首页 > 最新文献

International Journal of Data Mining and Bioinformatics最新文献

英文 中文
Fast retrieval method of biomedical literature based on feature mining 基于特征挖掘的生物医学文献快速检索方法
IF 0.3 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-01-01 DOI: 10.1504/ijdmb.2023.10058133
Ping Yu, Fahuan Xie, Yunxin Long, Duo Long, Hui Yan
{"title":"Fast retrieval method of biomedical literature based on feature mining","authors":"Ping Yu, Fahuan Xie, Yunxin Long, Duo Long, Hui Yan","doi":"10.1504/ijdmb.2023.10058133","DOIUrl":"https://doi.org/10.1504/ijdmb.2023.10058133","url":null,"abstract":"","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"1 1","pages":""},"PeriodicalIF":0.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66730887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of disease-related miRNAs based on weighted k-nearest known neighbours and inductive matrix completion 基于加权k近邻和感应矩阵补全的疾病相关mirna鉴定
4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-01-01 DOI: 10.1504/ijdmb.2023.134297
Ahmet Toprak
{"title":"Identification of disease-related miRNAs based on weighted k-nearest known neighbours and inductive matrix completion","authors":"Ahmet Toprak","doi":"10.1504/ijdmb.2023.134297","DOIUrl":"https://doi.org/10.1504/ijdmb.2023.134297","url":null,"abstract":"","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135006906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on human health status recognition based on association algorithm 基于关联算法的人体健康状态识别研究
4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-01-01 DOI: 10.1504/ijdmb.2023.134292
Taiping Jiang, Zhibing Wang, Lei Huang
{"title":"Research on human health status recognition based on association algorithm","authors":"Taiping Jiang, Zhibing Wang, Lei Huang","doi":"10.1504/ijdmb.2023.134292","DOIUrl":"https://doi.org/10.1504/ijdmb.2023.134292","url":null,"abstract":"","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135006907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagnosis of Parkinson's disease genes using LSTM and MLP-based multi-feature extraction methods 基于LSTM和mlp的多特征提取方法诊断帕金森病基因
4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-01-01 DOI: 10.1504/ijdmb.2023.134301
Priya Arora, Ashutosh Mishra, Avleen Malhi
{"title":"Diagnosis of Parkinson's disease genes using LSTM and MLP-based multi-feature extraction methods","authors":"Priya Arora, Ashutosh Mishra, Avleen Malhi","doi":"10.1504/ijdmb.2023.134301","DOIUrl":"https://doi.org/10.1504/ijdmb.2023.134301","url":null,"abstract":"","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135006919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low resolution face recognition algorithm based on MB-LBP 基于MB-LBP的低分辨率人脸识别算法
4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-01-01 DOI: 10.1504/ijdmb.2023.134293
Bin Fang
{"title":"Low resolution face recognition algorithm based on MB-LBP","authors":"Bin Fang","doi":"10.1504/ijdmb.2023.134293","DOIUrl":"https://doi.org/10.1504/ijdmb.2023.134293","url":null,"abstract":"","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135007560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toxicity Detection of Small Drug Molecules of the Mitochondrial Membrane Potential Signalling Pathway using Bagging-based Ensemble Learning 基于bagging集成学习的线粒体膜电位信号通路小分子药物毒性检测
IF 0.3 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2022-01-01 DOI: 10.1504/ijdmb.2022.10052684
Vishan Kumar Gupta N.A.
{"title":"Toxicity Detection of Small Drug Molecules of the Mitochondrial Membrane Potential Signalling Pathway using Bagging-based Ensemble Learning","authors":"Vishan Kumar Gupta N.A.","doi":"10.1504/ijdmb.2022.10052684","DOIUrl":"https://doi.org/10.1504/ijdmb.2022.10052684","url":null,"abstract":"","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"1 1","pages":""},"PeriodicalIF":0.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66731203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Diagnostic and prognostic value of HSPD1 in esophageal cancer HSPD1在食管癌中的诊断及预后价值
IF 0.3 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2021-01-01 DOI: 10.1504/ijdmb.2021.10048132
Xiaolan Guo, Lei Xu, Xiaoping Zhou, Yuting Bai, Can Luo, Xin Chen, Qing Wu, Xiaowu Zhong
{"title":"Diagnostic and prognostic value of HSPD1 in esophageal cancer","authors":"Xiaolan Guo, Lei Xu, Xiaoping Zhou, Yuting Bai, Can Luo, Xin Chen, Qing Wu, Xiaowu Zhong","doi":"10.1504/ijdmb.2021.10048132","DOIUrl":"https://doi.org/10.1504/ijdmb.2021.10048132","url":null,"abstract":"","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"1 1","pages":""},"PeriodicalIF":0.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66731184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of protein hot regions by combing structure-based classification, energy-based clustering and sequence-based conservation in evolution 结合基于结构的分类、基于能量的聚类和基于序列的进化守恒来识别蛋白质热点区域
IF 0.3 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2020-09-09 DOI: 10.1504/ijdmb.2020.10031424
Nansheng Chen, Xiaolong Zhang, Haomin Gan, Jing Hu
Revealing the protein hot regions is the key point for understanding the protein-protein interaction, while due to the long period and labour-consuming of experimental methods, it is very helpful to use computational method to improve the efficiency to predict hot regions. In previous methods, some methods are based on a single side, such as structure, energy, and sequence, every side has its limitations. In this paper, we proposed a new method that combines structure-based classification, energy-based clustering and sequence-based conservation. This method makes full use of three sides of protein features and minimise the limitations of using one single side. Experimental results show that the proposed method increases the prediction accuracy of protein hot regions.
揭示蛋白质的热区是理解蛋白质-蛋白质相互作用的关键,而由于实验方法耗时长、耗时长,采用计算方法预测热区非常有助于提高预测效率。在以前的方法中,有些方法是基于单一的方面,如结构、能量、序列,每一个方面都有其局限性。本文提出了一种基于结构的分类、基于能量的聚类和基于序列的守恒相结合的新方法。该方法充分利用了蛋白质的三面特征,最大限度地减少了使用单面的局限性。实验结果表明,该方法提高了蛋白质热区的预测精度。
{"title":"Identification of protein hot regions by combing structure-based classification, energy-based clustering and sequence-based conservation in evolution","authors":"Nansheng Chen, Xiaolong Zhang, Haomin Gan, Jing Hu","doi":"10.1504/ijdmb.2020.10031424","DOIUrl":"https://doi.org/10.1504/ijdmb.2020.10031424","url":null,"abstract":"Revealing the protein hot regions is the key point for understanding the protein-protein interaction, while due to the long period and labour-consuming of experimental methods, it is very helpful to use computational method to improve the efficiency to predict hot regions. In previous methods, some methods are based on a single side, such as structure, energy, and sequence, every side has its limitations. In this paper, we proposed a new method that combines structure-based classification, energy-based clustering and sequence-based conservation. This method makes full use of three sides of protein features and minimise the limitations of using one single side. Experimental results show that the proposed method increases the prediction accuracy of protein hot regions.","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"24 1","pages":"74-95"},"PeriodicalIF":0.3,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42385830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fetal Weight Prediction Based on Improved PSO-GRNN Model 基于改进PSO-GRNN模型的胎儿体重预测
IF 0.3 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2020-01-01 DOI: 10.1504/ijdmb.2020.10031299
Fangxiong Chen, Guoheng Huang, Hui-Shi Wu, Ke Hu, Weiwen Zhang, Cheng Lianglun
{"title":"Fetal Weight Prediction Based on Improved PSO-GRNN Model","authors":"Fangxiong Chen, Guoheng Huang, Hui-Shi Wu, Ke Hu, Weiwen Zhang, Cheng Lianglun","doi":"10.1504/ijdmb.2020.10031299","DOIUrl":"https://doi.org/10.1504/ijdmb.2020.10031299","url":null,"abstract":"","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"24 1","pages":"177-200"},"PeriodicalIF":0.3,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66731008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical-protein interaction extraction from biomedical literature: a hierarchical recurrent convolutional neural network method 从生物医学文献中提取化学-蛋白质相互作用:一种分层递归卷积神经网络方法
IF 0.3 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2019-05-18 DOI: 10.1504/IJDMB.2019.10021458
Cong Sun, Zhihao Yang, Lei Wang, Yin Zhang, Hongfei Lin, Jian Wang, Liang Yang, Kan Xu, Yijia Zhang
Mining chemical-protein interactions between chemicals and proteins plays vital roles in biomedical tasks, such as knowledge graph, pharmacology, and clinical research. Although chemical-protein interactions can be manually curated from the biomedical literature, the process is difficult and time-consuming. Hence, it is of great value to automatically obtain the chemical-protein interactions from biomedical literature. Recently, the most popular methods are based on the neural network to avoid complex manual processing. However, the performance is usually limited because of the lengthy and complicated sentences. To address this limitation, we propose a novel model, Hierarchical Recurrent Convolutional Neural Network (HRCNN), to learn hidden semantic and syntactic features from sentence sub-sequences effectively. Our approach achieves an F-score of 65.56% on the CHEMPROT corpus and outperforms the state-of-the-art systems. The experimental results demonstrate that our approach can greatly alleviate the defect of existing methods due to the existence of long sentences.
挖掘化学物质和蛋白质之间的化学-蛋白质相互作用在生物医学任务中起着至关重要的作用,如知识图谱、药理学和临床研究。虽然化学-蛋白质的相互作用可以从生物医学文献中手动整理出来,但这个过程既困难又耗时。因此,从生物医学文献中自动获取化学-蛋白质相互作用具有重要的价值。目前,最流行的方法是基于神经网络来避免复杂的人工处理。然而,由于句子冗长复杂,通常会限制其表现。为了解决这一限制,我们提出了一种新的模型——层次递归卷积神经网络(HRCNN),以有效地从句子子序列中学习隐藏的语义和句法特征。我们的方法在CHEMPROT语料库上获得了65.56%的f分,优于最先进的系统。实验结果表明,我们的方法可以极大地缓解现有方法因长句的存在而造成的缺陷。
{"title":"Chemical-protein interaction extraction from biomedical literature: a hierarchical recurrent convolutional neural network method","authors":"Cong Sun, Zhihao Yang, Lei Wang, Yin Zhang, Hongfei Lin, Jian Wang, Liang Yang, Kan Xu, Yijia Zhang","doi":"10.1504/IJDMB.2019.10021458","DOIUrl":"https://doi.org/10.1504/IJDMB.2019.10021458","url":null,"abstract":"Mining chemical-protein interactions between chemicals and proteins plays vital roles in biomedical tasks, such as knowledge graph, pharmacology, and clinical research. Although chemical-protein interactions can be manually curated from the biomedical literature, the process is difficult and time-consuming. Hence, it is of great value to automatically obtain the chemical-protein interactions from biomedical literature. Recently, the most popular methods are based on the neural network to avoid complex manual processing. However, the performance is usually limited because of the lengthy and complicated sentences. To address this limitation, we propose a novel model, Hierarchical Recurrent Convolutional Neural Network (HRCNN), to learn hidden semantic and syntactic features from sentence sub-sequences effectively. Our approach achieves an F-score of 65.56% on the CHEMPROT corpus and outperforms the state-of-the-art systems. The experimental results demonstrate that our approach can greatly alleviate the defect of existing methods due to the existence of long sentences.","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"1 1","pages":""},"PeriodicalIF":0.3,"publicationDate":"2019-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44720726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
International Journal of Data Mining and Bioinformatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1