Chaoyue Wang, Fujun Wang, Xie Lihua, Benhong Wang, Z. Yao, R. Xiao
The phenomenon of horn-like vortex in stator corner separation flow in an axial flow pump was first reported by Wang et al. (2020, “Investigation on the Horn-Like Vortices in Stator Corner Separation Flow in an Axial Flow Pump,” ASME J. Fluids Eng., 142(7), p. 071208), and the associated external features were preliminarily presented. However, internal vortical characteristics of horn-like vortices, including the distributions of swirling strength, the deformation mechanism of vortex tube and the correlation with pressure fluctuation surge, are not revealed. In this paper, the newly developed vorticity decomposition approach is introduced, and thus more novel quantitative results are provided for the physics of horn-like vortex evolution in an axial flow pump. First, the distributions of absolute swirling strength, relative swirling strength and Liutex spectrum are presented to outline the vortical features of the horn-like vortex fields. Second, the deformation mechanism of the horn-like vortex tube is revealed. It is found that the horn-like vortex spatial evolution can be described by the deformation terms (Liutex stretching term, Liutex dilatation term, and curl term of the pseudo-Lamb vector) controlling the Liutex transport process. These terms constantly act on the horn-like vortex tube in an almost independent way, causing its continuous deformations in the transit process. Third, the quantitative correlation between horn-like vortex transit and pressure fluctuation surge is given. It is proved that periodic vortex transit can cause severe pressure fluctuation that is much larger than that induced by rotor–stator interaction. From multiple perspectives, a clearer evolution process of the horn-like vortex is outlined, which is conducive to controlling the corner separation flows and improving the stability of large-capacity and low-head pumping stations.
Wang et al.(2020,“轴流泵定子角分离流中角状涡的研究”,ASME J.流体工程学报。, 142(7), p. 071208),并初步呈现了相关的外部特征。然而,没有揭示角状涡的内部涡化特征,包括旋流强度的分布、涡管的变形机理以及与压力脉动的关系。本文介绍了新发展的涡度分解方法,从而为轴流泵内角状涡演化的物理特性提供了更加新颖的定量结果。首先,给出了绝对旋流强度、相对旋流强度和柳特克斯谱的分布,勾勒出了角状涡场的涡旋特征。其次,揭示了角状涡管的变形机理。发现角状涡旋的空间演化可以用控制流场输运过程的变形项(流场拉伸项、流场膨胀项和伪lamb向量的旋度项)来描述。这些项以几乎独立的方式不断作用于角状涡管,导致其在过境过程中不断变形。第三,给出了角状涡传递与压力波动浪涌之间的定量关联。实验证明,周期性涡旋过境会引起严重的压力波动,这种波动比转子-定子相互作用引起的压力波动要大得多。从多个角度更清晰地勾勒出角状涡的演化过程,有利于控制角状分离流,提高大容量低扬程泵站的稳定性。
{"title":"On the Vortical Characteristics of Horn-Like Vortices in Stator Corner Separation Flow in an Axial Flow Pump","authors":"Chaoyue Wang, Fujun Wang, Xie Lihua, Benhong Wang, Z. Yao, R. Xiao","doi":"10.1115/1.4049687","DOIUrl":"https://doi.org/10.1115/1.4049687","url":null,"abstract":"\u0000 The phenomenon of horn-like vortex in stator corner separation flow in an axial flow pump was first reported by Wang et al. (2020, “Investigation on the Horn-Like Vortices in Stator Corner Separation Flow in an Axial Flow Pump,” ASME J. Fluids Eng., 142(7), p. 071208), and the associated external features were preliminarily presented. However, internal vortical characteristics of horn-like vortices, including the distributions of swirling strength, the deformation mechanism of vortex tube and the correlation with pressure fluctuation surge, are not revealed. In this paper, the newly developed vorticity decomposition approach is introduced, and thus more novel quantitative results are provided for the physics of horn-like vortex evolution in an axial flow pump. First, the distributions of absolute swirling strength, relative swirling strength and Liutex spectrum are presented to outline the vortical features of the horn-like vortex fields. Second, the deformation mechanism of the horn-like vortex tube is revealed. It is found that the horn-like vortex spatial evolution can be described by the deformation terms (Liutex stretching term, Liutex dilatation term, and curl term of the pseudo-Lamb vector) controlling the Liutex transport process. These terms constantly act on the horn-like vortex tube in an almost independent way, causing its continuous deformations in the transit process. Third, the quantitative correlation between horn-like vortex transit and pressure fluctuation surge is given. It is proved that periodic vortex transit can cause severe pressure fluctuation that is much larger than that induced by rotor–stator interaction. From multiple perspectives, a clearer evolution process of the horn-like vortex is outlined, which is conducive to controlling the corner separation flows and improving the stability of large-capacity and low-head pumping stations.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"265 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74937631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cavitating flow prediction is essential for designing cavitation-resistant hydraulic machines. Despite the advances achieved in normal-temperature cavitation prediction, cryogenic cavitation prediction has remained a challenging task in which thermal effects play a significant role. This study aims to enhance the prediction of cryogenic cavitation, and both the cavitation and turbulence models are improved simultaneously. The original cavitation model embedded in the CFX flow solver is modified by incorporating additional source terms (such as mass and heat transfer rates) for dual evaporation and condensation processes. The renormalization group k–ε turbulence model is modified on the basis of the filter-based turbulence model and density correction method to permit a smooth prediction of turbulence eddy viscosity, which mitigates the overestimation of the turbulence length scale in the cryogenic cavity (which is intrinsic to the original renormalization group k–ε turbulence model). The modified cavitation and turbulence models are implemented through CFX Expression Language (CEL) within the CFX frame. To verify the modified models and the enhancement of cryogenic cavitation prediction, Hord's liquefied nitrogen (LN2) and liquefied hydrogen (LH2) experiments over a hydrofoil and ogive are used, and cavitating flow simulation is conducted for each of the test cases. When using the modified models, the predicted temperature and pressure curves agree well with the measured values, and the predicted cavity lengths are much closer to the measured lengths. It is proven that the cryogenic cavitating flow can be well depicted by the modified models.
{"title":"Enhancing Cryogenic Cavitation Prediction Through Incorporating Modified Cavitation and Turbulence Models","authors":"Shanxiu Sun, Jingyuan Sun, Wanyou Sun, Peng Song","doi":"10.1115/1.4050056","DOIUrl":"https://doi.org/10.1115/1.4050056","url":null,"abstract":"\u0000 Cavitating flow prediction is essential for designing cavitation-resistant hydraulic machines. Despite the advances achieved in normal-temperature cavitation prediction, cryogenic cavitation prediction has remained a challenging task in which thermal effects play a significant role. This study aims to enhance the prediction of cryogenic cavitation, and both the cavitation and turbulence models are improved simultaneously. The original cavitation model embedded in the CFX flow solver is modified by incorporating additional source terms (such as mass and heat transfer rates) for dual evaporation and condensation processes. The renormalization group k–ε turbulence model is modified on the basis of the filter-based turbulence model and density correction method to permit a smooth prediction of turbulence eddy viscosity, which mitigates the overestimation of the turbulence length scale in the cryogenic cavity (which is intrinsic to the original renormalization group k–ε turbulence model). The modified cavitation and turbulence models are implemented through CFX Expression Language (CEL) within the CFX frame. To verify the modified models and the enhancement of cryogenic cavitation prediction, Hord's liquefied nitrogen (LN2) and liquefied hydrogen (LH2) experiments over a hydrofoil and ogive are used, and cavitating flow simulation is conducted for each of the test cases. When using the modified models, the predicted temperature and pressure curves agree well with the measured values, and the predicted cavity lengths are much closer to the measured lengths. It is proven that the cryogenic cavitating flow can be well depicted by the modified models.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"49 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86579888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Takeuchi, Junichiro Takeuchi, T. Izumi, M. Fujihara
This study simulates pore-scale two-dimensional flows through porous media composed of circular grains with varied pore-scale heterogeneity to analyze non-Darcy flow effects on different types of porous media using the lattice Boltzmann method. The magnitude of non-Darcy coefficients and the critical Reynolds number of non-Darcy flow were computed from the simulation results using the Forchheimer equation. Although the simulated porous materials have similar porosity and representative grain diameters, larger non-Darcy coefficients and an earlier onset of non-Darcy flow were observed for more heterogeneous porous media. The simulation results were compared with existing correlations to predict non-Darcy coefficients, and the large sensitivity of non-Darcy coefficients to pore-scale heterogeneity was identified. The pore-scale heterogeneity and resulting flow fields were evaluated using the participation number. From the computed participation numbers and visualized flow fields, a significant channeling effect for heterogeneous media in the Darcy flow regime was confirmed compared with that for homogeneous media. However, when non-Darcy flow occurs, this channeling effect was alleviated. This study characterizes non-Darcy effect with alleviation of the channeling effect quantified with an increase in participation number. Our findings indicate a strong sensitivity of magnitude and onset of non-Darcy effect to pore-scale heterogeneity and imply the possibility of evaluating non-Darcy effect through numerical analysis of the channeling effect.
{"title":"Two-Dimensional Numerical Analysis of Non-Darcy Flow Using the Lattice Boltzmann Method: Pore-Scale Heterogeneous Effects","authors":"Y. Takeuchi, Junichiro Takeuchi, T. Izumi, M. Fujihara","doi":"10.1115/1.4049689","DOIUrl":"https://doi.org/10.1115/1.4049689","url":null,"abstract":"\u0000 This study simulates pore-scale two-dimensional flows through porous media composed of circular grains with varied pore-scale heterogeneity to analyze non-Darcy flow effects on different types of porous media using the lattice Boltzmann method. The magnitude of non-Darcy coefficients and the critical Reynolds number of non-Darcy flow were computed from the simulation results using the Forchheimer equation. Although the simulated porous materials have similar porosity and representative grain diameters, larger non-Darcy coefficients and an earlier onset of non-Darcy flow were observed for more heterogeneous porous media. The simulation results were compared with existing correlations to predict non-Darcy coefficients, and the large sensitivity of non-Darcy coefficients to pore-scale heterogeneity was identified. The pore-scale heterogeneity and resulting flow fields were evaluated using the participation number. From the computed participation numbers and visualized flow fields, a significant channeling effect for heterogeneous media in the Darcy flow regime was confirmed compared with that for homogeneous media. However, when non-Darcy flow occurs, this channeling effect was alleviated. This study characterizes non-Darcy effect with alleviation of the channeling effect quantified with an increase in participation number. Our findings indicate a strong sensitivity of magnitude and onset of non-Darcy effect to pore-scale heterogeneity and imply the possibility of evaluating non-Darcy effect through numerical analysis of the channeling effect.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"16 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82522970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tong Lin, Xiaojun Li, Zuchao Zhu, R. Xie, Yan-Jhang Lin
The impeller, which is the main energy conversion component of a pump as turbine (PAT), is designed for pumping mode, and its internal flow characteristics are quite complicated even at the best efficiency point (BEP) of the turbine mode. This study aims to investigate the flow separation characteristics in a PAT impeller under the BEP condition by numerical method. The hydraulic performance and transient pressure characteristics of PAT predicted numerically were verified through experimentation. The surface friction lines and flow topological structure were applied to diagnose the flow separation at the surface of the blade. The relationship between flow topological structure and vortex in the impeller and static pressure at the blade were analyzed. Analysis results show that the backflow and open flow separation are observed significantly in the leading region and near the shroud of the trailing region of suction side. The passage vortex always appears near the spiral node. The saddle point and spiral node correspond to the peak position of adverse pressure and the lowest position between two peak values of the static pressure of the blade, respectively. The inflow conditions of blade and shape of the trailing edge significantly influence the flow separations in the impeller.
{"title":"Investigation of Flow Separation Characteristics in a Pump as Turbines Impeller Under the Best Efficiency Point Condition","authors":"Tong Lin, Xiaojun Li, Zuchao Zhu, R. Xie, Yan-Jhang Lin","doi":"10.1115/1.4049816","DOIUrl":"https://doi.org/10.1115/1.4049816","url":null,"abstract":"\u0000 The impeller, which is the main energy conversion component of a pump as turbine (PAT), is designed for pumping mode, and its internal flow characteristics are quite complicated even at the best efficiency point (BEP) of the turbine mode. This study aims to investigate the flow separation characteristics in a PAT impeller under the BEP condition by numerical method. The hydraulic performance and transient pressure characteristics of PAT predicted numerically were verified through experimentation. The surface friction lines and flow topological structure were applied to diagnose the flow separation at the surface of the blade. The relationship between flow topological structure and vortex in the impeller and static pressure at the blade were analyzed. Analysis results show that the backflow and open flow separation are observed significantly in the leading region and near the shroud of the trailing region of suction side. The passage vortex always appears near the spiral node. The saddle point and spiral node correspond to the peak position of adverse pressure and the lowest position between two peak values of the static pressure of the blade, respectively. The inflow conditions of blade and shape of the trailing edge significantly influence the flow separations in the impeller.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"33 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84796033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Perforated plates are commonly used for flow control in pressurized systems. In different industrial applications, these devices are also used in series (multistage perforated plates) to manage high pressure drop or reduce cavitation occurrence in industrial pipes and enhance efficiency of gas turbines in power plants. Based on analysis of literature and modeling considerations, a functional relationship that describes the dimensionless pressure loss for multistage perforated plates is proposed in this paper. Moreover, numerical investigation of the influence of the spacing between perforated plates for two identical-stage plates with aligned and misaligned holes is carried out by simulating a wide range of Reynolds number in turbulent flow regime. The obtained results include the trend of the pressure loss coefficient as the spacing between the two perforated plates varies for both cases of aligned and misaligned holes. The numerical achievements also show that for small spacing, the pressure loss coefficient is very different from that caused by two independent plates and is strongly influenced by the alignment between the holes of the two plates. By increasing the spacing, the behavior of the losses caused by the two-stage plates tends to that of two independent plates. A critical spacing between the plates has also been defined, beyond which the pressure losses are independent from the alignment of the holes.
{"title":"On the Pressure Losses Through Multistage Perforated Plates","authors":"David Rosa, M. Rossi, G. Ferrarese, S. Malavasi","doi":"10.1115/1.4049937","DOIUrl":"https://doi.org/10.1115/1.4049937","url":null,"abstract":"\u0000 Perforated plates are commonly used for flow control in pressurized systems. In different industrial applications, these devices are also used in series (multistage perforated plates) to manage high pressure drop or reduce cavitation occurrence in industrial pipes and enhance efficiency of gas turbines in power plants. Based on analysis of literature and modeling considerations, a functional relationship that describes the dimensionless pressure loss for multistage perforated plates is proposed in this paper. Moreover, numerical investigation of the influence of the spacing between perforated plates for two identical-stage plates with aligned and misaligned holes is carried out by simulating a wide range of Reynolds number in turbulent flow regime. The obtained results include the trend of the pressure loss coefficient as the spacing between the two perforated plates varies for both cases of aligned and misaligned holes. The numerical achievements also show that for small spacing, the pressure loss coefficient is very different from that caused by two independent plates and is strongly influenced by the alignment between the holes of the two plates. By increasing the spacing, the behavior of the losses caused by the two-stage plates tends to that of two independent plates. A critical spacing between the plates has also been defined, beyond which the pressure losses are independent from the alignment of the holes.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"29 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80975461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work experimentally investigated the flow phenomena and vortex structures in the wake of a sphere located in a water loop at Reynolds numbers of Re = 850, 1,250, and 1,700. Velocity fields in the wake region were obtained by applying the time-resolved stereoscopic particle image velocimetry (TR-SPIV) technique. From the acquired TR-SPIV velocity vector fields, the statistical values of mean and fluctuating velocities were computed. Spectral analysis, two-point velocity–velocity cross-correlation, proper orthogonal decomposition (POD) and vortex identification analyses were also performed. The velocity fields show a recirculation region that decreases in length with an increase of Reynolds numbers. The power spectra from the spectral analysis had peaks corresponding to a Strouhal number of St = 0.2, which is a value commonly found in the literature studies of flow over a sphere. The two-point cross-correlation analysis revealed elliptical structures in the wake, with estimated integral length scales ranging between 12% and 63% of the sphere diameter. The POD analysis revealed the statistically dominant flow structures that captured the most flow kinetic energy. It is seen that the flow kinetic energy captured in the smaller scale flow structures increased as Reynolds number increased. The POD modes contained smaller structure as the Reynolds number increased and as mode order increased. In addition, spectral analysis performed on the POD temporal coefficients revealed peaks corresponding to St = 0.2, similar to the spectral analysis on the fluctuating velocity. The ability of POD to produce low-order reconstructions of the flow was also utilized to facilitate vortex identification analysis, which identified average vortex sizes of 0.41D for Re1, 0.33D for Re2, and 0.32D for Re3.
{"title":"Experimental Measurements of the Wake of a Sphere at Subcritical Reynolds Numbers","authors":"R. Muyshondt, Thien Nguyen, Y. Hassan, N. Anand","doi":"10.1115/1.4049936","DOIUrl":"https://doi.org/10.1115/1.4049936","url":null,"abstract":"\u0000 This work experimentally investigated the flow phenomena and vortex structures in the wake of a sphere located in a water loop at Reynolds numbers of Re = 850, 1,250, and 1,700. Velocity fields in the wake region were obtained by applying the time-resolved stereoscopic particle image velocimetry (TR-SPIV) technique. From the acquired TR-SPIV velocity vector fields, the statistical values of mean and fluctuating velocities were computed. Spectral analysis, two-point velocity–velocity cross-correlation, proper orthogonal decomposition (POD) and vortex identification analyses were also performed. The velocity fields show a recirculation region that decreases in length with an increase of Reynolds numbers. The power spectra from the spectral analysis had peaks corresponding to a Strouhal number of St = 0.2, which is a value commonly found in the literature studies of flow over a sphere. The two-point cross-correlation analysis revealed elliptical structures in the wake, with estimated integral length scales ranging between 12% and 63% of the sphere diameter. The POD analysis revealed the statistically dominant flow structures that captured the most flow kinetic energy. It is seen that the flow kinetic energy captured in the smaller scale flow structures increased as Reynolds number increased. The POD modes contained smaller structure as the Reynolds number increased and as mode order increased. In addition, spectral analysis performed on the POD temporal coefficients revealed peaks corresponding to St = 0.2, similar to the spectral analysis on the fluctuating velocity. The ability of POD to produce low-order reconstructions of the flow was also utilized to facilitate vortex identification analysis, which identified average vortex sizes of 0.41D for Re1, 0.33D for Re2, and 0.32D for Re3.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"28 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90018063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhao Ruijie, D. Xiaohui, Pan Qiang, Zhang Desheng, B. Esch
Flow instability is the intricate phenomenon in the annular linear induction pump (ALIP) when the pump runs at off-design working condition. A three-dimensional (3D) numerical model is built to simulate the flow in the pump channel. The pump heads at different flow rates are accurately predicted by comparing with experiment. The simulation results show the fluid velocity is circumferentially nonuniform in the pump channel even at the nominal flow rate. The flow in the middle sector continuously decelerates to nearly zero with the reducing flow rate. Reversed flow occurs in the azimuthal plane, followed by vortex flow. The reason for the heterogeneous velocity field is attributed to the mismatch between nonuniform Lorentz force and relatively even pressure gradient. It is seen that the flow in the region of small Lorentz force has to sacrifice its velocity to match with the pressure gradient. An analytic expression of the axial Lorentz force is then developed and it is clearly demonstrated the Lorentz force could be influenced by the profiles of velocity and radial magnetic flux density. The coupling between velocity and magnetic field is studied by analyzing the magnitudes of different terms in the dimensionless magnetic induction equation. It is found the dissipation term is determined by not only the magnetic Reynolds number but also the square of wave number of the disturbance in each direction. The smaller disturbing wave number weakens the dissipating effect, resulting in the larger nonuniform magnetic field and axial Lorentz force.
{"title":"Analysis on the Inception of the Magnetohydrodynamic Flow Instability in the Annular Linear Induction Pump Channel","authors":"Zhao Ruijie, D. Xiaohui, Pan Qiang, Zhang Desheng, B. Esch","doi":"10.1115/1.4050008","DOIUrl":"https://doi.org/10.1115/1.4050008","url":null,"abstract":"\u0000 Flow instability is the intricate phenomenon in the annular linear induction pump (ALIP) when the pump runs at off-design working condition. A three-dimensional (3D) numerical model is built to simulate the flow in the pump channel. The pump heads at different flow rates are accurately predicted by comparing with experiment. The simulation results show the fluid velocity is circumferentially nonuniform in the pump channel even at the nominal flow rate. The flow in the middle sector continuously decelerates to nearly zero with the reducing flow rate. Reversed flow occurs in the azimuthal plane, followed by vortex flow. The reason for the heterogeneous velocity field is attributed to the mismatch between nonuniform Lorentz force and relatively even pressure gradient. It is seen that the flow in the region of small Lorentz force has to sacrifice its velocity to match with the pressure gradient. An analytic expression of the axial Lorentz force is then developed and it is clearly demonstrated the Lorentz force could be influenced by the profiles of velocity and radial magnetic flux density. The coupling between velocity and magnetic field is studied by analyzing the magnitudes of different terms in the dimensionless magnetic induction equation. It is found the dissipation term is determined by not only the magnetic Reynolds number but also the square of wave number of the disturbance in each direction. The smaller disturbing wave number weakens the dissipating effect, resulting in the larger nonuniform magnetic field and axial Lorentz force.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"45 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74461997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Banerjee, R. Dehner, A. Selamet, Keith Miazgowicz
Stereoscopic particle image velocimetry is used to characterize the variation of the turbocharger compressor inlet velocity field as a function of rotational speed, with an emphasis on surge. While the velocity magnitudes at choke or mild surge increased with rotational speed, the velocity profiles remained qualitatively similar. The variation in deep surge flow field with shaft speed, however, was more substantial. At 80 krpm, the overall flow field was comparable at different time instances (at different points on the surge cycle): the core flow near the duct center was always directed into the impeller, whereas reversed flow occupied an annular region near the periphery in nearly all time instances. However, at 140 krpm, while the negative flow rate (cross-sectional average flow is directed out of the inducer back into the inlet duct) portion of the surge cycle was still similar to the overall surge flow field at 80 krpm, over a substantial part of the positive flow rate (cross-sectional average flow is directed into the impeller) portion of the surge cycle, there was no sign of reversed flow within the visualization domain. As the rotational speed was increased, the surge loop (obtained by combining the particle image velocimetry (PIV) and pressure transducer data) extended over a wider portion of the compressor map with higher maximum (positive) and minimum (negative) flow rates, along with higher amplitude pressure fluctuations. The mean amplitude of mass flow rate and pressure ratio fluctuations at deep surge increased in nearly a quadratic fashion with rotational speed.
{"title":"Impact of Rotational Speed on Turbocharger Compressor Surge Through Particle Image Velocimetry1","authors":"D. Banerjee, R. Dehner, A. Selamet, Keith Miazgowicz","doi":"10.1115/1.4049838","DOIUrl":"https://doi.org/10.1115/1.4049838","url":null,"abstract":"\u0000 Stereoscopic particle image velocimetry is used to characterize the variation of the turbocharger compressor inlet velocity field as a function of rotational speed, with an emphasis on surge. While the velocity magnitudes at choke or mild surge increased with rotational speed, the velocity profiles remained qualitatively similar. The variation in deep surge flow field with shaft speed, however, was more substantial. At 80 krpm, the overall flow field was comparable at different time instances (at different points on the surge cycle): the core flow near the duct center was always directed into the impeller, whereas reversed flow occupied an annular region near the periphery in nearly all time instances. However, at 140 krpm, while the negative flow rate (cross-sectional average flow is directed out of the inducer back into the inlet duct) portion of the surge cycle was still similar to the overall surge flow field at 80 krpm, over a substantial part of the positive flow rate (cross-sectional average flow is directed into the impeller) portion of the surge cycle, there was no sign of reversed flow within the visualization domain. As the rotational speed was increased, the surge loop (obtained by combining the particle image velocimetry (PIV) and pressure transducer data) extended over a wider portion of the compressor map with higher maximum (positive) and minimum (negative) flow rates, along with higher amplitude pressure fluctuations. The mean amplitude of mass flow rate and pressure ratio fluctuations at deep surge increased in nearly a quadratic fashion with rotational speed.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"124 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77452731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effects of an active flapping jet actuator on the wake flow dynamics behind a circular cylinder in wind tunnel tests were investigated. An active flapping jet actuator was embedded in the cylinder in advance to invoke a spontaneous flapping jet into the cylinder's wake. The experiment, which was performed in a wind tunnel with a Reynolds number of Re = 1.99 × 104, was based on the oncoming wind speed, cylinder diameter, and kinematic viscosity of the air at the laboratory's temperature. The flow field structures behind the cylinder model with different dimensionless jet momentum coefficients, Cu, were obtained using the high-speed particle image velocimetry technique. The proper orthogonal decomposition (POD) method was used to represent the variation of the POD mode energy, mode coefficients, and the reconstructed spreading vorticity. The dynamic temporal evolution and time-averaged results in the near wake region of the cylinder with and without active flapping-jet control were calculated and analyzed to illustrate the rich phenomena produced by, and the control effect of, the flapping jet. For Cu values up to 0.0554, the periodic vortex shedding was pushed to farther wakes. Meanwhile, the time-averaged wake changed considerably, and the distributions of the turbulent kinetic energy and Reynolds shear stress decreased significantly. A data-driven dynamic mode decomposition method was used to extract the coherent structure of the wake of the cylinder embedded with the flapping jet actuator. The Strouhal number of the main mode of the Cu = 0.0865 case was different from the natural case.
{"title":"Fluid Dynamics Behind a Circular Cylinder Embedded with an Active Flapping Jet Actuator","authors":"D. Gao, X. Chang, Guanbin Chen, Wenli Chen","doi":"10.1115/1.4051312","DOIUrl":"https://doi.org/10.1115/1.4051312","url":null,"abstract":"\u0000 The effects of an active flapping jet actuator on the wake flow dynamics behind a circular cylinder in wind tunnel tests were investigated. An active flapping jet actuator was embedded in the cylinder in advance to invoke a spontaneous flapping jet into the cylinder's wake. The experiment, which was performed in a wind tunnel with a Reynolds number of Re = 1.99 × 104, was based on the oncoming wind speed, cylinder diameter, and kinematic viscosity of the air at the laboratory's temperature. The flow field structures behind the cylinder model with different dimensionless jet momentum coefficients, Cu, were obtained using the high-speed particle image velocimetry technique. The proper orthogonal decomposition (POD) method was used to represent the variation of the POD mode energy, mode coefficients, and the reconstructed spreading vorticity. The dynamic temporal evolution and time-averaged results in the near wake region of the cylinder with and without active flapping-jet control were calculated and analyzed to illustrate the rich phenomena produced by, and the control effect of, the flapping jet. For Cu values up to 0.0554, the periodic vortex shedding was pushed to farther wakes. Meanwhile, the time-averaged wake changed considerably, and the distributions of the turbulent kinetic energy and Reynolds shear stress decreased significantly. A data-driven dynamic mode decomposition method was used to extract the coherent structure of the wake of the cylinder embedded with the flapping jet actuator. The Strouhal number of the main mode of the Cu = 0.0865 case was different from the natural case.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"246 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76967625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the present study, two-dimensional unsteady, incompressible flow around a square body that is being transformed into a vertex oriented towards the flow configuration of a triangular body is numerically investigated at Re =100 using ANSYS FLUENT 19.0 software. The purpose is to explore the effect of this transformation on the wake characteristics of a square body with l/d = 1 to a triangular body with l/d = 0; where l is the length of lateral and front surface, and d is the body height. The effect on the flow behavior caused by the leading-edge transformation from the prospect of wake width, recirculation length and stagnation pressure difference is discussed. It is seen that as the l/d ratio decreases, the vortex strength increases which is attributed to the higher stagnation pressure difference value resulting in more intense rolling of the shedding vortex and a smaller wake width. For lower l/d, the fluid traverses a longer distance along the lateral surfaces resulting in greater loss of momentum and hence the lower vortex formation length. The mean drag coefficient is found to be minimum for l/d = 0.75 with stagnation pressure difference and recirculation length being the more dominating factor on this variation. The flow in all the cases separates at the rear surface and the general trend of decrease in drag coefficient with decrease in wake width is not followed. However, such modification leads to better aerodynamic outcome by weakening the periodic drag and lift forces.
{"title":"Flow Characterization of Bluff Bodies: A Two-Dimensional Transformation From Square to Triangular Cylinder","authors":"R. Borah, Siddhant Jain, Dyuman V. Joshi, U. Saha","doi":"10.1115/1.4051310","DOIUrl":"https://doi.org/10.1115/1.4051310","url":null,"abstract":"\u0000 In the present study, two-dimensional unsteady, incompressible flow around a square body that is being transformed into a vertex oriented towards the flow configuration of a triangular body is numerically investigated at Re =100 using ANSYS FLUENT 19.0 software. The purpose is to explore the effect of this transformation on the wake characteristics of a square body with l/d = 1 to a triangular body with l/d = 0; where l is the length of lateral and front surface, and d is the body height. The effect on the flow behavior caused by the leading-edge transformation from the prospect of wake width, recirculation length and stagnation pressure difference is discussed. It is seen that as the l/d ratio decreases, the vortex strength increases which is attributed to the higher stagnation pressure difference value resulting in more intense rolling of the shedding vortex and a smaller wake width. For lower l/d, the fluid traverses a longer distance along the lateral surfaces resulting in greater loss of momentum and hence the lower vortex formation length. The mean drag coefficient is found to be minimum for l/d = 0.75 with stagnation pressure difference and recirculation length being the more dominating factor on this variation. The flow in all the cases separates at the rear surface and the general trend of decrease in drag coefficient with decrease in wake width is not followed. However, such modification leads to better aerodynamic outcome by weakening the periodic drag and lift forces.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"36 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77723561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}