strength and the cracking behavior of frozen sandstone containing ice‐filled flaws under uniaxial compression","authors":"H. Jia, L. Han, T. Zhao, Q. Sun, Xian-jun Tan","doi":"10.1002/ppp.2142","DOIUrl":"https://doi.org/10.1002/ppp.2142","url":null,"abstract":"Understanding the mechanical properties of frozen flawed rock masses is fundamental to conducting safe rock engineering in frozen rock strata. However, there has been scarce research in this area, especially on key issues such as the strength and deformability of frozen flawed rock masses and failure processes under load. In this paper, frozen flawed sandstone was subjected to uniaxial compression and the cracking process was observed. The influences of flaw inclination angle and freezing temperature on the strength and cracking behavior of frozen flawed sandstone under load were determined. The results show that: (a) the strength of frozen flawed sandstone increases with increases in flaw inclination and decreases in temperature; (b) the flaw inclination has a dramatic influence on both the crack coalescence behavior and the final failure form of frozen flawed samples under compression; and (c) the significant influence of freezing temperature on the cracking behavior of frozen flawed sandstone is caused by the interaction between flaw ice and its surrounding rock. Strengthening of flawed sandstone by freezing results because (i) pore ice provides support and cohesion at the pore scale, while (ii) at the crack scale ice can support the flaw and resist its deformation during compression, and cementation of the ice–rock interface provides normal and tangential cracking resistance.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42165868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Effect of freeze–thaw cycles on the performance of cast‐in‐place piles in permafrost regions: Working state and action effect sharing 冻融循环对多年冻土区灌注桩性能的影响:工作状态和作用效应共享
IF 5 3区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2022-02-28 DOI: 10.1002/ppp.2140
Ruiqing Shi, Z. Wen, Desheng Li, Qiang Gao, Yanjing Wei
Owing to a minor thermal disturbance to the permafrost environment, cast‐in‐place piles are widely used for building and bridge foundations in permafrost regions. However, because of the dynamic and cyclic variation in frozen ground affected by the atmosphere, the load transfer mechanism is not yet clear, and the current design is economically insufficient. To illustrate the bearing pattern of cast‐in‐place piles subjected to freeze–thaw cycles, a systematic in situ investigation was carried out. Results show that the load from the superstructure has a marginal action effect, while freeze–thaw cycles have a more significant action effect. Freeze–thaw cycles have a decisive effect on the dynamic variations of the pile's working state and action effect sharing while the mechanisms are quite different, which vary with depths. Action effect sharing of the pile shaft and tip experiences a cyclic variation and is affected by the long‐term effect of freeze–thaw cycles. The shaft takes an increasing sharing proportion gradually and has a 19% rise after two freeze–thaw cycles, while the pile tip goes the opposite way. Two years after the building is completed, the bearing capacity is almost entirely provided by shaft resistance and mainly by the upper one‐third of the pile. This research clarifies several essential issues about the bearing pattern and provides solid scientific support and novel opinions for the pile design in permafrost regions.
由于对永久冻土环境的热扰动较小,现浇桩被广泛用于永久冻土地区的建筑和桥梁基础。然而,由于受大气影响,冻土的动力和循环变化,荷载传递机制尚不明确,目前的设计在经济上不够充分。为了说明经受冻融循环的现浇桩的承载模式,进行了系统的现场调查。结果表明,上部结构荷载具有边际作用效应,而冻融循环具有更显著的作用效应。冻融循环对桩工作状态的动态变化和作用效果的共享具有决定性影响,而冻融循环的机制则截然不同,随深度而变化。桩身和桩尖的作用效应分担经历了循环变化,并受到冻融循环的长期影响。竖井的分担比例逐渐增加,在两次冻融循环后增加了19%,而桩端则相反。建筑完工两年后,承载力几乎完全由轴阻力提供,主要由桩的上部三分之一提供。本研究阐明了承载模式的几个基本问题,为多年冻土地区的桩基设计提供了坚实的科学支撑和新颖的见解。
{"title":"Effect of freeze–thaw cycles on the performance of cast‐in‐place piles in permafrost regions: Working state and action effect sharing","authors":"Ruiqing Shi, Z. Wen, Desheng Li, Qiang Gao, Yanjing Wei","doi":"10.1002/ppp.2140","DOIUrl":"https://doi.org/10.1002/ppp.2140","url":null,"abstract":"Owing to a minor thermal disturbance to the permafrost environment, cast‐in‐place piles are widely used for building and bridge foundations in permafrost regions. However, because of the dynamic and cyclic variation in frozen ground affected by the atmosphere, the load transfer mechanism is not yet clear, and the current design is economically insufficient. To illustrate the bearing pattern of cast‐in‐place piles subjected to freeze–thaw cycles, a systematic in situ investigation was carried out. Results show that the load from the superstructure has a marginal action effect, while freeze–thaw cycles have a more significant action effect. Freeze–thaw cycles have a decisive effect on the dynamic variations of the pile's working state and action effect sharing while the mechanisms are quite different, which vary with depths. Action effect sharing of the pile shaft and tip experiences a cyclic variation and is affected by the long‐term effect of freeze–thaw cycles. The shaft takes an increasing sharing proportion gradually and has a 19% rise after two freeze–thaw cycles, while the pile tip goes the opposite way. Two years after the building is completed, the bearing capacity is almost entirely provided by shaft resistance and mainly by the upper one‐third of the pile. This research clarifies several essential issues about the bearing pattern and provides solid scientific support and novel opinions for the pile design in permafrost regions.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47034438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Permafrost and Periglacial Processes
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1