Pub Date : 2024-12-03DOI: 10.1177/08465371241301957
Vivianne Freitas, Sandeep Ghai, Frederick Au, Derek Muradali, Supriya Kulkarni
The integration of Digital Breast Tomosynthesis (DBT) and Artificial Intelligence (AI) represents a significant advance in breast cancer screening. This combination aims to address several challenges inherent in traditional screening while promising an improvement in healthcare delivery across multiple dimensions. For patients, this technological synergy has the potential to lower the number of unnecessary recalls and associated procedures such as biopsies, thereby reducing patient anxiety and improving overall experience without compromising diagnostic accuracy. For radiologists, the use of combined AI and DBT could significantly decrease workload and reduce fatigue by effectively highlighting breast imaging abnormalities, which is especially beneficial in high-volume clinical settings. Health systems stand to gain from streamlined workflows and the facilitated deployment of DBT, which is particularly valuable in areas with a scarcity of specialized breast radiologists. However, despite these potential benefits, substantial challenges remain. Bridging the gap between the development of complex AI algorithms and implementation into clinical practice requires ongoing research and development. This is essential to optimize the reliability of these systems and ensure they are accessible to healthcare providers and patients, who are the ultimate beneficiaries of this technological advancement. This article reviews the benefits of combined AI-DBT imaging, particularly the ability of AI to enhance the benefits of DBT and reduce its existing limitations.
{"title":"The Transformative Power of Digital Breast Tomosynthesis and Artificial Intelligence in Breast Cancer Diagnosis.","authors":"Vivianne Freitas, Sandeep Ghai, Frederick Au, Derek Muradali, Supriya Kulkarni","doi":"10.1177/08465371241301957","DOIUrl":"https://doi.org/10.1177/08465371241301957","url":null,"abstract":"<p><p>The integration of Digital Breast Tomosynthesis (DBT) and Artificial Intelligence (AI) represents a significant advance in breast cancer screening. This combination aims to address several challenges inherent in traditional screening while promising an improvement in healthcare delivery across multiple dimensions. For patients, this technological synergy has the potential to lower the number of unnecessary recalls and associated procedures such as biopsies, thereby reducing patient anxiety and improving overall experience without compromising diagnostic accuracy. For radiologists, the use of combined AI and DBT could significantly decrease workload and reduce fatigue by effectively highlighting breast imaging abnormalities, which is especially beneficial in high-volume clinical settings. Health systems stand to gain from streamlined workflows and the facilitated deployment of DBT, which is particularly valuable in areas with a scarcity of specialized breast radiologists. However, despite these potential benefits, substantial challenges remain. Bridging the gap between the development of complex AI algorithms and implementation into clinical practice requires ongoing research and development. This is essential to optimize the reliability of these systems and ensure they are accessible to healthcare providers and patients, who are the ultimate beneficiaries of this technological advancement. This article reviews the benefits of combined AI-DBT imaging, particularly the ability of AI to enhance the benefits of DBT and reduce its existing limitations.</p>","PeriodicalId":55290,"journal":{"name":"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes","volume":" ","pages":"8465371241301957"},"PeriodicalIF":2.9,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142774893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1177/08465371241302748
James V Rawson, Ellen Odai Alie, Carole Dennie, Courtney R Green, Nick Neuheimer
{"title":"Modelling Impact of Process Improvement on Provincial and National CT and MRI Radiology Capacity.","authors":"James V Rawson, Ellen Odai Alie, Carole Dennie, Courtney R Green, Nick Neuheimer","doi":"10.1177/08465371241302748","DOIUrl":"https://doi.org/10.1177/08465371241302748","url":null,"abstract":"","PeriodicalId":55290,"journal":{"name":"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes","volume":" ","pages":"8465371241302748"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142774757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-30DOI: 10.1177/08465371241305023
Francois H Cornelis, Debkumar Sarkar, Stephen B Solomon
{"title":"Building a Culture of Resilience in Interventional Radiology Through Strategic Equipment Management.","authors":"Francois H Cornelis, Debkumar Sarkar, Stephen B Solomon","doi":"10.1177/08465371241305023","DOIUrl":"https://doi.org/10.1177/08465371241305023","url":null,"abstract":"","PeriodicalId":55290,"journal":{"name":"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes","volume":" ","pages":"8465371241305023"},"PeriodicalIF":2.9,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142774756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1177/08465371241302048
Aleena Malik, Andrea S Doria, Linda Probyn, Michael N Patlas
{"title":"Revitalizing Radiology Electives With Interactive Learning and Practical Exposure.","authors":"Aleena Malik, Andrea S Doria, Linda Probyn, Michael N Patlas","doi":"10.1177/08465371241302048","DOIUrl":"https://doi.org/10.1177/08465371241302048","url":null,"abstract":"","PeriodicalId":55290,"journal":{"name":"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes","volume":" ","pages":"8465371241302048"},"PeriodicalIF":2.9,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142734858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1177/08465371241296834
Khashayar Namdar, Matthias W Wagner, Kareem Kudus, Cynthia Hawkins, Uri Tabori, Birgit B Ertl-Wagner, Farzad Khalvati
Purpose: Pediatric low-grade gliomas (pLGG) are the most common brain tumour in children, and the molecular diagnosis of pLGG enables targeted treatment. We use MRI-based Convolutional Neural Networks (CNNs) for molecular subtype identification of pLGG and augment the models using tumour location probability maps. Materials and Methods: MRI FLAIR sequences of 214 patients (110 male, mean age of 8.54 years, 143 BRAF fused and 71 BRAF V600E mutated pLGG tumours) from January 2000 to December 2018 were included in this retrospective REB-approved study. Tumour segmentations (volumes of interest-VOIs) were provided by a pediatric neuroradiology fellow and verified by a pediatric neuroradiologist. Patients were randomly split into development and test sets with an 80/20 ratio. The 3D binary VOI masks for each class in the development set were combined to derive the probability density functions of tumour location. Three pipelines for molecular diagnosis of pLGG were developed: location-based, CNN-based, and hybrid. The experiment was repeated 100 times each with different model initializations and data splits, and the Areas Under the Receiver Operating Characteristic Curve (AUROC) was calculated, and Student's t-test was conducted. Results: The location-based classifier achieved an AUROC of 77.9, 95% confidence interval (CI) (76.8, 79.0). CNN-based classifiers achieved an AUROC of 86.1, 95% CI (85.0, 87.3), while the tumour-location-guided CNNs outperformed the other classifiers with an average AUROC of 88.64, 95% CI (87.6, 89.7), which was statistically significant (P-value .0018). Conclusion: Incorporating tumour location probability maps into CNN models led to significant improvements for molecular subtype identification of pLGG.
{"title":"Improving Deep Learning Models for Pediatric Low-Grade Glioma Tumours Molecular Subtype Identification Using MRI-based 3D Probability Distributions of Tumour Location.","authors":"Khashayar Namdar, Matthias W Wagner, Kareem Kudus, Cynthia Hawkins, Uri Tabori, Birgit B Ertl-Wagner, Farzad Khalvati","doi":"10.1177/08465371241296834","DOIUrl":"10.1177/08465371241296834","url":null,"abstract":"<p><p><b>Purpose:</b> Pediatric low-grade gliomas (pLGG) are the most common brain tumour in children, and the molecular diagnosis of pLGG enables targeted treatment. We use MRI-based Convolutional Neural Networks (CNNs) for molecular subtype identification of pLGG and augment the models using tumour location probability maps. <b>Materials and Methods:</b> MRI FLAIR sequences of 214 patients (110 male, mean age of 8.54 years, 143 BRAF fused and 71 BRAF V600E mutated pLGG tumours) from January 2000 to December 2018 were included in this retrospective REB-approved study. Tumour segmentations (volumes of interest-VOIs) were provided by a pediatric neuroradiology fellow and verified by a pediatric neuroradiologist. Patients were randomly split into development and test sets with an 80/20 ratio. The 3D binary VOI masks for each class in the development set were combined to derive the probability density functions of tumour location. Three pipelines for molecular diagnosis of pLGG were developed: location-based, CNN-based, and hybrid. The experiment was repeated 100 times each with different model initializations and data splits, and the Areas Under the Receiver Operating Characteristic Curve (AUROC) was calculated, and Student's <i>t</i>-test was conducted. <b>Results:</b> The location-based classifier achieved an AUROC of 77.9, 95% confidence interval (CI) (76.8, 79.0). CNN-based classifiers achieved an AUROC of 86.1, 95% CI (85.0, 87.3), while the tumour-location-guided CNNs outperformed the other classifiers with an average AUROC of 88.64, 95% CI (87.6, 89.7), which was statistically significant (<i>P</i>-value .0018). <b>Conclusion:</b> Incorporating tumour location probability maps into CNN models led to significant improvements for molecular subtype identification of pLGG.</p>","PeriodicalId":55290,"journal":{"name":"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes","volume":" ","pages":"8465371241296834"},"PeriodicalIF":2.9,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1177/08465371241299645
Laurent Milot, Philippe Soyer
{"title":"Robotics in Interventional Radiology: Is the Force With Us?","authors":"Laurent Milot, Philippe Soyer","doi":"10.1177/08465371241299645","DOIUrl":"https://doi.org/10.1177/08465371241299645","url":null,"abstract":"","PeriodicalId":55290,"journal":{"name":"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes","volume":" ","pages":"8465371241299645"},"PeriodicalIF":2.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1177/08465371241298597
Ryan D Postle, Bruce B Forster
{"title":"Patient Perspectives of Artificial Intelligence in Medical Imaging.","authors":"Ryan D Postle, Bruce B Forster","doi":"10.1177/08465371241298597","DOIUrl":"https://doi.org/10.1177/08465371241298597","url":null,"abstract":"","PeriodicalId":55290,"journal":{"name":"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes","volume":" ","pages":"8465371241298597"},"PeriodicalIF":2.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1177/08465371241297807
Sonali Sharma, Cynthia Walsh, Michael N Patlas, Charlotte J Yong-Hing
{"title":"Planning a Successful Mid-Career Transition in Radiology: Integrating Leadership, Growth, and Personal Fulfilment.","authors":"Sonali Sharma, Cynthia Walsh, Michael N Patlas, Charlotte J Yong-Hing","doi":"10.1177/08465371241297807","DOIUrl":"https://doi.org/10.1177/08465371241297807","url":null,"abstract":"","PeriodicalId":55290,"journal":{"name":"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes","volume":" ","pages":"8465371241297807"},"PeriodicalIF":2.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Functional and efficient medical equipment is at the core of modern healthcare delivery, particularly in medical imaging. Growing healthcare costs and constrained budgets can delay equipment renewal. Aging equipment risks malfunction, potentially causing injury to patients and staff, and downtimes delaying patient care and impacting departmental revenue. Extensive equipment failure can lead to significant operational disruption which can compromise the delivery of timely and quality healthcare. Although extensive equipment failure is uncommon, 2 interventional radiology divisions at tertiary academic hospitals in Canada and the UK recently faced such a crisis. Their experiences of crisis and recovery inform this review of angiography equipment failure, and the principles learned. The concept of organizational resilience is introduced as a framework through which we review the crises. This concept can be split into successive and cooperative stages of anticipation, coping, and adaptation. Resilient organizations can identify potential threats, cope with unexpected crises, and recover swiftly to ensure future success. The author's experience of critical angiography unit failure, their response, and lessons learned are reviewed. We find these principles are broadly applicable to other medical imaging divisions and relevant to any system reliant on technology for healthcare delivery.
{"title":"Managing Angiography Unit Failure in Interventional Radiology: Lessons in Crisis Management and Considerations in Prevention.","authors":"Cathal O'Leary, Sebastian Mafeld, Kathy Hilario, Tze Yuan Chan, Arash Jaberi","doi":"10.1177/08465371241298615","DOIUrl":"https://doi.org/10.1177/08465371241298615","url":null,"abstract":"<p><p>Functional and efficient medical equipment is at the core of modern healthcare delivery, particularly in medical imaging. Growing healthcare costs and constrained budgets can delay equipment renewal. Aging equipment risks malfunction, potentially causing injury to patients and staff, and downtimes delaying patient care and impacting departmental revenue. Extensive equipment failure can lead to significant operational disruption which can compromise the delivery of timely and quality healthcare. Although extensive equipment failure is uncommon, 2 interventional radiology divisions at tertiary academic hospitals in Canada and the UK recently faced such a crisis. Their experiences of crisis and recovery inform this review of angiography equipment failure, and the principles learned. The concept of organizational resilience is introduced as a framework through which we review the crises. This concept can be split into successive and cooperative stages of anticipation, coping, and adaptation. Resilient organizations can identify potential threats, cope with unexpected crises, and recover swiftly to ensure future success. The author's experience of critical angiography unit failure, their response, and lessons learned are reviewed. We find these principles are broadly applicable to other medical imaging divisions and relevant to any system reliant on technology for healthcare delivery.</p>","PeriodicalId":55290,"journal":{"name":"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes","volume":" ","pages":"8465371241298615"},"PeriodicalIF":2.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-03-20DOI: 10.1177/08465371241240298
Laura Manuela Olarte Bermúdez, Laura Andrea Campaña Perilla, Juan Martín Leguízamo-Isaza, Gloria Ines Palazuelos Jimenez
{"title":"Addressing Gender Disparities for Equitable Practice in Radiology.","authors":"Laura Manuela Olarte Bermúdez, Laura Andrea Campaña Perilla, Juan Martín Leguízamo-Isaza, Gloria Ines Palazuelos Jimenez","doi":"10.1177/08465371241240298","DOIUrl":"10.1177/08465371241240298","url":null,"abstract":"","PeriodicalId":55290,"journal":{"name":"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes","volume":" ","pages":"946"},"PeriodicalIF":2.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140177859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}