首页 > 最新文献

Computing and Informatics最新文献

英文 中文
Adaptive Evolutionary Multitasking to Solve Inter-Domain Path Computation Under Node-Defined Domain Uniqueness Constraint: New Solution Encoding Scheme 自适应进化多任务解决节点定义域唯一性约束下的域间路径计算:新的解编码方案
IF 0.7 4区 计算机科学 Q3 Computer Science Pub Date : 2023-01-01 DOI: 10.31577/cai_2023_1_98
Thanh Pham Dinh
{"title":"Adaptive Evolutionary Multitasking to Solve Inter-Domain Path Computation Under Node-Defined Domain Uniqueness Constraint: New Solution Encoding Scheme","authors":"Thanh Pham Dinh","doi":"10.31577/cai_2023_1_98","DOIUrl":"https://doi.org/10.31577/cai_2023_1_98","url":null,"abstract":"","PeriodicalId":55215,"journal":{"name":"Computing and Informatics","volume":"42 1","pages":"98-125"},"PeriodicalIF":0.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70009931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of Columnar NoSQL Data Warehouse Model with Clarans Clustering Algorithm 基于Clarans聚类算法的柱状NoSQL数据仓库模型优化
IF 0.7 4区 计算机科学 Q3 Computer Science Pub Date : 2023-01-01 DOI: 10.31577/cai_2023_3_762
N. Soussi
. In order to perfectly meet the needs of business leaders, decision-makers have resorted to the integration of external sources (such as Linked Open Data) in the decision-making system in order to enrich their existing data warehouses with new concepts contributing to bring added value to their organizations, enhance its productivity and retain its customers. However, the traditional data warehouse environment is not suitable to support external Big Data. To deal with this new challenge, several researches are oriented towards the direct conversion of classical relational data warehouse to a columnar NoSQL data warehouse, whereas the existing advanced works based on clustering algorithms are very limited and have several shortcomings. In this context, our paper proposes a new solution that conceives an optimized columnar data warehouse based on CLARANS clustering algorithm that has proven its effectiveness in generating optimal column families. Experimental re-sults improve the validity of our system by performing a detailed comparative study between the existing advanced approaches and our proposed optimized method.
. 为了完美地满足商业领袖的需求,决策者在决策系统中采用了外部资源(如Linked Open Data)的集成,以便用新的概念丰富他们现有的数据仓库,从而为他们的组织带来附加价值,提高其生产力并保留其客户。然而,传统的数据仓库环境并不适合支持外部大数据。为了应对这一新的挑战,一些研究面向将经典关系数据仓库直接转换为列式NoSQL数据仓库,而现有的基于聚类算法的先进工作非常有限,并且存在一些不足。在此背景下,本文提出了一种新的解决方案,即基于CLARANS聚类算法构想一个优化的列数据仓库,该算法已被证明在生成最优列族方面是有效的。实验结果通过对现有的先进方法和本文提出的优化方法进行了详细的对比研究,提高了系统的有效性。
{"title":"Optimization of Columnar NoSQL Data Warehouse Model with Clarans Clustering Algorithm","authors":"N. Soussi","doi":"10.31577/cai_2023_3_762","DOIUrl":"https://doi.org/10.31577/cai_2023_3_762","url":null,"abstract":". In order to perfectly meet the needs of business leaders, decision-makers have resorted to the integration of external sources (such as Linked Open Data) in the decision-making system in order to enrich their existing data warehouses with new concepts contributing to bring added value to their organizations, enhance its productivity and retain its customers. However, the traditional data warehouse environment is not suitable to support external Big Data. To deal with this new challenge, several researches are oriented towards the direct conversion of classical relational data warehouse to a columnar NoSQL data warehouse, whereas the existing advanced works based on clustering algorithms are very limited and have several shortcomings. In this context, our paper proposes a new solution that conceives an optimized columnar data warehouse based on CLARANS clustering algorithm that has proven its effectiveness in generating optimal column families. Experimental re-sults improve the validity of our system by performing a detailed comparative study between the existing advanced approaches and our proposed optimized method.","PeriodicalId":55215,"journal":{"name":"Computing and Informatics","volume":"2 1","pages":"762-780"},"PeriodicalIF":0.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70010172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning to Translate Kannada and English Queries for Mixed Script Information Retrieval 为混合文字信息检索学习翻译卡纳达语和英语查询
IF 0.7 4区 计算机科学 Q3 Computer Science Pub Date : 2021-01-01 DOI: 10.31577/cai_2021_3_628
S. SowmyaLakshmiB., R. ShambhaviB.
{"title":"Learning to Translate Kannada and English Queries for Mixed Script Information Retrieval","authors":"S. SowmyaLakshmiB., R. ShambhaviB.","doi":"10.31577/cai_2021_3_628","DOIUrl":"https://doi.org/10.31577/cai_2021_3_628","url":null,"abstract":"","PeriodicalId":55215,"journal":{"name":"Computing and Informatics","volume":"40 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70009850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real Time Mobile Ad Investigator: An Effective and Novel Approach for Mobile Click Fraud Detection 实时移动广告调查员:一种有效和新颖的移动点击欺诈检测方法
IF 0.7 4区 计算机科学 Q3 Computer Science Pub Date : 2021-01-01 DOI: 10.31577/cai_2021_3_606
Iroshan Aberathne, C. Walgampaya
{"title":"Real Time Mobile Ad Investigator: An Effective and Novel Approach for Mobile Click Fraud Detection","authors":"Iroshan Aberathne, C. Walgampaya","doi":"10.31577/cai_2021_3_606","DOIUrl":"https://doi.org/10.31577/cai_2021_3_606","url":null,"abstract":"","PeriodicalId":55215,"journal":{"name":"Computing and Informatics","volume":"40 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70009832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Virtual Machine Deployment Strategy Based on Improved PSO in Cloud Computing 基于改进粒子群算法的云计算虚拟机部署策略
IF 0.7 4区 计算机科学 Q3 Computer Science Pub Date : 2020-03-24 DOI: 10.31577/cai_2020_1-2_83
Shanchen Pang, Dong Dekun, Shuyu Wang
Energy consumption is an important cost driven by growth of computing power, thereby energy conservation has become one of the major problems faced by cloud system. How to maximize the utilization of physical machines, reduce the number of virtual machine migrations, and maintain load balance under the constraints of physical machine resource thresholds that is the effective way to implement energy saving in data center. In the paper, we propose a multi-objective physical model for virtual machine deployment. Then the improved multi-objective particle swarm optimization (TPSO) is applied to virtual machine deployment. Compared to other algorithms, the algorithm has better ergodicity into the initial stage, improves the optimization precision and optimization efficiency of the particle swarm. The experimental results based on CloudSim simulation platform show that the algorithm is effective at improving physical machine resource utilization, reducing resource waste, and improving system load balance.
能源消耗是计算能力增长驱动的重要成本,因此节能已成为云系统面临的主要问题之一。如何在物理机资源阈值的约束下最大限度地利用物理机,减少虚拟机迁移次数,保持负载平衡,是实现数据中心节能的有效途径。在本文中,我们提出了一个用于虚拟机部署的多目标物理模型。然后将改进的多目标粒子群优化算法(TPSO)应用于虚拟机部署。与其他算法相比,该算法在初始阶段具有更好的遍历性,提高了粒子群的优化精度和优化效率。基于CloudSim仿真平台的实验结果表明,该算法在提高物理机资源利用率、减少资源浪费、提高系统负载平衡方面是有效的。
{"title":"Virtual Machine Deployment Strategy Based on Improved PSO in Cloud Computing","authors":"Shanchen Pang, Dong Dekun, Shuyu Wang","doi":"10.31577/cai_2020_1-2_83","DOIUrl":"https://doi.org/10.31577/cai_2020_1-2_83","url":null,"abstract":"Energy consumption is an important cost driven by growth of computing power, thereby energy conservation has become one of the major problems faced by cloud system. How to maximize the utilization of physical machines, reduce the number of virtual machine migrations, and maintain load balance under the constraints of physical machine resource thresholds that is the effective way to implement energy saving in data center. In the paper, we propose a multi-objective physical model for virtual machine deployment. Then the improved multi-objective particle swarm optimization (TPSO) is applied to virtual machine deployment. Compared to other algorithms, the algorithm has better ergodicity into the initial stage, improves the optimization precision and optimization efficiency of the particle swarm. The experimental results based on CloudSim simulation platform show that the algorithm is effective at improving physical machine resource utilization, reducing resource waste, and improving system load balance.","PeriodicalId":55215,"journal":{"name":"Computing and Informatics","volume":"1 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2020-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47835857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Parallel Peer Group Filter for Impulse Denoising in Digital Images on GPU 基于GPU的数字图像脉冲去噪并行对等组滤波
IF 0.7 4区 计算机科学 Q3 Computer Science Pub Date : 2019-01-01 DOI: 10.31577/cai_2019_6_1320
José Agustín Tortolero Osuna, A. J. Rosales Silva
{"title":"Parallel Peer Group Filter for Impulse Denoising in Digital Images on GPU","authors":"José Agustín Tortolero Osuna, A. J. Rosales Silva","doi":"10.31577/cai_2019_6_1320","DOIUrl":"https://doi.org/10.31577/cai_2019_6_1320","url":null,"abstract":"","PeriodicalId":55215,"journal":{"name":"Computing and Informatics","volume":"1 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70009619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of Smart Contracts for Cloud-Based Manufacturing 基于云计算制造的智能合约综述
IF 0.7 4区 计算机科学 Q3 Computer Science Pub Date : 1900-01-01 DOI: 10.31577/cai_2022_1_34
A. H. Afridi
{"title":"Review of Smart Contracts for Cloud-Based Manufacturing","authors":"A. H. Afridi","doi":"10.31577/cai_2022_1_34","DOIUrl":"https://doi.org/10.31577/cai_2022_1_34","url":null,"abstract":"","PeriodicalId":55215,"journal":{"name":"Computing and Informatics","volume":"41 1","pages":"34-55"},"PeriodicalIF":0.7,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70009914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computing and Informatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1