首页 > 最新文献

Organic Process Research & Development最新文献

英文 中文
Continuous Flow Enabled Synthesis of Multiresistant Drug Clofazimine 多耐药性药物氯法齐明的连续流合成
IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-11-01 DOI: 10.1021/acs.oprd.4c0042010.1021/acs.oprd.4c00420
Rajat Pandey, Faith Akwi and Paul Watts*, 

Drug resistance to tuberculosis is still one of the major challenges worldwide. Clofazimine, which belongs to the riminophenazine (antibiotic) class, is still one of the active drugs that are efficient against drug-resistant Mycobacterium tuberculosis. Apart from this, it is also a WHO-approved drug for the treatment of leprosy and, at present, is under phase 2 clinical trial for its activity against the SARS-CoV-2 virus. Owing to its vast importance in clinical research, we have developed a semicontinuous flow-mediated synthesis of Clofazimine using readily available p-chloroaniline and 1-fluoro-2-nitrobenzene. The target drug molecule was obtained from four consecutive chemical transformations with nominal residence time, improved purity, and yields when compared to the batch process. Moreover, the first two steps were also successfully telescoped under the optimized reaction conditions.

结核病的耐药性仍然是全球面临的主要挑战之一。氯法齐明属于利米诺吩嗪(抗生素)类,目前仍是有效抗耐药结核分枝杆菌的药物之一。此外,它还是世界卫生组织批准用于治疗麻风病的药物,目前正在进行第二阶段临床试验,以研究它对 SARS-CoV-2 病毒的活性。鉴于氯噻嗪在临床研究中的重要作用,我们利用容易获得的对氯苯胺和 1-氟-2-硝基苯,开发了一种半连续流介导的氯噻嗪合成方法。与间歇工艺相比,通过四次连续的化学转化获得了目标药物分子,停留时间更短,纯度和产率均有所提高。此外,在优化的反应条件下,前两个步骤也成功实现了伸缩。
{"title":"Continuous Flow Enabled Synthesis of Multiresistant Drug Clofazimine","authors":"Rajat Pandey,&nbsp;Faith Akwi and Paul Watts*,&nbsp;","doi":"10.1021/acs.oprd.4c0042010.1021/acs.oprd.4c00420","DOIUrl":"https://doi.org/10.1021/acs.oprd.4c00420https://doi.org/10.1021/acs.oprd.4c00420","url":null,"abstract":"<p >Drug resistance to tuberculosis is still one of the major challenges worldwide. Clofazimine, which belongs to the riminophenazine (antibiotic) class, is still one of the active drugs that are efficient against drug-resistant <i>Mycobacterium tuberculosis</i>. Apart from this, it is also a WHO-approved drug for the treatment of leprosy and, at present, is under phase 2 clinical trial for its activity against the SARS-CoV-2 virus. Owing to its vast importance in clinical research, we have developed a semicontinuous flow-mediated synthesis of Clofazimine using readily available <i>p</i>-chloroaniline and 1-fluoro-2-nitrobenzene. The target drug molecule was obtained from four consecutive chemical transformations with nominal residence time, improved purity, and yields when compared to the batch process. Moreover, the first two steps were also successfully telescoped under the optimized reaction conditions.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"28 11","pages":"4163–4172 4163–4172"},"PeriodicalIF":3.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.oprd.4c00420","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous Flow Enabled Synthesis of Multiresistant Drug Clofazimine 多耐药性药物氯法齐明的连续流合成
IF 3.4 3区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-11-01 DOI: 10.1021/acs.oprd.4c00420
Rajat Pandey, Faith Akwi, Paul Watts
Drug resistance to tuberculosis is still one of the major challenges worldwide. Clofazimine, which belongs to the riminophenazine (antibiotic) class, is still one of the active drugs that are efficient against drug-resistant Mycobacterium tuberculosis. Apart from this, it is also a WHO-approved drug for the treatment of leprosy and, at present, is under phase 2 clinical trial for its activity against the SARS-CoV-2 virus. Owing to its vast importance in clinical research, we have developed a semicontinuous flow-mediated synthesis of Clofazimine using readily available p-chloroaniline and 1-fluoro-2-nitrobenzene. The target drug molecule was obtained from four consecutive chemical transformations with nominal residence time, improved purity, and yields when compared to the batch process. Moreover, the first two steps were also successfully telescoped under the optimized reaction conditions.
结核病的耐药性仍然是全球面临的主要挑战之一。氯法齐明属于利米诺吩嗪(抗生素)类,目前仍是有效抗耐药结核分枝杆菌的药物之一。此外,它还是世界卫生组织批准用于治疗麻风病的药物,目前正在进行第二阶段临床试验,以研究它对 SARS-CoV-2 病毒的活性。鉴于氯噻嗪在临床研究中的重要作用,我们利用容易获得的对氯苯胺和 1-氟-2-硝基苯,开发了一种半连续流介导的氯噻嗪合成方法。与间歇工艺相比,通过四次连续的化学转化获得了目标药物分子,停留时间更短,纯度和产率均有所提高。此外,在优化的反应条件下,前两个步骤也成功实现了伸缩。
{"title":"Continuous Flow Enabled Synthesis of Multiresistant Drug Clofazimine","authors":"Rajat Pandey, Faith Akwi, Paul Watts","doi":"10.1021/acs.oprd.4c00420","DOIUrl":"https://doi.org/10.1021/acs.oprd.4c00420","url":null,"abstract":"Drug resistance to tuberculosis is still one of the major challenges worldwide. Clofazimine, which belongs to the riminophenazine (antibiotic) class, is still one of the active drugs that are efficient against drug-resistant <i>Mycobacterium tuberculosis</i>. Apart from this, it is also a WHO-approved drug for the treatment of leprosy and, at present, is under phase 2 clinical trial for its activity against the SARS-CoV-2 virus. Owing to its vast importance in clinical research, we have developed a semicontinuous flow-mediated synthesis of Clofazimine using readily available <i>p</i>-chloroaniline and 1-fluoro-2-nitrobenzene. The target drug molecule was obtained from four consecutive chemical transformations with nominal residence time, improved purity, and yields when compared to the batch process. Moreover, the first two steps were also successfully telescoped under the optimized reaction conditions.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"97 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-Pot Synthesis of Guanidinium 5,5′-Azotetrazolate Avoiding Isolation of Hazardous Sodium 5,5′-Azotetrazolate 避免分离有害的 5,5′-四氮唑钠的 5,5′-四氮唑胍的一锅合成法
IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-10-30 DOI: 10.1021/acs.oprd.4c0036410.1021/acs.oprd.4c00364
Miroslav Labaj, Zdeněk Jalový*, Robert Matyáš, Jiří Nesveda, Jakub Mikuláštík and Adam Votýpka, 

Sodium 5,5′-azotetrazolate (Na2AzT) is a starting material for various azotetrazole salts that find applications as lead-free primary explosives or high-nitrogen compounds for inflating safety systems (in particular, guanidinium azotetrazolate, GZT). Sodium azotetrazolate, after preparation, is commonly isolated as the pentahydrate, which is relatively safe for handling. But it readily loses hydrate water molecules at higher temperatures or by treatment with organic solvents. In such cases, sensitivity to mechanical stimuli increases considerably and explosion accidents may occur. In this work, the thermal conditions and the role of solvents in water loss from sodium 5,5′-azotetrazolate pentahydrate are presented. Impact and friction sensitivity parameters of the products are described. In the case of guanidinium azotetrazolate, the process for its preparation without producing sodium 5,5′-azotetrazolate is introduced, thus avoiding manipulation of hazardous material and increasing the safety of the procedure.

5,5′-azotetrazolate 钠(Na2AzT)是各种偶氮四氮唑盐的起始原料,可用作无铅初级炸药或用于安全系统充气的高氮化合物(特别是偶氮四氮唑胍,GZT)。偶氮四唑醇钠在制备后通常以五水合物的形式分离出来,处理起来相对安全。但在温度较高或使用有机溶剂处理时,它很容易失去水合物水分子。在这种情况下,对机械刺激的敏感性会大大增加,可能会发生爆炸事故。本研究介绍了 5,5′-四氮唑钠五水合物失水的热条件和溶剂的作用。介绍了产品的冲击和摩擦敏感性参数。就偶氮四唑酸胍而言,介绍了在不生产 5,5′-偶氮四唑酸钠的情况下制备偶氮四唑酸胍的工艺,从而避免了对危险材料的操作,提高了工艺的安全性。
{"title":"One-Pot Synthesis of Guanidinium 5,5′-Azotetrazolate Avoiding Isolation of Hazardous Sodium 5,5′-Azotetrazolate","authors":"Miroslav Labaj,&nbsp;Zdeněk Jalový*,&nbsp;Robert Matyáš,&nbsp;Jiří Nesveda,&nbsp;Jakub Mikuláštík and Adam Votýpka,&nbsp;","doi":"10.1021/acs.oprd.4c0036410.1021/acs.oprd.4c00364","DOIUrl":"https://doi.org/10.1021/acs.oprd.4c00364https://doi.org/10.1021/acs.oprd.4c00364","url":null,"abstract":"<p >Sodium 5,5′-azotetrazolate (Na<sub>2</sub>AzT) is a starting material for various azotetrazole salts that find applications as lead-free primary explosives or high-nitrogen compounds for inflating safety systems (in particular, guanidinium azotetrazolate, GZT). Sodium azotetrazolate, after preparation, is commonly isolated as the pentahydrate, which is relatively safe for handling. But it readily loses hydrate water molecules at higher temperatures or by treatment with organic solvents. In such cases, sensitivity to mechanical stimuli increases considerably and explosion accidents may occur. In this work, the thermal conditions and the role of solvents in water loss from sodium 5,5′-azotetrazolate pentahydrate are presented. Impact and friction sensitivity parameters of the products are described. In the case of guanidinium azotetrazolate, the process for its preparation without producing sodium 5,5′-azotetrazolate is introduced, thus avoiding manipulation of hazardous material and increasing the safety of the procedure.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"28 11","pages":"4091–4098 4091–4098"},"PeriodicalIF":3.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.oprd.4c00364","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-Pot Synthesis of Guanidinium 5,5′-Azotetrazolate Avoiding Isolation of Hazardous Sodium 5,5′-Azotetrazolate 避免分离有害的 5,5′-四氮唑钠的 5,5′-四氮唑胍的一锅合成法
IF 3.4 3区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-10-30 DOI: 10.1021/acs.oprd.4c00364
Miroslav Labaj, Zdeněk Jalový, Robert Matyáš, Jiří Nesveda, Jakub Mikuláštík, Adam Votýpka
Sodium 5,5′-azotetrazolate (Na2AzT) is a starting material for various azotetrazole salts that find applications as lead-free primary explosives or high-nitrogen compounds for inflating safety systems (in particular, guanidinium azotetrazolate, GZT). Sodium azotetrazolate, after preparation, is commonly isolated as the pentahydrate, which is relatively safe for handling. But it readily loses hydrate water molecules at higher temperatures or by treatment with organic solvents. In such cases, sensitivity to mechanical stimuli increases considerably and explosion accidents may occur. In this work, the thermal conditions and the role of solvents in water loss from sodium 5,5′-azotetrazolate pentahydrate are presented. Impact and friction sensitivity parameters of the products are described. In the case of guanidinium azotetrazolate, the process for its preparation without producing sodium 5,5′-azotetrazolate is introduced, thus avoiding manipulation of hazardous material and increasing the safety of the procedure.
5,5′-azotetrazolate 钠(Na2AzT)是各种偶氮四氮唑盐的起始原料,可用作无铅初级炸药或用于安全系统充气的高氮化合物(特别是偶氮四氮唑胍,GZT)。偶氮四唑醇钠在制备后通常以五水合物的形式分离出来,处理起来相对安全。但在温度较高或使用有机溶剂处理时,它很容易失去水合物水分子。在这种情况下,对机械刺激的敏感性会大大增加,可能会发生爆炸事故。本研究介绍了 5,5′-四氮唑钠五水合物失水的热条件和溶剂的作用。介绍了产品的冲击和摩擦敏感性参数。就偶氮四唑酸胍而言,介绍了在不生产 5,5′-偶氮四唑酸钠的情况下制备偶氮四唑酸胍的工艺,从而避免了对危险材料的操作,提高了工艺的安全性。
{"title":"One-Pot Synthesis of Guanidinium 5,5′-Azotetrazolate Avoiding Isolation of Hazardous Sodium 5,5′-Azotetrazolate","authors":"Miroslav Labaj, Zdeněk Jalový, Robert Matyáš, Jiří Nesveda, Jakub Mikuláštík, Adam Votýpka","doi":"10.1021/acs.oprd.4c00364","DOIUrl":"https://doi.org/10.1021/acs.oprd.4c00364","url":null,"abstract":"Sodium 5,5′-azotetrazolate (Na<sub>2</sub>AzT) is a starting material for various azotetrazole salts that find applications as lead-free primary explosives or high-nitrogen compounds for inflating safety systems (in particular, guanidinium azotetrazolate, GZT). Sodium azotetrazolate, after preparation, is commonly isolated as the pentahydrate, which is relatively safe for handling. But it readily loses hydrate water molecules at higher temperatures or by treatment with organic solvents. In such cases, sensitivity to mechanical stimuli increases considerably and explosion accidents may occur. In this work, the thermal conditions and the role of solvents in water loss from sodium 5,5′-azotetrazolate pentahydrate are presented. Impact and friction sensitivity parameters of the products are described. In the case of guanidinium azotetrazolate, the process for its preparation without producing sodium 5,5′-azotetrazolate is introduced, thus avoiding manipulation of hazardous material and increasing the safety of the procedure.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"11 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tris(trimethylsilyl)silane in Photochemical Hydrodesulfurization─Methodology and Pyrophoricity 光化学氢化脱硫中的三(三甲基硅基)硅烷--方法和发火性
IF 3.4 3区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-10-30 DOI: 10.1021/acs.oprd.4c00410
Michaela Čierna, Blažej Horváth, Filip Pančík, Michal Šoral, Andrej Kolarovič, Pavol Jakubec
A novel visible-light-induced hydrodesulfurization of a thioacetal was developed. The reaction operates under mild conditions using user-friendly tris(trimethylsilyl)silane as the reductant and a low catalyst loading of photoactive 4CzIPN. The expansion of the reaction scope was thwarted by the operationally hazardous nature of the process, occasionally producing fire. Careful examination of reaction mixtures allowed to identify silane (SiH4) as the likely culprit causing the pyrophoricity.
我们开发了一种新型可见光诱导的硫代缩醛加氢脱硫反应。该反应使用方便的三(三甲基硅基)硅烷作为还原剂,光活性 4CzIPN 的催化剂载量较低,反应条件温和。反应范围的扩大受阻于该工艺的操作危险性,偶尔会产生火灾。对反应混合物进行仔细检查后,确定硅烷(SiH4)可能是导致发火的罪魁祸首。
{"title":"Tris(trimethylsilyl)silane in Photochemical Hydrodesulfurization─Methodology and Pyrophoricity","authors":"Michaela Čierna, Blažej Horváth, Filip Pančík, Michal Šoral, Andrej Kolarovič, Pavol Jakubec","doi":"10.1021/acs.oprd.4c00410","DOIUrl":"https://doi.org/10.1021/acs.oprd.4c00410","url":null,"abstract":"A novel visible-light-induced hydrodesulfurization of a thioacetal was developed. The reaction operates under mild conditions using user-friendly tris(trimethylsilyl)silane as the reductant and a low catalyst loading of photoactive 4CzIPN. The expansion of the reaction scope was thwarted by the operationally hazardous nature of the process, occasionally producing fire. Careful examination of reaction mixtures allowed to identify silane (SiH<sub>4</sub>) as the likely culprit causing the pyrophoricity.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"35 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tris(trimethylsilyl)silane in Photochemical Hydrodesulfurization─Methodology and Pyrophoricity 光化学氢化脱硫中的三(三甲基硅基)硅烷--方法和发火性
IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-10-30 DOI: 10.1021/acs.oprd.4c0041010.1021/acs.oprd.4c00410
Michaela Čierna, Blažej Horváth, Filip Pančík, Michal Šoral, Andrej Kolarovič and Pavol Jakubec*, 

A novel visible-light-induced hydrodesulfurization of a thioacetal was developed. The reaction operates under mild conditions using user-friendly tris(trimethylsilyl)silane as the reductant and a low catalyst loading of photoactive 4CzIPN. The expansion of the reaction scope was thwarted by the operationally hazardous nature of the process, occasionally producing fire. Careful examination of reaction mixtures allowed to identify silane (SiH4) as the likely culprit causing the pyrophoricity.

我们开发了一种新型可见光诱导的硫代缩醛加氢脱硫反应。该反应使用方便的三(三甲基硅基)硅烷作为还原剂,光活性 4CzIPN 的催化剂载量较低,反应条件温和。反应范围的扩大受阻于该工艺的操作危险性,偶尔会产生火灾。对反应混合物进行仔细检查后,确定硅烷(SiH4)可能是导致发火的罪魁祸首。
{"title":"Tris(trimethylsilyl)silane in Photochemical Hydrodesulfurization─Methodology and Pyrophoricity","authors":"Michaela Čierna,&nbsp;Blažej Horváth,&nbsp;Filip Pančík,&nbsp;Michal Šoral,&nbsp;Andrej Kolarovič and Pavol Jakubec*,&nbsp;","doi":"10.1021/acs.oprd.4c0041010.1021/acs.oprd.4c00410","DOIUrl":"https://doi.org/10.1021/acs.oprd.4c00410https://doi.org/10.1021/acs.oprd.4c00410","url":null,"abstract":"<p >A novel visible-light-induced hydrodesulfurization of a thioacetal was developed. The reaction operates under mild conditions using user-friendly tris(trimethylsilyl)silane as the reductant and a low catalyst loading of photoactive 4CzIPN. The expansion of the reaction scope was thwarted by the operationally hazardous nature of the process, occasionally producing fire. Careful examination of reaction mixtures allowed to identify silane (SiH<sub>4</sub>) as the likely culprit causing the pyrophoricity.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"28 11","pages":"4156–4162 4156–4162"},"PeriodicalIF":3.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Industrial-Scale Organic Solvent Nanofiltration for Dimer Impurity Removal: Enhancing Vitamin D3 Production 用于去除二聚体杂质的工业级有机溶剂纳滤:提高维生素 D3 的产量
IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-10-25 DOI: 10.1021/acs.oprd.4c0033310.1021/acs.oprd.4c00333
Jan Schütz, Julia Witte, Maurus Marty and Roman Goy*, 

This work details the removal of an azine-dimer (AD) impurity from 7-dehydrocholesterol (DHC), a precursor of vitamin D3, using a newly developed, sustainable hybrid membrane process, from the idea to implementation. Developed by an international team collaborating under tight time frame and COVID restrictions, this innovative method exemplifies a versatile, energy-saving, and cost-effective separation technology by organic solvent nanofiltration (OSN). Traditional purification methods proved to be unsuccessful, costly, or unsustainable, but this process achieved DHC purification with a minimal yield loss of 0.1%. This separation challenge goes beyond typical OSN applications (solute concentration or solvent exchange) by separating two similar solutes in a solvent mixture. In a three-stage OSN process, the impurity level was reduced from approximately 2600 ppm to below 50 ppm in the final permeate. After developing and scaling up the process, the OSN, precipitation, and filtration units were engineered and constructed. These units were installed in the dsm-firmenich vitamin D3 plant, and the purification process was successfully commissioned.

这项工作详细介绍了利用新开发的可持续混合膜工艺,从构思到实施,从维生素 D3 的前体 7-脱氢胆固醇(DHC)中去除偶氮二聚体(AD)杂质的过程。该创新方法是由一个国际团队在紧迫的时间框架和 COVID 限制下合作开发的,是有机溶剂纳滤(OSN)分离技术中多功能、节能和经济高效的典范。传统的纯化方法被证明是不成功的、昂贵的或不可持续的,但这一工艺实现了 DHC 的纯化,而且产量损失极小,仅为 0.1%。这一分离挑战超越了典型的 OSN 应用(溶质浓缩或溶剂交换),在溶剂混合物中分离两种相似的溶质。在三级 OSN 工艺中,最终渗透物中的杂质含量从约 2600 ppm 降至 50 ppm 以下。在开发和扩大工艺规模后,设计并建造了 OSN、沉淀和过滤装置。这些装置已安装在 dsm-firmenich 维生素 D3 工厂,提纯工艺已成功投入使用。
{"title":"Industrial-Scale Organic Solvent Nanofiltration for Dimer Impurity Removal: Enhancing Vitamin D3 Production","authors":"Jan Schütz,&nbsp;Julia Witte,&nbsp;Maurus Marty and Roman Goy*,&nbsp;","doi":"10.1021/acs.oprd.4c0033310.1021/acs.oprd.4c00333","DOIUrl":"https://doi.org/10.1021/acs.oprd.4c00333https://doi.org/10.1021/acs.oprd.4c00333","url":null,"abstract":"<p >This work details the removal of an azine-dimer (AD) impurity from 7-dehydrocholesterol (DHC), a precursor of vitamin D<sub>3</sub>, using a newly developed, sustainable hybrid membrane process, from the idea to implementation. Developed by an international team collaborating under tight time frame and COVID restrictions, this innovative method exemplifies a versatile, energy-saving, and cost-effective separation technology by organic solvent nanofiltration (OSN). Traditional purification methods proved to be unsuccessful, costly, or unsustainable, but this process achieved DHC purification with a minimal yield loss of 0.1%. This separation challenge goes beyond typical OSN applications (solute concentration or solvent exchange) by separating two similar solutes in a solvent mixture. In a three-stage OSN process, the impurity level was reduced from approximately 2600 ppm to below 50 ppm in the final permeate. After developing and scaling up the process, the OSN, precipitation, and filtration units were engineered and constructed. These units were installed in the dsm-firmenich vitamin D<sub>3</sub> plant, and the purification process was successfully commissioned.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"28 11","pages":"4046–4058 4046–4058"},"PeriodicalIF":3.1,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.oprd.4c00333","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Industrial-Scale Organic Solvent Nanofiltration for Dimer Impurity Removal: Enhancing Vitamin D3 Production 用于去除二聚体杂质的工业级有机溶剂纳滤:提高维生素 D3 的产量
IF 3.4 3区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-10-25 DOI: 10.1021/acs.oprd.4c00333
Jan Schütz, Julia Witte, Maurus Marty, Roman Goy
This work details the removal of an azine-dimer (AD) impurity from 7-dehydrocholesterol (DHC), a precursor of vitamin D3, using a newly developed, sustainable hybrid membrane process, from the idea to implementation. Developed by an international team collaborating under tight time frame and COVID restrictions, this innovative method exemplifies a versatile, energy-saving, and cost-effective separation technology by organic solvent nanofiltration (OSN). Traditional purification methods proved to be unsuccessful, costly, or unsustainable, but this process achieved DHC purification with a minimal yield loss of 0.1%. This separation challenge goes beyond typical OSN applications (solute concentration or solvent exchange) by separating two similar solutes in a solvent mixture. In a three-stage OSN process, the impurity level was reduced from approximately 2600 ppm to below 50 ppm in the final permeate. After developing and scaling up the process, the OSN, precipitation, and filtration units were engineered and constructed. These units were installed in the dsm-firmenich vitamin D3 plant, and the purification process was successfully commissioned.
这项工作详细介绍了利用新开发的可持续混合膜工艺,从构思到实施,从维生素 D3 的前体 7-脱氢胆固醇(DHC)中去除偶氮二聚体(AD)杂质的过程。该创新方法是由一个国际团队在紧迫的时间框架和 COVID 限制下合作开发的,是有机溶剂纳滤(OSN)分离技术中多功能、节能和经济高效的典范。传统的纯化方法被证明是不成功的、昂贵的或不可持续的,但这一工艺实现了 DHC 的纯化,而且产量损失极小,仅为 0.1%。这一分离挑战超越了典型的 OSN 应用(溶质浓缩或溶剂交换),在溶剂混合物中分离两种相似的溶质。在三级 OSN 工艺中,最终渗透物中的杂质含量从约 2600 ppm 降至 50 ppm 以下。在开发和扩大工艺规模之后,OSN、沉淀和过滤装置被设计和建造出来。这些装置已安装在 dsm-firmenich 维生素 D3 工厂,提纯工艺已成功投入使用。
{"title":"Industrial-Scale Organic Solvent Nanofiltration for Dimer Impurity Removal: Enhancing Vitamin D3 Production","authors":"Jan Schütz, Julia Witte, Maurus Marty, Roman Goy","doi":"10.1021/acs.oprd.4c00333","DOIUrl":"https://doi.org/10.1021/acs.oprd.4c00333","url":null,"abstract":"This work details the removal of an azine-dimer (AD) impurity from 7-dehydrocholesterol (DHC), a precursor of vitamin D<sub>3</sub>, using a newly developed, sustainable hybrid membrane process, from the idea to implementation. Developed by an international team collaborating under tight time frame and COVID restrictions, this innovative method exemplifies a versatile, energy-saving, and cost-effective separation technology by organic solvent nanofiltration (OSN). Traditional purification methods proved to be unsuccessful, costly, or unsustainable, but this process achieved DHC purification with a minimal yield loss of 0.1%. This separation challenge goes beyond typical OSN applications (solute concentration or solvent exchange) by separating two similar solutes in a solvent mixture. In a three-stage OSN process, the impurity level was reduced from approximately 2600 ppm to below 50 ppm in the final permeate. After developing and scaling up the process, the OSN, precipitation, and filtration units were engineered and constructed. These units were installed in the dsm-firmenich vitamin D<sub>3</sub> plant, and the purification process was successfully commissioned.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"236 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous Sonocrystallization Process for Controlling the Polymorphs and Particle Size of Perampanel 用于控制紫杉醇多晶体和粒度的连续超声结晶工艺
IF 3.4 3区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-10-23 DOI: 10.1021/acs.oprd.4c00293
Koji Machida, Koichi Igarashi, Hideo Kawachi, Mai Okamoto, Shumpei Yonezawa, Yuka Morishige, Masayuki Azuma, Akira Nishiyama
Sonocrystallization is a promising technology for improving the reproducibility and productivity of the crystallization process because of the unique cavitation effect of ultrasound as well as for controlling crystal polymorphs and particle size. Despite these advantages, the use of ultrasound for crystallization has typically been limited to laboratory studies and has not been widely adopted on an industrial scale by the pharmaceutical industry. In this study, ultrasound was combined with continuous crystallization using a mixed-suspension, mixed-product removal (MSMPR) crystallizer, and this technology was applied to the crystallization of perampanel, demonstrating the effects of ultrasound and its practicality. Finally, the continuous sonocrystallization process was successfully scaled up using a 10 L ultrasonic crystallizer capable of direct ultrasound irradiation, providing a methodology for the scale-up of the continuous sonocrystallization process.
超声波结晶技术因其独特的空化效应以及对晶体多晶体和粒度的控制,在提高结晶过程的可重复性和生产率方面大有可为。尽管超声波具有这些优势,但其在结晶过程中的应用通常仅限于实验室研究,尚未被制药行业在工业规模上广泛采用。在本研究中,利用混合悬浮、混合产物去除(MSMPR)结晶器将超声与连续结晶结合起来,并将这一技术应用于 perampanel 的结晶,展示了超声的效果及其实用性。最后,利用一个可直接进行超声波辐照的 10 升超声波结晶器,成功地扩大了连续超声波结晶工艺的规模,为扩大连续超声波结晶工艺的规模提供了一种方法。
{"title":"Continuous Sonocrystallization Process for Controlling the Polymorphs and Particle Size of Perampanel","authors":"Koji Machida, Koichi Igarashi, Hideo Kawachi, Mai Okamoto, Shumpei Yonezawa, Yuka Morishige, Masayuki Azuma, Akira Nishiyama","doi":"10.1021/acs.oprd.4c00293","DOIUrl":"https://doi.org/10.1021/acs.oprd.4c00293","url":null,"abstract":"Sonocrystallization is a promising technology for improving the reproducibility and productivity of the crystallization process because of the unique cavitation effect of ultrasound as well as for controlling crystal polymorphs and particle size. Despite these advantages, the use of ultrasound for crystallization has typically been limited to laboratory studies and has not been widely adopted on an industrial scale by the pharmaceutical industry. In this study, ultrasound was combined with continuous crystallization using a mixed-suspension, mixed-product removal (MSMPR) crystallizer, and this technology was applied to the crystallization of perampanel, demonstrating the effects of ultrasound and its practicality. Finally, the continuous sonocrystallization process was successfully scaled up using a 10 L ultrasonic crystallizer capable of direct ultrasound irradiation, providing a methodology for the scale-up of the continuous sonocrystallization process.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"2 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile Recovery and Recycling of a Soluble Dirhodium Catalyst in Asymmetric Cyclopropanation via a Catalyst-in-Bag System 通过催化剂袋系统在不对称环丙烷化过程中简便地回收和循环利用可溶性二铑催化剂
IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-10-23 DOI: 10.1021/acs.oprd.4c0040010.1021/acs.oprd.4c00400
UnJin Ryu, Duc Ly, Kristin Shimabukuro, Huw M. L. Davies* and Christopher W. Jones*, 

A catalyst-in-bag system facilitates the recovery and recycling of chiral dirhodium carboxylate catalysts used for enantioselective, intermolecular cyclopropanation. The catalyst-in-bag system incorporates a soluble enantioselective dirhodium complex catalyst within a reusable, commercial dialysis membrane. Dirhodium catalysts of different sizes are examined, and two catalysts with molecular weights above 2400 Da are well-retained by the membrane. The catalyst Rh2(S-TPPTTL)4 [TPPTTL = (1,3-dioxo-4,5,6,7-tetraphenylisoindolin-2-yl)-3,3-dimethylbutanoate] is explored in enantioselective cyclopropanation reactions under a variety of conditions. The Rh2(S-TPPTTL)4 catalyst, when contained in the catalyst-in-bag system, provides high yields and enantioselectivities, akin to the homogeneous catalyst in solution, with negligible rhodium permeation out of the bag over five catalytic cycles. The catalyst-in-bag approach facilitates recovery of the expensive rhodium metal and ligand, with only ppm level Rh detected in the reaction products. The flexible and expandable catalyst-in-bag system can be accommodated in vessels of different shapes and dimensions.

袋装催化剂系统有助于回收和循环利用用于对映选择性分子间环丙烷化的手性羧酸二氢铑催化剂。袋装催化剂系统将可溶性对映体选择性二氢铑络合物催化剂装入可重复使用的商用透析膜中。对不同大小的二铑催化剂进行了研究,其中两种分子量超过 2400 Da 的催化剂被膜很好地保留下来。研究了催化剂 Rh2(S-TPPTTL)4 [TPPTTL = (1,3-dioxo-4,5,6,7-tetraphenylisoindolin-2-yl)-3,3-dimethylbutanoate] 在各种条件下的对映体选择性环丙烷化反应。当 Rh2(S-TPPTTL)4催化剂装入催化剂袋系统中时,可提供高产率和高对映选择性,与溶液中的均相催化剂类似,在五个催化循环中,铑从催化剂袋中渗透出来的程度可以忽略不计。袋装催化剂方法有利于回收昂贵的金属铑和配体,反应产物中检测到的铑含量仅为ppm。袋装催化剂系统具有灵活性和可扩展性,可以安装在不同形状和尺寸的容器中。
{"title":"Facile Recovery and Recycling of a Soluble Dirhodium Catalyst in Asymmetric Cyclopropanation via a Catalyst-in-Bag System","authors":"UnJin Ryu,&nbsp;Duc Ly,&nbsp;Kristin Shimabukuro,&nbsp;Huw M. L. Davies* and Christopher W. Jones*,&nbsp;","doi":"10.1021/acs.oprd.4c0040010.1021/acs.oprd.4c00400","DOIUrl":"https://doi.org/10.1021/acs.oprd.4c00400https://doi.org/10.1021/acs.oprd.4c00400","url":null,"abstract":"<p >A catalyst-in-bag system facilitates the recovery and recycling of chiral dirhodium carboxylate catalysts used for enantioselective, intermolecular cyclopropanation. The catalyst-in-bag system incorporates a soluble enantioselective dirhodium complex catalyst within a reusable, commercial dialysis membrane. Dirhodium catalysts of different sizes are examined, and two catalysts with molecular weights above 2400 Da are well-retained by the membrane. The catalyst Rh<sub>2</sub>(<i>S</i>-TPPTTL)<sub>4</sub> [TPPTTL = (1,3-dioxo-4,5,6,7-tetraphenylisoindolin-2-yl)-3,3-dimethylbutanoate] is explored in enantioselective cyclopropanation reactions under a variety of conditions. The Rh<sub>2</sub>(<i>S</i>-TPPTTL)<sub>4</sub> catalyst, when contained in the catalyst-in-bag system, provides high yields and enantioselectivities, akin to the homogeneous catalyst in solution, with negligible rhodium permeation out of the bag over five catalytic cycles. The catalyst-in-bag approach facilitates recovery of the expensive rhodium metal and ligand, with only ppm level Rh detected in the reaction products. The flexible and expandable catalyst-in-bag system can be accommodated in vessels of different shapes and dimensions.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"28 11","pages":"4146–4155 4146–4155"},"PeriodicalIF":3.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.oprd.4c00400","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Organic Process Research & Development
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1