首页 > 最新文献

Permafrost and Periglacial Processes最新文献

英文 中文
Risk assessment of engineering diseases of embankment–bridge transition section for railway in permafrost regions 多年冻土区铁路路桥过渡段工程病害风险评价
IF 5 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Pub Date : 2021-12-15 DOI: 10.1002/ppp.2135
Saize Zhang, F. Niu, Shi Wang, Y. Sun, Jinchang Wang, Tian-Tian Dong
The embankment–bridge transition section (EBTS) is one of the zones where railway diseases occur frequently in permafrost regions. Disease risk assessment of EBTSs can provide guidance for maintenance. In this study, considering the engineering geological conditions, climate characteristics, and embankment structure types along the Qinghai–Tibet Railway (QTR) as well as based on the disease inventory of the QTR from 2010 to 2019, the logistic regression (LR), support vector machine (SVM), and combination‐weight‐based gay relation analysis (GRA) were used for disease risk assessment of the EBTSs along the QTR in permafrost regions. The results indicate that the LR and SVM models have a better capability for EBTS disease prediction than the GRA model, and the SVM model can select more disease samples in relatively larger regions than the LR model. Based on the SVM and LR models, the risk level of EBTSs is divided into four classes: low‐ (29.9%), moderate‐ (39.6%), high‐ (22.1%), and very high (8.4%) risk. Finally, we selected 272 EBTSs in high‐ and very‐high‐risk classes for key observation during the maintenance of the QTR in permafrost regions. This study provides a reference for the risk assessment of railways built in permafrost regions using data‐driven methods.
路桥过渡段是多年冻土区铁路病害多发地区之一。疾病风险评估可为ebts的维持提供指导。本文结合青藏铁路沿线工程地质条件、气候特征和路堤结构类型,以2010 - 2019年青藏铁路沿线病害清查数据为基础,采用logistic回归(LR)、支持向量机(SVM)和基于组合权值的同性关系分析(GRA)对多年冻土区青藏铁路沿线ebts进行病害风险评估。结果表明,LR和SVM模型比GRA模型具有更好的EBTS疾病预测能力,并且SVM模型比LR模型可以在相对较大的区域内选择更多的疾病样本。基于SVM和LR模型,ebts的风险水平分为四类:低‐(29.9%)、中‐(39.6%)、高‐(22.1%)和极高(8.4%)风险。最后,我们选择了272个高风险和极高风险的ebts,用于多年冻土区QTR维护期间的关键观测。研究结果可为多年冻土区铁路建设风险评估提供参考。
{"title":"Risk assessment of engineering diseases of embankment–bridge transition section for railway in permafrost regions","authors":"Saize Zhang, F. Niu, Shi Wang, Y. Sun, Jinchang Wang, Tian-Tian Dong","doi":"10.1002/ppp.2135","DOIUrl":"https://doi.org/10.1002/ppp.2135","url":null,"abstract":"The embankment–bridge transition section (EBTS) is one of the zones where railway diseases occur frequently in permafrost regions. Disease risk assessment of EBTSs can provide guidance for maintenance. In this study, considering the engineering geological conditions, climate characteristics, and embankment structure types along the Qinghai–Tibet Railway (QTR) as well as based on the disease inventory of the QTR from 2010 to 2019, the logistic regression (LR), support vector machine (SVM), and combination‐weight‐based gay relation analysis (GRA) were used for disease risk assessment of the EBTSs along the QTR in permafrost regions. The results indicate that the LR and SVM models have a better capability for EBTS disease prediction than the GRA model, and the SVM model can select more disease samples in relatively larger regions than the LR model. Based on the SVM and LR models, the risk level of EBTSs is divided into four classes: low‐ (29.9%), moderate‐ (39.6%), high‐ (22.1%), and very high (8.4%) risk. Finally, we selected 272 EBTSs in high‐ and very‐high‐risk classes for key observation during the maintenance of the QTR in permafrost regions. This study provides a reference for the risk assessment of railways built in permafrost regions using data‐driven methods.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"33 1","pages":"46 - 62"},"PeriodicalIF":5.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47681676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Assessment of the sediment and associated nutrient/contaminant continuum, from permafrost thaw slump scars to tundra lakes in the western Canadian Arctic 从加拿大北极西部的永久冻土融化滑坡疤痕到冻土带湖泊,沉积物和相关营养物/污染物连续体的评估
IF 5 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Pub Date : 2021-12-01 DOI: 10.1002/ppp.2134
I. Droppo, P. Cenzo, Renée McFadyen, Thomas Reid
Within the Canadian Arctic, vast areas of previously frozen sediments and carbon are being released into aquatic ecosystems via the occurrence of permafrost thaw and retrogressive thaw slumps (RTSs). While knowledge of mass wasting RTS processes are more advanced, the significance of exposed retrogressive thaw slump scars (RTSSs) at various phases of stabilization to yield additional large quantities of ecologically relevant sediment to lakes and rivers is not well constrained. Using laboratory simulation (linked rainfall and lake flow dynamics), RTS sediments were investigated to assess the sediment continuum from the terrestrial RTSSs to depositional zones within two Arctic tundra lakes. Using an estimate of 30% of the RTSS areas contributing sediment under hypothetical 20‐ and 100‐year rainfall events, up to 598 and 997 kg hr−1 of RTSS sediment washoff was projected respectively. Eroded particle size, regardless of lake or initial bulk RTSS size distribution, was dominated by individual clay particles (<5 μm) that were winnowed from the RTSS surface sediment. Given this is the most biogeochemical relevant fraction, it has the potential for significant ecological impact on the lakes. This deposited fine sediment was found to be very unstable with a critical shear stress for erosion close to that of the critical shear for deposition (0.05 Pa). As such, wave energy is expected to have an impact on remobilization of fine sediments and associated compounds with concomitant implications for lake‐ecosystem health.
在加拿大的北极地区,由于永久冻土解冻和退行性解冻滑坡(RTSs)的发生,大量以前冻结的沉积物和碳被释放到水生生态系统中。虽然对大规模浪费的RTS过程的了解更加先进,但暴露的后退性融化滑塌疤痕(RTSSs)在稳定的各个阶段对湖泊和河流产生额外的大量生态相关沉积物的重要性并没有得到很好的限制。利用室内模拟(关联降雨和湖泊流动动力学),研究了两个北极冻土带湖泊从陆地rtss到沉积带的沉积物连续体。在假设的20年和100年降雨事件下,利用30%的RTSS地区贡献泥沙的估计,分别预测了高达598和997 kg hr - 1的RTSS泥沙冲量。无论湖泊还是初始体积RTSS粒度分布,侵蚀粒度都以从RTSS表层沉积物中筛选出来的单个粘土颗粒(<5 μm)为主。鉴于这是与生物地球化学最相关的部分,它对湖泊有潜在的重大生态影响。沉积的细粒沉积物非常不稳定,侵蚀临界剪切应力接近沉积临界剪切应力(0.05 Pa)。因此,波浪能有望对细沉积物和相关化合物的再活化产生影响,并对湖泊生态系统的健康产生影响。
{"title":"Assessment of the sediment and associated nutrient/contaminant continuum, from permafrost thaw slump scars to tundra lakes in the western Canadian Arctic","authors":"I. Droppo, P. Cenzo, Renée McFadyen, Thomas Reid","doi":"10.1002/ppp.2134","DOIUrl":"https://doi.org/10.1002/ppp.2134","url":null,"abstract":"Within the Canadian Arctic, vast areas of previously frozen sediments and carbon are being released into aquatic ecosystems via the occurrence of permafrost thaw and retrogressive thaw slumps (RTSs). While knowledge of mass wasting RTS processes are more advanced, the significance of exposed retrogressive thaw slump scars (RTSSs) at various phases of stabilization to yield additional large quantities of ecologically relevant sediment to lakes and rivers is not well constrained. Using laboratory simulation (linked rainfall and lake flow dynamics), RTS sediments were investigated to assess the sediment continuum from the terrestrial RTSSs to depositional zones within two Arctic tundra lakes. Using an estimate of 30% of the RTSS areas contributing sediment under hypothetical 20‐ and 100‐year rainfall events, up to 598 and 997 kg hr−1 of RTSS sediment washoff was projected respectively. Eroded particle size, regardless of lake or initial bulk RTSS size distribution, was dominated by individual clay particles (<5 μm) that were winnowed from the RTSS surface sediment. Given this is the most biogeochemical relevant fraction, it has the potential for significant ecological impact on the lakes. This deposited fine sediment was found to be very unstable with a critical shear stress for erosion close to that of the critical shear for deposition (0.05 Pa). As such, wave energy is expected to have an impact on remobilization of fine sediments and associated compounds with concomitant implications for lake‐ecosystem health.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"33 1","pages":"32 - 45"},"PeriodicalIF":5.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42746152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Cyanobacterial weathering in warming periglacial sediments: Implications for nutrient cycling and potential biosignatures 变暖冰缘沉积物中的蓝藻风化:对养分循环和潜在生物特征的影响
IF 5 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Pub Date : 2021-11-07 DOI: 10.1002/ppp.2133
C. Demirel‐Floyd, G. Soreghan, M. Madden
The cryosphere hosts a widespread microbial community, yet microbial influences on silicate weathering have been historically neglected in cold‐arid deserts. Here we investigate bioweathering by a cold‐tolerant cyanobacteria (Leptolyngbya glacialis) via laboratory experiments using glaciofluvial drift sediments at 12°C, analogous to predicted future permafrost surface temperatures. Our results show threefold enhanced Si weathering rates in pre‐weathered, mixed‐lithology Antarctic biotic reactors compared to abiotic controls, indicating the significant influence of microbial life on weathering. Although biotic and abiotic weathering rates are similar in Icelandic sediments, neo‐formed clay and Fe‐(oxy)hydroxide minerals observed in association with biofilms in biotic reactors are common on Icelandic mafic minerals, similar to features observed in unprocessed Antarctic drifts. This suggests that microbes enhance weathering in systems where they must scavenge for nutrients that are not easily liberated via abiotic pathways; potential biosignatures may form in nutrient‐rich systems as well. In both sediment types we also observed up to fourfold higher bicarbonate concentrations in biotic reactors relative to abiotic reactors, indicating that, as warming occurs, psychrotolerant biota will enhance bicarbonate flux to the oceans, thus stimulating carbonate deposition and providing a negative feedback to increasing atmospheric CO2.
冰冻圈拥有广泛的微生物群落,但在寒冷干旱的沙漠中,微生物对硅酸盐风化的影响历来被忽视。在这里,我们通过实验室实验,使用12°C的冰川河流漂移沉积物,研究了一种耐寒蓝细菌(Leptolybya glacialis)的生物风化作用,类似于预测的未来永久冻土表面温度。我们的研究结果表明,与非生物对照相比,预风化、混合岩性的南极生物反应器中的硅风化率提高了三倍,表明微生物生命对风化的显著影响。尽管冰岛沉积物中的生物和非生物风化率相似,但在生物反应器中观察到的与生物膜相关的新形成粘土和铁(氧)氢氧化物矿物在冰岛镁铁质矿物中很常见,类似于在未经处理的南极漂移中观测到的特征。这表明,微生物在系统中增强了风化作用,在那里它们必须清除不容易通过非生物途径释放的营养物质;潜在的生物特征也可能在富含营养的系统中形成。在这两种沉积物类型中,我们还观察到生物反应器中的碳酸氢盐浓度比非生物反应器高出四倍,这表明,随着变暖的发生,耐冷生物群将增强碳酸氢盐向海洋的通量,从而刺激碳酸盐沉积,并对大气中二氧化碳的增加提供负反馈。
{"title":"Cyanobacterial weathering in warming periglacial sediments: Implications for nutrient cycling and potential biosignatures","authors":"C. Demirel‐Floyd, G. Soreghan, M. Madden","doi":"10.1002/ppp.2133","DOIUrl":"https://doi.org/10.1002/ppp.2133","url":null,"abstract":"The cryosphere hosts a widespread microbial community, yet microbial influences on silicate weathering have been historically neglected in cold‐arid deserts. Here we investigate bioweathering by a cold‐tolerant cyanobacteria (Leptolyngbya glacialis) via laboratory experiments using glaciofluvial drift sediments at 12°C, analogous to predicted future permafrost surface temperatures. Our results show threefold enhanced Si weathering rates in pre‐weathered, mixed‐lithology Antarctic biotic reactors compared to abiotic controls, indicating the significant influence of microbial life on weathering. Although biotic and abiotic weathering rates are similar in Icelandic sediments, neo‐formed clay and Fe‐(oxy)hydroxide minerals observed in association with biofilms in biotic reactors are common on Icelandic mafic minerals, similar to features observed in unprocessed Antarctic drifts. This suggests that microbes enhance weathering in systems where they must scavenge for nutrients that are not easily liberated via abiotic pathways; potential biosignatures may form in nutrient‐rich systems as well. In both sediment types we also observed up to fourfold higher bicarbonate concentrations in biotic reactors relative to abiotic reactors, indicating that, as warming occurs, psychrotolerant biota will enhance bicarbonate flux to the oceans, thus stimulating carbonate deposition and providing a negative feedback to increasing atmospheric CO2.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"33 1","pages":"63 - 77"},"PeriodicalIF":5.0,"publicationDate":"2021-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42019042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Internal structure of a large, complex rock glacier and its significance in hydrological and dynamic behavior: A case study in the semi‐arid Andes of Argentina 大型复杂岩石冰川的内部结构及其在水文和动力行为中的意义——以阿根廷半干旱安第斯山脉为例
IF 5 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Pub Date : 2021-10-27 DOI: 10.1002/ppp.2132
C. D. Villarroel, Diana Agostina Ortiz, A. Forte, Guillermo Tamburini Beliveau, D. Ponce, A. Imhof, Andrés López
This paper presents an analysis of the internal structure, hydrogeology and dynamics of a large, complex, multilobate and multiroot rock glacier combining electrical resistivity tomography (ERT), hydrochemical data and differential interferometry synthetic aperture radar (DInSAR). The rock glacier consists of a series of overlapping lobes that represent different advancing stages with different degrees of conservation. The ERT surveys characterize the active layer and the upper part of the permafrost layer, the latter showing a heterogeneous geometry and electrical resistivity values ranging from 7 to 142 kΩm. Hydrochemical data argue for both the existence of different disconnected water flow pathways inside the rock glacier and the remarkable ionic concentrator effect of this landform. The horizontal displacement from October 2014 to April 2017 shows greatest magnitudes in the upper sector of both tongues, reaching speeds of up to 150 cm/year. The active frontal sector shows a displacement rate of 2–4.5 cm/year. This study contributes to knowledge of the material properties of rock glaciers, which are considered to represent important reservoirs/water resources, and their influence on the distribution of mountain permafrost, hydrology, and dynamics. Finally, to the best of our knowledge, the possible influence of the metal content of the ground on the resistivity values recorded for mountain permafrost is highlighted for the first time.
本文结合电阻率层析成像(ERT)、水化学数据和差分干涉合成孔径雷达(DInSAR)技术,对某大型复杂多片多根岩石冰川的内部结构、水文地质和动力学进行了分析。岩石冰川由一系列重叠的裂片组成,这些裂片代表了不同的前进阶段,具有不同的保存程度。ERT测量描述了活动层和永久冻土层的上部,后者显示了非均匀的几何形状和电阻率值,范围从7到142 kΩm。水化学数据表明,岩石冰川内部存在不同的不相连的水流路径,而且这种地貌具有显著的离子浓缩器效应。2014年10月至2017年4月的水平位移显示,两舌上部的位移幅度最大,速度可达150厘米/年。活跃锋面扇区的位移速率为2 ~ 4.5 cm/年。该研究有助于了解岩石冰川的物质性质及其对山地多年冻土分布、水文和动力学的影响,岩石冰川被认为是重要的水库/水资源。最后,据我们所知,首次强调了地面金属含量对山地永久冻土记录的电阻率值的可能影响。
{"title":"Internal structure of a large, complex rock glacier and its significance in hydrological and dynamic behavior: A case study in the semi‐arid Andes of Argentina","authors":"C. D. Villarroel, Diana Agostina Ortiz, A. Forte, Guillermo Tamburini Beliveau, D. Ponce, A. Imhof, Andrés López","doi":"10.1002/ppp.2132","DOIUrl":"https://doi.org/10.1002/ppp.2132","url":null,"abstract":"This paper presents an analysis of the internal structure, hydrogeology and dynamics of a large, complex, multilobate and multiroot rock glacier combining electrical resistivity tomography (ERT), hydrochemical data and differential interferometry synthetic aperture radar (DInSAR). The rock glacier consists of a series of overlapping lobes that represent different advancing stages with different degrees of conservation. The ERT surveys characterize the active layer and the upper part of the permafrost layer, the latter showing a heterogeneous geometry and electrical resistivity values ranging from 7 to 142 kΩm. Hydrochemical data argue for both the existence of different disconnected water flow pathways inside the rock glacier and the remarkable ionic concentrator effect of this landform. The horizontal displacement from October 2014 to April 2017 shows greatest magnitudes in the upper sector of both tongues, reaching speeds of up to 150 cm/year. The active frontal sector shows a displacement rate of 2–4.5 cm/year. This study contributes to knowledge of the material properties of rock glaciers, which are considered to represent important reservoirs/water resources, and their influence on the distribution of mountain permafrost, hydrology, and dynamics. Finally, to the best of our knowledge, the possible influence of the metal content of the ground on the resistivity values recorded for mountain permafrost is highlighted for the first time.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"33 1","pages":"78 - 95"},"PeriodicalIF":5.0,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41498197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Holocene ice wedges of the Kolyma Lowland and January paleotemperature reconstructions based on oxygen isotope records 基于氧同位素记录的科雷玛低地全新世冰楔与1月古温度重建
IF 5 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Pub Date : 2021-09-24 DOI: 10.1002/ppp.2128
Y. Vasil'chuk, N. Budantseva
Ice wedges in the Holocene deposits of alases and floodplains have been studied in the Kolyma Lowland region. Most ice wedges have been found within alases dated to between 11 and 4.2 cal kyr BP, corresponding to the Greenlandian and Northgrippian stages of the Holocene. This study confirms that the greatest intensity of ice wedge growth occurred during ~10.5–6 cal kyr BP. A decrease in their growth was mainly caused by alas draining and reduced sedimentation. In the last 4–4.5 cal kyr BP (defined as the Meghalayan stage of the Holocene), ice wedges continued to grow in old alases, sometimes as a younger generation, as well as within young alases and floodplains of the Kolyma River and its tributaries. Mean January air temperatures were quite stable during the Holocene and varied usually approximately between −33 and −41°C, with a slight cooling during the Meghalayan stage. Minor variations in mean January air temperature may indicate a stability of winter climate of northern Yakutia, probably as a result of the stable influence of the Siberian anticyclone.
对Kolyma低地全新世阿拉斯加和泛滥平原沉积物中的冰楔进行了研究。大多数冰楔是在阿拉斯加发现的,可追溯到11至4.2 cal kyr BP,对应于全新世的格陵兰和北格里普阶。这项研究证实,冰楔生长的最大强度发生在约10.5–6 cal kyr BP期间。它们的生长减少主要是由于阿拉斯加州的排水和沉积减少造成的。在最近的4–4.5 cal kyr BP(定义为全新世的梅加拉亚阶)中,冰楔继续在旧阿拉斯加生长,有时是年轻一代,以及在科莱马河及其支流的年轻阿拉斯加和泛滥平原内生长。1月的平均气温在全新世期间相当稳定,通常在−33和−41°C之间变化,梅加拉亚期略有降温。1月平均气温的微小变化可能表明雅库特北部冬季气候的稳定,这可能是西伯利亚反气旋稳定影响的结果。
{"title":"Holocene ice wedges of the Kolyma Lowland and January paleotemperature reconstructions based on oxygen isotope records","authors":"Y. Vasil'chuk, N. Budantseva","doi":"10.1002/ppp.2128","DOIUrl":"https://doi.org/10.1002/ppp.2128","url":null,"abstract":"Ice wedges in the Holocene deposits of alases and floodplains have been studied in the Kolyma Lowland region. Most ice wedges have been found within alases dated to between 11 and 4.2 cal kyr BP, corresponding to the Greenlandian and Northgrippian stages of the Holocene. This study confirms that the greatest intensity of ice wedge growth occurred during ~10.5–6 cal kyr BP. A decrease in their growth was mainly caused by alas draining and reduced sedimentation. In the last 4–4.5 cal kyr BP (defined as the Meghalayan stage of the Holocene), ice wedges continued to grow in old alases, sometimes as a younger generation, as well as within young alases and floodplains of the Kolyma River and its tributaries. Mean January air temperatures were quite stable during the Holocene and varied usually approximately between −33 and −41°C, with a slight cooling during the Meghalayan stage. Minor variations in mean January air temperature may indicate a stability of winter climate of northern Yakutia, probably as a result of the stable influence of the Siberian anticyclone.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"33 1","pages":"17 - 3"},"PeriodicalIF":5.0,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48351538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A 10‐yr thermal regime of permafrost beneath and adjacent to an alpine thermokarst lake, Beiluhe Basin, Qinghai–Tibet Plateau, China 青藏高原北麓河盆地高寒热岩溶湖底及其附近永久冻土的10年热状态
IF 5 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Pub Date : 2021-09-09 DOI: 10.1002/ppp.2107
Zhizhong Sun, Shujuan Zhang, Guo-yu Li, Guilong Wu, Yongzhi Liu
Thermokarst lakes are distributed widely in permafrost regions on the Qinghai–Tibet Plateau (QTP), China. Better knowledge of ground thermal variability beneath and around thermokarst lakes is important for understanding future landscape development and hydrological changes. At a typical undisturbed small, shallow, alpine thermokarst lake in the Beiluhe Basin on the QTP, ground temperatures beneath and adjacent to the lake were monitored at four locations with maximum 30 m depth from the lake center to natural ground. The lake is elliptical with an area of ~700 m2 and maximum water depth of 0.6 m. Permafrost was present beneath and adjacent to the lake during the monitoring period. However, supra‐taliks were present above the permafrost table beneath the lake before monitoring of ground temperature began, but were absent around the lake. The supra‐permafrost taliks beneath the lake have thickened over time. The difference in mean permafrost table depth between the lake center and natural ground reached 5.14 m, and permafrost table depths increased beneath the lake, but changed indistinctively around the lake. Mean annual ground temperatures at different depths (5, 10, 20 and 30 m) were higher beneath the lake than around the lake, and mean increasing rates of ground temperature were also greater beneath the lake than around the lake. Ground temperature differences between the lake bottom and natural ground surface are important for understanding ground thermal patterns beneath and around thermokarst lakes.
热岩溶湖广泛分布于青藏高原多年冻土区。更好地了解热岩溶湖下面和周围的地表热变异性对于理解未来的景观发展和水文变化非常重要。在青藏高原北麓河盆地一个典型的未受干扰的小而浅的高寒热岩溶湖中,对湖下和湖旁4个地点的地温进行了监测,这些地点从湖中心到自然地面的最大深度为30 m。湖呈椭圆形,面积约700平方米,最大水深0.6米。在监测期间,永冻层在湖的下方和附近存在。然而,在开始对地温进行监测之前,湖下的永久冻土层上方已经出现了超对话,但在湖周围却没有。随着时间的推移,湖下的超永久冻土层变厚了。湖中心与自然地表的平均多年冻土深度差达5.14 m,湖下多年冻土深度增加,湖周变化不大。不同深度(5、10、20和30 m)的年平均地温在湖下高于湖周,湖下平均地温的上升速率也大于湖周。湖底地温与自然地表地温的差异对于了解热岩溶湖及其周围的地热格局具有重要意义。
{"title":"A 10‐yr thermal regime of permafrost beneath and adjacent to an alpine thermokarst lake, Beiluhe Basin, Qinghai–Tibet Plateau, China","authors":"Zhizhong Sun, Shujuan Zhang, Guo-yu Li, Guilong Wu, Yongzhi Liu","doi":"10.1002/ppp.2107","DOIUrl":"https://doi.org/10.1002/ppp.2107","url":null,"abstract":"Thermokarst lakes are distributed widely in permafrost regions on the Qinghai–Tibet Plateau (QTP), China. Better knowledge of ground thermal variability beneath and around thermokarst lakes is important for understanding future landscape development and hydrological changes. At a typical undisturbed small, shallow, alpine thermokarst lake in the Beiluhe Basin on the QTP, ground temperatures beneath and adjacent to the lake were monitored at four locations with maximum 30 m depth from the lake center to natural ground. The lake is elliptical with an area of ~700 m2 and maximum water depth of 0.6 m. Permafrost was present beneath and adjacent to the lake during the monitoring period. However, supra‐taliks were present above the permafrost table beneath the lake before monitoring of ground temperature began, but were absent around the lake. The supra‐permafrost taliks beneath the lake have thickened over time. The difference in mean permafrost table depth between the lake center and natural ground reached 5.14 m, and permafrost table depths increased beneath the lake, but changed indistinctively around the lake. Mean annual ground temperatures at different depths (5, 10, 20 and 30 m) were higher beneath the lake than around the lake, and mean increasing rates of ground temperature were also greater beneath the lake than around the lake. Ground temperature differences between the lake bottom and natural ground surface are important for understanding ground thermal patterns beneath and around thermokarst lakes.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"32 1","pages":"618 - 626"},"PeriodicalIF":5.0,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ppp.2107","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43552126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effects of a long‐term anoxic warming scenario on microbial community structure and functional potential of permafrost‐affected soil 长期缺氧变暖情景对冻土土壤微生物群落结构和功能潜力的影响
IF 5 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Pub Date : 2021-09-09 DOI: 10.1002/ppp.2131
Sizhong Yang, S. Liebner, Josefine Walz, C. Knoblauch, Till L. V. Bornemann, Alexander J. Probst, D. Wagner, M. Jetten, M. H. Zandt
Permafrost (PF)‐affected soils are widespread in the Arctic and store about half the global soil organic carbon. This large carbon pool becomes vulnerable to microbial decomposition through PF warming and deepening of the seasonal thaw layer (active layer [AL]). Here we combined greenhouse gas (GHG) production rate measurements with a metagenome‐based assessment of the microbial taxonomic and metabolic potential before and after 5 years of incubation under anoxic conditions at a constant temperature of 4°C in the AL, PF transition layer, and intact PF. Warming led to a rapid initial release of CO2 and, to a lesser extent, CH4 in all layers. After the initial pulse, especially in CO2 production, GHG production rates declined and conditions became more methanogenic. Functional gene‐based analyses indicated a decrease in carbon‐ and nitrogen‐cycling genes and a community shift to the degradation of less‐labile organic matter. This study reveals low but continuous GHG production in long‐term warming scenarios, which coincides with a decrease in the relative abundance of major metabolic pathway genes and an increase in carbohydrate‐active enzyme classes.
受永久冻土(PF)影响的土壤在北极广泛分布,储存着全球约一半的土壤有机碳。通过PF变暖和季节性解冻层(活性层[AL])的加深,这种大的碳库变得容易被微生物分解。在这里,我们将温室气体(GHG)生产率测量与基于宏基因组的微生物分类和代谢潜力评估相结合,在缺氧条件下,在AL、PF过渡层和完整PF中恒温4°C培养5年前后。变暖导致所有层中CO2和CH4的快速初始释放,在较小程度上。在最初的脉冲之后,特别是在二氧化碳生产中,GHG生产率下降,条件变得更容易产甲烷。基于功能基因的分析表明,碳和氮循环基因减少,群落向不太稳定的有机物降解转变。这项研究揭示了在长期变暖的情况下,温室气体的产生量低但持续,这与主要代谢途径基因的相对丰度下降和碳水化合物活性酶类别增加相吻合。
{"title":"Effects of a long‐term anoxic warming scenario on microbial community structure and functional potential of permafrost‐affected soil","authors":"Sizhong Yang, S. Liebner, Josefine Walz, C. Knoblauch, Till L. V. Bornemann, Alexander J. Probst, D. Wagner, M. Jetten, M. H. Zandt","doi":"10.1002/ppp.2131","DOIUrl":"https://doi.org/10.1002/ppp.2131","url":null,"abstract":"Permafrost (PF)‐affected soils are widespread in the Arctic and store about half the global soil organic carbon. This large carbon pool becomes vulnerable to microbial decomposition through PF warming and deepening of the seasonal thaw layer (active layer [AL]). Here we combined greenhouse gas (GHG) production rate measurements with a metagenome‐based assessment of the microbial taxonomic and metabolic potential before and after 5 years of incubation under anoxic conditions at a constant temperature of 4°C in the AL, PF transition layer, and intact PF. Warming led to a rapid initial release of CO2 and, to a lesser extent, CH4 in all layers. After the initial pulse, especially in CO2 production, GHG production rates declined and conditions became more methanogenic. Functional gene‐based analyses indicated a decrease in carbon‐ and nitrogen‐cycling genes and a community shift to the degradation of less‐labile organic matter. This study reveals low but continuous GHG production in long‐term warming scenarios, which coincides with a decrease in the relative abundance of major metabolic pathway genes and an increase in carbohydrate‐active enzyme classes.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"32 1","pages":"641 - 656"},"PeriodicalIF":5.0,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ppp.2131","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45080546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Shrinking thermokarst lakes and ponds on the northeastern Qinghai‐Tibet plateau over the past three decades 青藏高原东北部热岩溶湖泊和池塘在过去三十年中的萎缩
IF 5 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Pub Date : 2021-09-07 DOI: 10.1002/ppp.2127
R. Serban, H. Jin, M. Șerban, D. Luo
Identifying the changes in thermokarst lake dynamics has a significant contribution to landscape‐scale hydrology, ecology, and assessment of carbon budgets in permafrost regions. Changes in the number and areal extent of thermokarst lakes and ponds were quantified in a representative permafrost area (150 km2) in the south‐central Headwater Area of the Yellow River (HAYR). Water‐body inventories were generated from Landsat satellite imageries using the supervised Maximum Likelihood Classification method for three periods: 1986, 2000, and 2015. From 1986 to 2015, the number of water bodies larger than 0.36 ha decreased by 40% (461–277), while the total surface area decreased by 25% (542–406 ha). The ponds category (smaller than 1 ha) recorded the most substantial change, as their number decreased by 44% and their water‐surface area by 41%. Many lakes disintegrated, partially drained, and formed several remnant ponds, while the majority of the ponds did not drain completely, but shrank below 0.36 ha. These shrinking patterns are consistent with the warming climate in the HAYR, which suggests intense permafrost degradation. Future research will be focused on a better understanding of water–heat dynamics of thermokarst lakes and ponds in association with permafrost degradation at a landscape scale.
识别热岩溶湖动态变化对多年冻土区景观尺度的水文、生态和碳收支评估有重要贡献。对黄河中南部源区代表性多年冻土区(150 km2)热岩溶湖泊和池塘的数量和面积变化进行了定量分析。水体清单使用监督最大似然分类方法从陆地卫星图像生成,时间为1986年、2000年和2015年三个时期。1986 ~ 2015年,大于0.36 ha的水体数量减少了40%(461 ~ 277个),总面积减少了25% (542 ~ 406 ha)。池塘类别(小于1公顷)的变化最为显著,其数量减少了44%,水面面积减少了41%。许多湖泊崩解,部分排干,形成了几个残存的池塘,而大多数池塘没有完全排干,而是缩小到0.36 ha以下。这些萎缩模式与HAYR气候变暖相一致,这表明永久冻土严重退化。未来的研究将集中在更好地理解热岩溶湖泊和池塘的水热动力学与景观尺度上的永久冻土退化的关系。
{"title":"Shrinking thermokarst lakes and ponds on the northeastern Qinghai‐Tibet plateau over the past three decades","authors":"R. Serban, H. Jin, M. Șerban, D. Luo","doi":"10.1002/ppp.2127","DOIUrl":"https://doi.org/10.1002/ppp.2127","url":null,"abstract":"Identifying the changes in thermokarst lake dynamics has a significant contribution to landscape‐scale hydrology, ecology, and assessment of carbon budgets in permafrost regions. Changes in the number and areal extent of thermokarst lakes and ponds were quantified in a representative permafrost area (150 km2) in the south‐central Headwater Area of the Yellow River (HAYR). Water‐body inventories were generated from Landsat satellite imageries using the supervised Maximum Likelihood Classification method for three periods: 1986, 2000, and 2015. From 1986 to 2015, the number of water bodies larger than 0.36 ha decreased by 40% (461–277), while the total surface area decreased by 25% (542–406 ha). The ponds category (smaller than 1 ha) recorded the most substantial change, as their number decreased by 44% and their water‐surface area by 41%. Many lakes disintegrated, partially drained, and formed several remnant ponds, while the majority of the ponds did not drain completely, but shrank below 0.36 ha. These shrinking patterns are consistent with the warming climate in the HAYR, which suggests intense permafrost degradation. Future research will be focused on a better understanding of water–heat dynamics of thermokarst lakes and ponds in association with permafrost degradation at a landscape scale.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"32 1","pages":"601 - 617"},"PeriodicalIF":5.0,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ppp.2127","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41959005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
First evidence of rock wall permafrost in the Pyrenees (Vignemale peak, 3,298 m a.s.l., 42°46′16″N/0°08′33″W) 比利牛斯山脉岩壁永久冻土的第一个证据(Vignemale峰,3298 m a.s.l.,42°46′16〃N/0°08′33〃W)
IF 5 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Pub Date : 2021-09-01 DOI: 10.1002/ppp.2130
I. Rico, F. Magnin, J. López Moreno, E. Serrano, E. Alonso‐González, J. Revuelto, L. Hughes‐Allen, M. Gómez‐Lende
Permafrost is a relevant component of the Pyrenean high mountains, triggering a wide range of geomorphological cryogenic processes. Although in the past decades there has been an increase in frozen ground studies in the Pyrenees, there are no specific studies about rock wall permafrost, its presence, distribution, thermal regime, or historical evolution. This work combines measured rock surface temperatures (RSTs, from August 2013 to April 2016) along an elevation profile (four sites) on the north facing the rock wall of the Vignemale peak (3,298 m a.s.l., 42°46′16″N/0°08′33″W) and temperature modeling (CryoGRID2) to determine the presence of permafrost and to analyze its evolution since the mid‐20th century. Simulations are run with various RST forcings and bedrock properties to account for forcing data uncertainty and varying degrees of rock fracturing. Results reveal that warm permafrost may have existed down to 2,600 m a.s.l. until the early 1980s and that warm permafrost is currently found at ~2,800 m a.s.l. and up to 3,000 m a.s.l. Cold (<−2°C) permafrost may exist above 3,100–3,200 m a.s.l. Systematic investigations on rock wall permafrost must be conducted to refine those results in the Pyrenees. The elevation shift in warm permafrost suggests an imminent disappearance of permafrost in the Vignemale peak.
永久冻土是比利牛斯山脉的相关组成部分,引发了广泛的地貌低温过程。尽管在过去的几十年里,比利牛斯山脉的冻土研究有所增加,但没有关于岩壁永久冻土、其存在、分布、热状况或历史演变的具体研究。这项工作结合了沿Vignemale峰(3298)北侧岩壁的高程剖面(四个地点)测量的岩石表面温度(RST,2013年8月至2016年4月) m a.s.l.,42°46′16〃N/0°08′33〃W)和温度建模(CryoGRID2),以确定永久冻土的存在并分析其自20世纪中期以来的演变。利用各种RST强迫和基岩特性进行模拟,以考虑强迫数据的不确定性和不同程度的岩石破裂。结果表明,温暖的永久冻土可能存在于2600年以前 m a.s.l.,直到20世纪80年代初,目前发现的温暖永久冻土约为2800 m a.s.l.和高达3000 m a.s.l.冷(<−2°C)永久冻土可能存在于3100–3200以上 m a.s.l.必须对比利牛斯山脉的岩壁永久冻土进行系统的调查,以完善这些结果。温暖的永久冻土的海拔变化表明Vignemale峰的永久冻土即将消失。
{"title":"First evidence of rock wall permafrost in the Pyrenees (Vignemale peak, 3,298 m a.s.l., 42°46′16″N/0°08′33″W)","authors":"I. Rico, F. Magnin, J. López Moreno, E. Serrano, E. Alonso‐González, J. Revuelto, L. Hughes‐Allen, M. Gómez‐Lende","doi":"10.1002/ppp.2130","DOIUrl":"https://doi.org/10.1002/ppp.2130","url":null,"abstract":"Permafrost is a relevant component of the Pyrenean high mountains, triggering a wide range of geomorphological cryogenic processes. Although in the past decades there has been an increase in frozen ground studies in the Pyrenees, there are no specific studies about rock wall permafrost, its presence, distribution, thermal regime, or historical evolution. This work combines measured rock surface temperatures (RSTs, from August 2013 to April 2016) along an elevation profile (four sites) on the north facing the rock wall of the Vignemale peak (3,298 m a.s.l., 42°46′16″N/0°08′33″W) and temperature modeling (CryoGRID2) to determine the presence of permafrost and to analyze its evolution since the mid‐20th century. Simulations are run with various RST forcings and bedrock properties to account for forcing data uncertainty and varying degrees of rock fracturing. Results reveal that warm permafrost may have existed down to 2,600 m a.s.l. until the early 1980s and that warm permafrost is currently found at ~2,800 m a.s.l. and up to 3,000 m a.s.l. Cold (<−2°C) permafrost may exist above 3,100–3,200 m a.s.l. Systematic investigations on rock wall permafrost must be conducted to refine those results in the Pyrenees. The elevation shift in warm permafrost suggests an imminent disappearance of permafrost in the Vignemale peak.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"32 1","pages":"673 - 680"},"PeriodicalIF":5.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ppp.2130","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43634985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Surface energy balance of sub‐Arctic roads with varying snow regimes and properties in permafrost regions 多年冻土区具有不同雪况和特性的亚北极道路的表面能平衡
IF 5 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Pub Date : 2021-08-30 DOI: 10.1002/ppp.2129
Lin Chen, C. Voss, David H. Fortier, J. McKenzie
Surface energy balance (SEB) strongly influences the thermal state of permafrost, cryohydrological processes, and infrastructure stability. Road construction and snow accumulation affect the energy balance of underlying permafrost. Herein, we use an experimental road section of the Alaska Highway to develop a SEB model to quantify the surface energy components and ground surface temperature (GST) for different land cover types with varying snow regimes and properties. Simulated and measured ground temperatures are in good agreement, and our results show that the quantity of heat entering the embankment center and slope is mainly controlled by net radiation, and less by the sensible heat flux. In spring, lateral heat flux from the embankment center leads to earlier disappearance of snowpack on the embankment slope. In winter, the insulation created by the snow cover on the embankment slope reduces heat loss by a factor of three compared with the embankment center where the snow is plowed. The surface temperature offsets are 5.0°C and 7.8°C for the embankment center and slope, respectively. Furthermore, the heat flux released on the embankment slope exponentially decreases with increasing snow depth, and linearly decreases with earlier snow cover in fall and shorter snow‐covered period in spring.
地表能量平衡(SEB)对冻土热状态、冰冻水文过程和基础设施稳定性有重要影响。道路建设和积雪影响下伏多年冻土的能量平衡。在此,我们使用阿拉斯加高速公路的实验路段开发了一个SEB模型,以量化具有不同雪况和性质的不同土地覆盖类型的地表能成分和地表温度(GST)。结果表明,进入路基中心和斜坡的热量主要受净辐射的控制,而较少受感热通量的控制。在春季,来自路基中心的侧向热通量导致路基坡面积雪较早消失。在冬季,与积雪覆盖的路堤中心相比,路堤斜坡上的积雪形成的隔热层减少了三倍的热量损失。路基中心和边坡的地表温度偏差分别为5.0°C和7.8°C。路基坡面释放的热通量随积雪深度的增加呈指数递减,随秋季积雪时间的提前和春季积雪时间的缩短呈线性递减。
{"title":"Surface energy balance of sub‐Arctic roads with varying snow regimes and properties in permafrost regions","authors":"Lin Chen, C. Voss, David H. Fortier, J. McKenzie","doi":"10.1002/ppp.2129","DOIUrl":"https://doi.org/10.1002/ppp.2129","url":null,"abstract":"Surface energy balance (SEB) strongly influences the thermal state of permafrost, cryohydrological processes, and infrastructure stability. Road construction and snow accumulation affect the energy balance of underlying permafrost. Herein, we use an experimental road section of the Alaska Highway to develop a SEB model to quantify the surface energy components and ground surface temperature (GST) for different land cover types with varying snow regimes and properties. Simulated and measured ground temperatures are in good agreement, and our results show that the quantity of heat entering the embankment center and slope is mainly controlled by net radiation, and less by the sensible heat flux. In spring, lateral heat flux from the embankment center leads to earlier disappearance of snowpack on the embankment slope. In winter, the insulation created by the snow cover on the embankment slope reduces heat loss by a factor of three compared with the embankment center where the snow is plowed. The surface temperature offsets are 5.0°C and 7.8°C for the embankment center and slope, respectively. Furthermore, the heat flux released on the embankment slope exponentially decreases with increasing snow depth, and linearly decreases with earlier snow cover in fall and shorter snow‐covered period in spring.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"32 1","pages":"681 - 701"},"PeriodicalIF":5.0,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ppp.2129","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47268609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
期刊
Permafrost and Periglacial Processes
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1