The reproductive biology of the branching octocoral Antillogorgia americana was studied at a site on the Caribbean coast of Panama in 1990–1991 by examining the reproductive status of 11 colonies across 14 months. Colonies were gonochoric. The presence of large and mature eggs or spermaries was allochronic across colonies and months, with peak gonad volumes occurring in months ranging from October through May. Reproductive effort varied between branches on a colony, with variation between branches and branchlets accounting for 25% of the random variation between polyps. Branchlets at the tip of the colony had fewer mature eggs than those lower on the branch, and polyps at the tips of the branchlets had fewer still. Although the simultaneous release of eggs and sperm is critical to reproductive success, the lack of synchrony among colonies on the scale of months may reflect less need for all colonies to spawn in a single event among abundant species that release large numbers of gametes. Such a strategy also spreads the risk of reproductive failure due to environmental conditions during any single month. The presence of multiple spawning episodes can also drive the reproductive isolation of populations and may reflect the presence of cryptic species within the taxon. Studies of reproductive timing can be an important adjunct in identifying variation in life history strategies as well as assessing the validity of species boundaries.
{"title":"Allochronic reproductive cycles among colonies of the Caribbean octocoral Antillogorgia americana","authors":"Howard R. Lasker, Julio Calderón","doi":"10.1111/ivb.12425","DOIUrl":"10.1111/ivb.12425","url":null,"abstract":"<p>The reproductive biology of the branching octocoral <i>Antillogorgia americana</i> was studied at a site on the Caribbean coast of Panama in 1990–1991 by examining the reproductive status of 11 colonies across 14 months. Colonies were gonochoric. The presence of large and mature eggs or spermaries was allochronic across colonies and months, with peak gonad volumes occurring in months ranging from October through May. Reproductive effort varied between branches on a colony, with variation between branches and branchlets accounting for 25% of the random variation between polyps. Branchlets at the tip of the colony had fewer mature eggs than those lower on the branch, and polyps at the tips of the branchlets had fewer still. Although the simultaneous release of eggs and sperm is critical to reproductive success, the lack of synchrony among colonies on the scale of months may reflect less need for all colonies to spawn in a single event among abundant species that release large numbers of gametes. Such a strategy also spreads the risk of reproductive failure due to environmental conditions during any single month. The presence of multiple spawning episodes can also drive the reproductive isolation of populations and may reflect the presence of cryptic species within the taxon. Studies of reproductive timing can be an important adjunct in identifying variation in life history strategies as well as assessing the validity of species boundaries.</p>","PeriodicalId":54923,"journal":{"name":"Invertebrate Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140972310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Connor Lang, Chathumadavi Ediriweera, Stephen C. Weeks
Sex chromosome degeneration is documented in various animal taxa and is predicted to be due, in part, to a buildup of transposable elements (TE) on the non-recombining sex chromosome (Y in mammals and W in many crustaceans). Recombination in XX (or ZZ) individuals is predicted to reduce the buildup of TEs on the X (Z), but because there are no YY (WW) individuals, such TE buildup goes unchecked on the Y or W. Herein, we report an analysis of TEs in the genome of a crustacean that has both ZZ and WW individuals. The purported W chromosome did show linkage with several known sex-linked loci. However, the prediction of a buildup of TEs throughout the purported W was not found: neither the predicted accumulation of the TE types LINE and LTR nor the expected higher TE numbers were observed on the purported W. We could not exclude the possibility of TE buildup in a smaller non-recombining region of the W chromosome, which is predicted in species in the earliest stages of sex chromosome development. These results allow a glimpse into the earliest stages of sex chromosome evolution in these branchiopod crustaceans.
性染色体退化在各种动物类群中都有记录,据预测,部分原因是由于转座元件(TE)在非重组性染色体(哺乳动物中为 Y,许多甲壳类动物中为 W)上的堆积。据预测,XX(或 ZZ)个体的重组会减少 TE 在 X(Z)染色体上的堆积,但由于没有 YY(WW)个体,这种 TE 在 Y 或 W 染色体上的堆积不会受到控制。在此,我们报告了对一种既有 ZZ 又有 WW 的甲壳动物基因组中 TE 的分析。所谓的W染色体确实与几个已知的性连锁基因座有联系。我们不能排除在 W 染色体较小的非重组区域中出现 TE 积累的可能性,这在处于性染色体发育最早阶段的物种中是可以预测到的。这些结果让我们得以一窥这些枝足类甲壳动物性染色体进化的最初阶段。
{"title":"Sex chromosome evolution in the clam shrimp Eulimnadia texana","authors":"Connor Lang, Chathumadavi Ediriweera, Stephen C. Weeks","doi":"10.1111/ivb.12426","DOIUrl":"10.1111/ivb.12426","url":null,"abstract":"<p>Sex chromosome degeneration is documented in various animal taxa and is predicted to be due, in part, to a buildup of transposable elements (TE) on the non-recombining sex chromosome (Y in mammals and W in many crustaceans). Recombination in XX (or ZZ) individuals is predicted to reduce the buildup of TEs on the X (Z), but because there are no YY (WW) individuals, such TE buildup goes unchecked on the Y or W. Herein, we report an analysis of TEs in the genome of a crustacean that has both ZZ and WW individuals. The purported W chromosome did show linkage with several known sex-linked loci. However, the prediction of a buildup of TEs throughout the purported W was not found: neither the predicted accumulation of the TE types LINE and LTR nor the expected higher TE numbers were observed on the purported W. We could not exclude the possibility of TE buildup in a smaller non-recombining region of the W chromosome, which is predicted in species in the earliest stages of sex chromosome development. These results allow a glimpse into the earliest stages of sex chromosome evolution in these branchiopod crustaceans.</p>","PeriodicalId":54923,"journal":{"name":"Invertebrate Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ivb.12426","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140976230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Harry M. Murray, Daria Gallardi, Kimberley D. Hobbs
To understand the seasonality of spermatogenesis in cultured males of Mytilus edulis from a cold-ocean environment, we investigated the cellular transitions occurring within the spermatogenic epithelium of the testicular acini during early and advancing spermatogenesis, with specific reference to the histology of the epithelium, gene specific spermatogenic response, condition, culture environment, and season. A combination of histological evaluation, qPCR analysis, and in situ hybridization was used to examine the cellular transitions taking place in the germinal epithelium from late winter through to a seasonal spawn in summer. We observed clear seasonal transitionary changes in the spermatogenic cell population making up the germinal epithelium (i.e., spermatogonial stem cells, spermatocytes, spermatids, and spermatozoa) extending from February to July. These seasonal transitions in spermatogenic cell type coincided with significant variation in the spatiotemporal expression of two molecular markers for spermatogenesis (i.e., Kelch-like protein 10 [KLHL10] and Armadillo repeat-containing protein 4 isoform X2 [ARMC4]) but not for expression of a gamete-specific Mitochondrial cytochrome oxidase I (MT-COI). The spatiotemporal expression of these genes is directly linked to the cellular changes taking place in the germinal epithelium during spermatogenesis. These observations not only corresponded to seasonal changes in physiological condition but also environmental temperature and chlorophyll a, thus further supporting the link between male gametogenesis and environment in higher latitude regions.
{"title":"Spermatogenesis in cultured blue mussel (Mytilus edulis) from a cold-ocean environment: Seasonal spatiotemporal expression of three gamete-associated molecular markers","authors":"Harry M. Murray, Daria Gallardi, Kimberley D. Hobbs","doi":"10.1111/ivb.12424","DOIUrl":"10.1111/ivb.12424","url":null,"abstract":"<p>To understand the seasonality of spermatogenesis in cultured males of <i>Mytilus edulis</i> from a cold-ocean environment, we investigated the cellular transitions occurring within the spermatogenic epithelium of the testicular acini during early and advancing spermatogenesis, with specific reference to the histology of the epithelium, gene specific spermatogenic response, condition, culture environment, and season. A combination of histological evaluation, qPCR analysis, and in situ hybridization was used to examine the cellular transitions taking place in the germinal epithelium from late winter through to a seasonal spawn in summer. We observed clear seasonal transitionary changes in the spermatogenic cell population making up the germinal epithelium (i.e., spermatogonial stem cells, spermatocytes, spermatids, and spermatozoa) extending from February to July. These seasonal transitions in spermatogenic cell type coincided with significant variation in the spatiotemporal expression of two molecular markers for spermatogenesis (i.e., <i>Kelch-like protein 10</i> [<i>KLHL10</i>] and <i>Armadillo repeat-containing protein 4 isoform X2</i> [<i>ARMC4</i>]) but not for expression of a gamete-specific <i>Mitochondrial cytochrome oxidase I</i> (MT-COI). The spatiotemporal expression of these genes is directly linked to the cellular changes taking place in the germinal epithelium during spermatogenesis. These observations not only corresponded to seasonal changes in physiological condition but also environmental temperature and chlorophyll <i>a</i>, thus further supporting the link between male gametogenesis and environment in higher latitude regions.</p>","PeriodicalId":54923,"journal":{"name":"Invertebrate Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ivb.12424","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Road salt (NaCl) is the most common deicer used to melt snow and ice from roadways in cold climates, but its use results in runoff of sodium and chloride ions into sewers and into soil and freshwater ecosystems. Road salt causes harmful effects on wetland habitats, which host an abundance of macroinvertebrate species. Alternatives to road salt, such as beet juice, are commercially available, but their impact on invertebrates is less well studied. We examined the impact of road salt alternatives on four invertebrate species (Daphnia pulex, Eisenia fetida, Heterocypris sp., and Culicoides sp. larvae), some of which come from a naturally brackish area. Our expectation was that road salt alternatives (beet salt, molasses, pickle juice, and sand) would be less toxic to the animals than traditional road salt. This study comprised two experiments: the first exposed individuals of the four invertebrate species to road salt alternatives, and the second exposed the invertebrates to a range of road salt concentrations. Only individuals of D. pulex were negatively impacted by road salt. The other invertebrates were not significantly affected by any salt alternative, demonstrating interspecific differences in response to salt. Species found in naturally salty environments were more tolerant of both road salt and alternatives. This research shows species- and habitat-specific responses to road salt alternatives, which has implications for municipalities looking to salt roads without negatively impacting freshwater ecosystems.
路盐(氯化钠)是寒冷气候条件下最常用的道路融雪除冰剂,但其使用会导致钠离子和氯离子流入下水道、土壤和淡水生态系统。路面盐会对湿地生境造成有害影响,而湿地中栖息着大量的大型无脊椎动物。路面盐的替代品(如甜菜汁)在市场上可以买到,但它们对无脊椎动物的影响研究较少。我们研究了路盐替代品对四种无脊椎动物(水蚤、费氏鳗、异形鲤科鱼类和栉水母幼虫)的影响,其中一些来自天然咸水地区。我们期望路盐替代品(甜菜盐、糖蜜、腌菜汁和沙子)对动物的毒性低于传统路盐。这项研究包括两项实验:第一项实验将四种无脊椎动物的个体暴露在路盐替代品中,第二项实验将无脊椎动物暴露在一定浓度的路盐中。只有 D. pulex 的个体受到了路盐的负面影响。其他无脊椎动物没有受到任何盐替代品的明显影响,这表明它们对盐的反应存在种间差异。自然含盐环境中的物种对路面盐和替代品的耐受性更强。这项研究显示了物种和栖息地对路面撒盐替代品的特定反应,这对希望在不对淡水生态系统造成负面影响的情况下对路面撒盐的市政当局具有重要意义。
{"title":"Invertebrates from naturally brackish areas are less impacted by road salt and alternative deicers","authors":"Rachel M. H. Stander, Abigail E. Cahill","doi":"10.1111/ivb.12423","DOIUrl":"10.1111/ivb.12423","url":null,"abstract":"<p>Road salt (NaCl) is the most common deicer used to melt snow and ice from roadways in cold climates, but its use results in runoff of sodium and chloride ions into sewers and into soil and freshwater ecosystems. Road salt causes harmful effects on wetland habitats, which host an abundance of macroinvertebrate species. Alternatives to road salt, such as beet juice, are commercially available, but their impact on invertebrates is less well studied. We examined the impact of road salt alternatives on four invertebrate species (<i>Daphnia pulex</i>, <i>Eisenia fetida</i>, <i>Heterocypris</i> sp., and <i>Culicoides</i> sp. larvae), some of which come from a naturally brackish area. Our expectation was that road salt alternatives (beet salt, molasses, pickle juice, and sand) would be less toxic to the animals than traditional road salt. This study comprised two experiments: the first exposed individuals of the four invertebrate species to road salt alternatives, and the second exposed the invertebrates to a range of road salt concentrations. Only individuals of <i>D. pulex</i> were negatively impacted by road salt. The other invertebrates were not significantly affected by any salt alternative, demonstrating interspecific differences in response to salt. Species found in naturally salty environments were more tolerant of both road salt and alternatives. This research shows species- and habitat-specific responses to road salt alternatives, which has implications for municipalities looking to salt roads without negatively impacting freshwater ecosystems.</p>","PeriodicalId":54923,"journal":{"name":"Invertebrate Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ivb.12423","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140653807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natalia V. Mochalova, Nadezhda B. Terenina, Sergei O. Movsesyan, Natalia D. Kreshchenko
The musculature of parasitic flatworms plays a central role in locomotory movement, attachment to the host, and in the function of the digestive, reproductive, and excretory systems. We examine for the first time the muscle system of the flatworm Dicrocoelium dendriticum, a causative agent of the parasitic disease dicrocoeliosis, by use of fluorescently labeled phalloidin and confocal laser scanning microscopy. Somatic musculature of D. dendriticum consists of the circular, longitudinal, and diagonal muscles. The distribution of the muscle fibers in the body wall differed among the anterior, middle, and posterior body regions of the worm. The musculature of the attachment organs, the oral and ventral suckers, includes several types of muscles: the external equatorial and meridional muscles, internal circular and semicircular muscles, and radial muscles. Inside of the ventral sucker the diagonally located muscles were revealed and the supplementary u-shaped muscles were found adjoined to the base of the sucker from outside. The musculature of the internal organs composed of the excretory, reproductive, and digestive systems were characterized. Our results increase our knowledge of the morphology of trematodes and the arrangement of their muscle system.
寄生扁形虫的肌肉在运动、附着于宿主以及消化、生殖和排泄系统的功能中发挥着核心作用。我们首次利用荧光标记的类胶体蛋白和共聚焦激光扫描显微镜研究了扁形蠕虫树枝微囊虫的肌肉系统,树枝微囊虫是寄生虫病树枝微囊虫病的病原体。D. dendriticum 的躯体肌肉由环肌、纵肌和斜肌组成。肌纤维在体壁的分布在蠕虫的前、中、后体区有所不同。附着器官(口吸盘和腹吸盘)的肌肉包括几种类型的肌肉:外赤道肌和经线肌、内圆肌和半圆肌以及径向肌。在腹吸盘内部发现了斜向肌肉,在吸盘外部发现了与吸盘基部相邻的 U 形辅助肌肉。由排泄系统、生殖系统和消化系统组成的内脏器官的肌肉组织也得到了表征。我们的研究结果增加了我们对吸虫形态及其肌肉系统排列的了解。
{"title":"The organization of the muscle system of the causative agent of dicrocoeliosis, Dicrocoelium dendriticum","authors":"Natalia V. Mochalova, Nadezhda B. Terenina, Sergei O. Movsesyan, Natalia D. Kreshchenko","doi":"10.1111/ivb.12421","DOIUrl":"10.1111/ivb.12421","url":null,"abstract":"<p>The musculature of parasitic flatworms plays a central role in locomotory movement, attachment to the host, and in the function of the digestive, reproductive, and excretory systems. We examine for the first time the muscle system of the flatworm <i>Dicrocoelium dendriticum,</i> a causative agent of the parasitic disease dicrocoeliosis, by use of fluorescently labeled phalloidin and confocal laser scanning microscopy. Somatic musculature of <i>D. dendriticum</i> consists of the circular, longitudinal, and diagonal muscles. The distribution of the muscle fibers in the body wall differed among the anterior, middle, and posterior body regions of the worm. The musculature of the attachment organs, the oral and ventral suckers, includes several types of muscles: the external equatorial and meridional muscles, internal circular and semicircular muscles, and radial muscles. Inside of the ventral sucker the diagonally located muscles were revealed and the supplementary u-shaped muscles were found adjoined to the base of the sucker from outside. The musculature of the internal organs composed of the excretory, reproductive, and digestive systems were characterized. Our results increase our knowledge of the morphology of trematodes and the arrangement of their muscle system.</p>","PeriodicalId":54923,"journal":{"name":"Invertebrate Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140315378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Echinoderm skeletons are composed of calcium carbonate ossicles that join in a variety of ways to form flexible or, more rarely, fixed joints. Ossicle “fusion” in echinoderms has been widely reported in the literature to form various types of fixed joint, but fusion in the sense of chemical union (ankylosis) of the calcitic ossicles has rarely been demonstrated. The arm skeleton of ophiuroids is primarily composed of a series of vertebral ossicles; each vertebra is a compound ossicle that consists of paired ambulacral ossicles united by a fixed joint, often reported to be fused. Development of vertebral ossicles in the amphiurid brittlestar Ophiophragmus filograneus from the arm tip to the oral frame was examined using scanning electron microscopy to follow ontogeny of the vertebra. As an ambulacral ossicle grew, its stereomal trabeculae interdigitated and interlocked by hooking around those of its paired ambulacral, forming the characteristic sinuous suture line central to ophiuroid vertebrae. This three-dimensional interlocking of stereom formed the joint between paired ambulacrals. With further growth of the vertebra, limited fusion of trabeculae of the paired ambulacrals added to the structure of the joint, primarily at the articular surfaces between successive vertebrae. The joint found here with interlocked trabeculae between ambulacral ossicles of O. filograneus appears to be the same type described in the literature in some echinoids and other ophiuroids. This unique type of fixed joint is described here and named the “campylogomphosis” (Greek: campylos, bent; gomphos, bolt). This newly recognized joint might have implications in echinoderm phylogeny, comparative biology, medicine, and materials science.
棘皮动物的骨骼由碳酸钙骨小梁组成,这些骨小梁以各种方式连接在一起,形成灵活的关节,或更少见的固定关节。文献中广泛报道了棘皮动物的听小骨 "融合 "形成各种类型的固定关节,但钙质听小骨化学结合(强直)意义上的融合却很少被证实。耳鼻目动物的手臂骨骼主要由一系列椎骨小骨组成;每个椎骨都是一个复合小骨,由成对的椎骨小骨组成,并通过一个固定关节结合在一起,据报道通常是融合在一起的。研究人员利用扫描电子显微镜跟踪脊椎骨的个体发育过程,对两栖类脆口蝠(Ophiophragmus filograneus)从臂端到口腔框架的脊椎骨听小骨发育情况进行了研究。随着伏骨节的生长,其立体骨小梁通过钩住成对伏骨节的立体骨小梁而相互交错,形成了虹彩椎特有的中心蜿蜒缝合线。这种立体交锁形成了成对伏椎之间的关节。随着椎骨的进一步生长,成对伏椎骨小梁的有限融合增加了关节的结构,主要是在连续椎骨之间的关节面。在这里发现的 O. filograneus 伏椎骨小梁之间相互交错的关节,似乎与文献中描述的一些棘皮动物和其他畸形动物的关节类型相同。本文描述了这种独特的固定关节,并将其命名为 "莰栓"(希腊语:campylos,弯曲;gomphos,螺栓)。这种新发现的关节可能会对棘皮动物的系统发育、比较生物学、医学和材料科学产生影响。
{"title":"The campylogomphosis: A new kind of joint in echinoderms","authors":"Helen M. Benson, Richard L. Turner","doi":"10.1111/ivb.12422","DOIUrl":"10.1111/ivb.12422","url":null,"abstract":"<p>Echinoderm skeletons are composed of calcium carbonate ossicles that join in a variety of ways to form flexible or, more rarely, fixed joints. Ossicle “fusion” in echinoderms has been widely reported in the literature to form various types of fixed joint, but fusion in the sense of chemical union (ankylosis) of the calcitic ossicles has rarely been demonstrated. The arm skeleton of ophiuroids is primarily composed of a series of vertebral ossicles; each vertebra is a compound ossicle that consists of paired ambulacral ossicles united by a fixed joint, often reported to be fused. Development of vertebral ossicles in the amphiurid brittlestar <i>Ophiophragmus filograneus</i> from the arm tip to the oral frame was examined using scanning electron microscopy to follow ontogeny of the vertebra. As an ambulacral ossicle grew, its stereomal trabeculae interdigitated and interlocked by hooking around those of its paired ambulacral, forming the characteristic sinuous suture line central to ophiuroid vertebrae. This three-dimensional interlocking of stereom formed the joint between paired ambulacrals. With further growth of the vertebra, limited fusion of trabeculae of the paired ambulacrals added to the structure of the joint, primarily at the articular surfaces between successive vertebrae. The joint found here with interlocked trabeculae between ambulacral ossicles of <i>O. filograneus</i> appears to be the same type described in the literature in some echinoids and other ophiuroids. This unique type of fixed joint is described here and named the “campylogomphosis” (Greek: <i>campylos</i>, bent; <i>gomphos</i>, bolt). This newly recognized joint might have implications in echinoderm phylogeny, comparative biology, medicine, and materials science.</p>","PeriodicalId":54923,"journal":{"name":"Invertebrate Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140297755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soledad Zabala, Valeria Teso, Pablo E. Penchaszadeh, Andrés Averbuj
Olivancillaria carcellesi occurs in shallow sandy shores from north Patagonia, in intertidal and subtidal sandy bottoms. Females of O. carcellesi exhibited a remarkable specificity for spawning on the shells of living males and females, indiscriminately, of the buccinanopsid Buccinastrum deforme, measuring 26.9 ± 4.7 mm in shell length. The egg capsule was semispherical and attached to B. deforme shells by a small elliptical and wide base. The capsule was translucid when spawned, with a thick and semirigid wall and a hatching aperture of 1.8 ± 0.1 mm (n = 111) in diameter. Each egg capsule contained a single egg that measured 1367 ± 34 μm (n = 5) in diameter before cleavage. The embryo developed a small bilobed velum and an operculum, which were both lost before hatching as a crawling juvenile of 1762 ± 47 μm (n = 28) in shell length. As in other species in the genus, the eggs of O. carcellesi are among the largest in the caenogastropods with direct development. The time from oviposition to hatching is estimated to be approximately 6 months.
{"title":"Spawn and development of the olivid gastropod Olivancillaria carcellesi from north Patagonia, Argentina","authors":"Soledad Zabala, Valeria Teso, Pablo E. Penchaszadeh, Andrés Averbuj","doi":"10.1111/ivb.12420","DOIUrl":"10.1111/ivb.12420","url":null,"abstract":"<p><i>Olivancillaria carcellesi</i> occurs in shallow sandy shores from north Patagonia, in intertidal and subtidal sandy bottoms. Females of <i>O. carcellesi</i> exhibited a remarkable specificity for spawning on the shells of living males and females, indiscriminately, of the buccinanopsid <i>Buccinastrum deforme</i>, measuring 26.9 ± 4.7 mm in shell length. The egg capsule was semispherical and attached to <i>B. deforme</i> shells by a small elliptical and wide base. The capsule was translucid when spawned, with a thick and semirigid wall and a hatching aperture of 1.8 ± 0.1 mm (n = 111) in diameter. Each egg capsule contained a single egg that measured 1367 ± 34 μm (n = 5) in diameter before cleavage. The embryo developed a small bilobed velum and an operculum, which were both lost before hatching as a crawling juvenile of 1762 ± 47 μm (n = 28) in shell length. As in other species in the genus, the eggs of <i>O. carcellesi</i> are among the largest in the caenogastropods with direct development. The time from oviposition to hatching is estimated to be approximately 6 months.</p>","PeriodicalId":54923,"journal":{"name":"Invertebrate Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140150857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dina A. Proestou, Thomas A. Delomas, Mary E. Sullivan, Kathryn Markey Lundgren
The eastern oyster (Crassostrea virginica) is a protandrous hermaphrodite of commercial importance. As with many marine invertebrates, little is known about sex determination and differentiation systems in this species. Such knowledge has important implications not only for understanding the evolution of sex but also for applied questions in aquaculture. In order to examine mechanistic differences in reproductive development between the sexes, we compared the transcriptomes of gonad and mantle tissues from six male and six female oysters. A total of 7675 transcripts were differentially expressed between male and female gonads (3936 and 3739 were upregulated in males and females, respectively). Transcripts identified include those associated with sex in other invertebrate and vertebrate species such as Dmrt1, Sox-30, Bindin, Dpy-30, and Histone H4 in males and Foxl2, Vitellogenin, and Bystin in females. GO terms associated with transcripts upregulated in male gonads include protein modification, reproductive process, and cell projection organization, whereas RNA metabolic process and amino acid metabolic process were associated with transcripts upregulated in females. Far fewer transcripts were differentially expressed between male and female mantle tissues, with 87 transcripts upregulated in females and 16 upregulated in males. However, 41% of transcripts identified as differentially expressed between mantle tissues were also differentially expressed between male and female gonads including Histone H4 and Bystin. This study represents the first characterization of eastern oyster male and female gonad transcriptomes. We further identify differing expression profiles between male and female mantle tissues, which provides evidence for sex-specific functions of the mantle and suggests that this tissue could harbor biomarkers for identifying oyster sex non-destructively.
{"title":"Sex-specific gene expression in eastern oyster, Crassostrea virginica, gonad and mantle tissues","authors":"Dina A. Proestou, Thomas A. Delomas, Mary E. Sullivan, Kathryn Markey Lundgren","doi":"10.1111/ivb.12418","DOIUrl":"10.1111/ivb.12418","url":null,"abstract":"<p>The eastern oyster (<i>Crassostrea virginica</i>) is a protandrous hermaphrodite of commercial importance. As with many marine invertebrates, little is known about sex determination and differentiation systems in this species. Such knowledge has important implications not only for understanding the evolution of sex but also for applied questions in aquaculture. In order to examine mechanistic differences in reproductive development between the sexes, we compared the transcriptomes of gonad and mantle tissues from six male and six female oysters. A total of 7675 transcripts were differentially expressed between male and female gonads (3936 and 3739 were upregulated in males and females, respectively). Transcripts identified include those associated with sex in other invertebrate and vertebrate species such as <i>Dmrt1</i>, <i>Sox-30</i>, <i>Bindin</i>, <i>Dpy-30</i>, and <i>Histone H4</i> in males and <i>Foxl2</i>, <i>Vitellogenin</i>, and <i>Bystin</i> in females. GO terms associated with transcripts upregulated in male gonads include protein modification, reproductive process, and cell projection organization, whereas RNA metabolic process and amino acid metabolic process were associated with transcripts upregulated in females. Far fewer transcripts were differentially expressed between male and female mantle tissues, with 87 transcripts upregulated in females and 16 upregulated in males. However, 41% of transcripts identified as differentially expressed between mantle tissues were also differentially expressed between male and female gonads including <i>Histone H4</i> and <i>Bystin</i>. This study represents the first characterization of eastern oyster male and female gonad transcriptomes. We further identify differing expression profiles between male and female mantle tissues, which provides evidence for sex-specific functions of the mantle and suggests that this tissue could harbor biomarkers for identifying oyster sex non-destructively.</p>","PeriodicalId":54923,"journal":{"name":"Invertebrate Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dicyemids (Phylum Dicyemida) are the most common and characteristic endosymbiont living in the renal sac of benthic cephalopod molluscs. Precocious development of a hermaphroditic gonad occurs in the larvae and smaller juveniles of 40 dicyemid species from 17 cephalopod species so far and is the usual phenomenon in dicyemids. Based on the developmental and morphological features of precocious individuals, progenesis (a form of heterochrony) is the appropriate term for such precocious development. In general, progenetic individuals have much lower fecundity than normal ones because of their smaller body size, and therefore, it appears to be a disadvantageous reproductive trait. Nonetheless, the number of progenetic individuals consists of 30%–50% of the population, a relatively large proportion suggesting that the presence of progenetic individuals probably plays an important role in life history strategy. Precocious development significantly reduces growth time and enables early maturation. Progenetic individuals are common in short‐living cephalopod species, in which precocious development seems appropriate for dicyemids, enabling fast larval release before the end of the host's life span.
{"title":"Progenesis in dicyemids","authors":"H. Furuya","doi":"10.1111/ivb.12419","DOIUrl":"https://doi.org/10.1111/ivb.12419","url":null,"abstract":"Dicyemids (Phylum Dicyemida) are the most common and characteristic endosymbiont living in the renal sac of benthic cephalopod molluscs. Precocious development of a hermaphroditic gonad occurs in the larvae and smaller juveniles of 40 dicyemid species from 17 cephalopod species so far and is the usual phenomenon in dicyemids. Based on the developmental and morphological features of precocious individuals, progenesis (a form of heterochrony) is the appropriate term for such precocious development. In general, progenetic individuals have much lower fecundity than normal ones because of their smaller body size, and therefore, it appears to be a disadvantageous reproductive trait. Nonetheless, the number of progenetic individuals consists of 30%–50% of the population, a relatively large proportion suggesting that the presence of progenetic individuals probably plays an important role in life history strategy. Precocious development significantly reduces growth time and enables early maturation. Progenetic individuals are common in short‐living cephalopod species, in which precocious development seems appropriate for dicyemids, enabling fast larval release before the end of the host's life span.","PeriodicalId":54923,"journal":{"name":"Invertebrate Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139801675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dicyemids (Phylum Dicyemida) are the most common and characteristic endosymbiont living in the renal sac of benthic cephalopod molluscs. Precocious development of a hermaphroditic gonad occurs in the larvae and smaller juveniles of 40 dicyemid species from 17 cephalopod species so far and is the usual phenomenon in dicyemids. Based on the developmental and morphological features of precocious individuals, progenesis (a form of heterochrony) is the appropriate term for such precocious development. In general, progenetic individuals have much lower fecundity than normal ones because of their smaller body size, and therefore, it appears to be a disadvantageous reproductive trait. Nonetheless, the number of progenetic individuals consists of 30%–50% of the population, a relatively large proportion suggesting that the presence of progenetic individuals probably plays an important role in life history strategy. Precocious development significantly reduces growth time and enables early maturation. Progenetic individuals are common in short-living cephalopod species, in which precocious development seems appropriate for dicyemids, enabling fast larval release before the end of the host's life span.
{"title":"Progenesis in dicyemids","authors":"Hidetaka Furuya","doi":"10.1111/ivb.12419","DOIUrl":"10.1111/ivb.12419","url":null,"abstract":"<p>Dicyemids (Phylum Dicyemida) are the most common and characteristic endosymbiont living in the renal sac of benthic cephalopod molluscs. Precocious development of a hermaphroditic gonad occurs in the larvae and smaller juveniles of 40 dicyemid species from 17 cephalopod species so far and is the usual phenomenon in dicyemids. Based on the developmental and morphological features of precocious individuals, progenesis (a form of heterochrony) is the appropriate term for such precocious development. In general, progenetic individuals have much lower fecundity than normal ones because of their smaller body size, and therefore, it appears to be a disadvantageous reproductive trait. Nonetheless, the number of progenetic individuals consists of 30%–50% of the population, a relatively large proportion suggesting that the presence of progenetic individuals probably plays an important role in life history strategy. Precocious development significantly reduces growth time and enables early maturation. Progenetic individuals are common in short-living cephalopod species, in which precocious development seems appropriate for dicyemids, enabling fast larval release before the end of the host's life span.</p>","PeriodicalId":54923,"journal":{"name":"Invertebrate Biology","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139861354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}