Numerical computation for the class of singularly perturbed delay parabolic reaction diffusion equations with integral boundary condition has been considered. A parameter-uniform numerical method is constructed via the nonstandard finite difference method for the spatial direction, and the backward Euler method for the resulting system of initial value problems in temporal direction is used. The integral boundary condition is treated using numerical integration techniques. Maximum absolute errors and the rate of convergence for different values of perturbation parameter ε and mesh sizes are tabulated for two model examples. The proposed method is shown to be parameter-uniformly convergent.
{"title":"Parameter-Uniform Numerical Scheme for Singularly Perturbed Delay Parabolic Reaction Diffusion Equations with Integral Boundary Condition","authors":"Wakjira Tolassa Gobena, G. Duressa","doi":"10.1155/2021/9993644","DOIUrl":"https://doi.org/10.1155/2021/9993644","url":null,"abstract":"Numerical computation for the class of singularly perturbed delay parabolic reaction diffusion equations with integral boundary condition has been considered. A parameter-uniform numerical method is constructed via the nonstandard finite difference method for the spatial direction, and the backward Euler method for the resulting system of initial value problems in temporal direction is used. The integral boundary condition is treated using numerical integration techniques. Maximum absolute errors and the rate of convergence for different values of perturbation parameter \u0000 \u0000 ε\u0000 \u0000 and mesh sizes are tabulated for two model examples. The proposed method is shown to be parameter-uniformly convergent.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45274169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present in this paper a numerical study of the validity limit of the optics geometrical approximation in comparison with a differential method which is established according to rigorous formalisms based on the electromagnetic theory. The precedent studies show that this method is adopted to the study of diffraction by periodic rough surfaces. For periods much larger than the wavelength, the mechanism is analog to what happens in a cavity where a ray is trapped and undergoes a large number of reflections. For gratings with a period much smaller than the wavelength, the roughness essentially behaves as a transition layer with a gradient of the optical index. Such a layer reduces the reflection there by increasing the absorption. The code has been implemented for TE polarization. We determine by the two methods such as differential method and the optics geometrical approximation the emissivity of gold and tungsten cylindrical surfaces with a sinusoidal profile, for a wavelength equal to 0.55 microns. The obtained results for a fixed height of the grating allowed us to delimit the validity domain of the optic geometrical approximation for the treated cases. The emissivity calculated by the differential method and that given on the basis of the homogenization theory are satisfactory when the period is much smaller than the wavelength.
{"title":"Electric Transverse Emissivity of Sinusoidal Surfaces Determined by a Differential Method: Comparison with Approximation of Geometric Optics","authors":"Taoufik Ghabara","doi":"10.1155/2021/1506485","DOIUrl":"https://doi.org/10.1155/2021/1506485","url":null,"abstract":"We present in this paper a numerical study of the validity limit of the optics geometrical approximation in comparison with a differential method which is established according to rigorous formalisms based on the electromagnetic theory. The precedent studies show that this method is adopted to the study of diffraction by periodic rough surfaces. For periods much larger than the wavelength, the mechanism is analog to what happens in a cavity where a ray is trapped and undergoes a large number of reflections. For gratings with a period much smaller than the wavelength, the roughness essentially behaves as a transition layer with a gradient of the optical index. Such a layer reduces the reflection there by increasing the absorption. The code has been implemented for TE polarization. We determine by the two methods such as differential method and the optics geometrical approximation the emissivity of gold and tungsten cylindrical surfaces with a sinusoidal profile, for a wavelength equal to 0.55 microns. The obtained results for a fixed height of the grating allowed us to delimit the validity domain of the optic geometrical approximation for the treated cases. The emissivity calculated by the differential method and that given on the basis of the homogenization theory are satisfactory when the period is much smaller than the wavelength.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46817935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we study the global bifurcation of infinity of a class of nonlinear eigenvalue problems for fourth-order ordinary differential equations with nondifferentiable nonlinearity. We prove the existence of two families of unbounded continuance of solutions bifurcating at infinity and corresponding to the usual nodal properties near bifurcation intervals.
{"title":"Global Bifurcation of Fourth-Order Nonlinear Eigenvalue Problems’ Solution","authors":"Fatma Aydin Akgun","doi":"10.1155/2021/7516324","DOIUrl":"https://doi.org/10.1155/2021/7516324","url":null,"abstract":"In this paper, we study the global bifurcation of infinity of a class of nonlinear eigenvalue problems for fourth-order ordinary differential equations with nondifferentiable nonlinearity. We prove the existence of two families of unbounded continuance of solutions bifurcating at infinity and corresponding to the usual nodal properties near bifurcation intervals.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47499536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Kajouni, A. Chafiki, K. Hilal, Mohamed Oukessou
This paper is motivated by some papers treating the fractional derivatives. We introduce a new definition of fractional derivative which obeys classical properties including linearity, product rule, quotient rule, power rule, chain rule, Rolle’s theorem, and the mean value theorem. The definition