首页 > 最新文献

Journal of Intelligent Information Systems最新文献

英文 中文
Multi-perspective enriched instance graphs for next activity prediction through graph neural network 基于图神经网络的多视角丰富实例图下一个活动预测
IF 3.4 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-05-01 DOI: 10.1007/s10844-023-00777-1
Andrea Chiorrini, C. Diamantini, Laura Genga, D. Potena
{"title":"Multi-perspective enriched instance graphs for next activity prediction through graph neural network","authors":"Andrea Chiorrini, C. Diamantini, Laura Genga, D. Potena","doi":"10.1007/s10844-023-00777-1","DOIUrl":"https://doi.org/10.1007/s10844-023-00777-1","url":null,"abstract":"","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"1 1","pages":"1-21"},"PeriodicalIF":3.4,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86277805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Offensive language identification with multi-task learning 多任务学习下的攻击性语言识别
IF 3.4 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-04-29 DOI: 10.1007/s10844-023-00787-z
Marcos Zampieri, Tharindu Ranasinghe, Diptanu Sarkar, Alex Ororbia
{"title":"Offensive language identification with multi-task learning","authors":"Marcos Zampieri, Tharindu Ranasinghe, Diptanu Sarkar, Alex Ororbia","doi":"10.1007/s10844-023-00787-z","DOIUrl":"https://doi.org/10.1007/s10844-023-00787-z","url":null,"abstract":"","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"36 1","pages":"1-18"},"PeriodicalIF":3.4,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88357018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling and querying temporal RDF knowledge graphs with relational databases 用关系数据库建模和查询时态RDF知识图
IF 3.4 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-03-30 DOI: 10.1007/s10844-023-00780-6
Ruizhe Ma, Xiao Han, Li Yan, Nasrullah Khan, Z. Ma
{"title":"Modeling and querying temporal RDF knowledge graphs with relational databases","authors":"Ruizhe Ma, Xiao Han, Li Yan, Nasrullah Khan, Z. Ma","doi":"10.1007/s10844-023-00780-6","DOIUrl":"https://doi.org/10.1007/s10844-023-00780-6","url":null,"abstract":"","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"8 1","pages":"1-41"},"PeriodicalIF":3.4,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84150310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
ES-ASTE: enhanced span-level framework for aspect sentiment triplet extraction 面向方面情感三元组抽取的增强跨级框架
IF 3.4 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-03-23 DOI: 10.1007/s10844-023-00783-3
Yandan Wang, Zhongtang Chen, Shuang Chen
{"title":"ES-ASTE: enhanced span-level framework for aspect sentiment triplet extraction","authors":"Yandan Wang, Zhongtang Chen, Shuang Chen","doi":"10.1007/s10844-023-00783-3","DOIUrl":"https://doi.org/10.1007/s10844-023-00783-3","url":null,"abstract":"","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"1 1","pages":"1-20"},"PeriodicalIF":3.4,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79827397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An AI framework to support decisions on GDPR compliance
IF 3.4 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-03-18 DOI: 10.1007/s10844-023-00782-4
Filippo Lorè, Pierpaolo Basile, A. Appice, Marco de Gemmis, D. Malerba, G. Semeraro
{"title":"An AI framework to support decisions on GDPR compliance","authors":"Filippo Lorè, Pierpaolo Basile, A. Appice, Marco de Gemmis, D. Malerba, G. Semeraro","doi":"10.1007/s10844-023-00782-4","DOIUrl":"https://doi.org/10.1007/s10844-023-00782-4","url":null,"abstract":"","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"60 1","pages":"1-28"},"PeriodicalIF":3.4,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86616536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance-preserving event log sampling for predictive monitoring 用于预测性监视的保持性能的事件日志采样
3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-03-06 DOI: 10.1007/s10844-022-00775-9
Mohammadreza Fani Sani, Mozhgan Vazifehdoostirani, Gyunam Park, Marco Pegoraro, Sebastiaan J. van Zelst, Wil M. P. van der Aalst
Abstract Predictive process monitoring is a subfield of process mining that aims to estimate case or event features for running process instances. Such predictions are of significant interest to the process stakeholders. However, most of the state-of-the-art methods for predictive monitoring require the training of complex machine learning models, which is often inefficient. Moreover, most of these methods require a hyper-parameter optimization that requires several repetitions of the training process which is not feasible in many real-life applications. In this paper, we propose an instance selection procedure that allows sampling training process instances for prediction models. We show that our instance selection procedure allows for a significant increase of training speed for next activity and remaining time prediction methods while maintaining reliable levels of prediction accuracy.
预测过程监控是过程挖掘的一个分支,旨在估计运行过程实例的案例或事件特征。这样的预测对于过程涉众来说是非常重要的。然而,大多数最先进的预测监测方法需要训练复杂的机器学习模型,这通常效率低下。此外,这些方法中的大多数都需要超参数优化,这需要多次重复的训练过程,这在许多实际应用中是不可行的。在本文中,我们提出了一个实例选择过程,允许对预测模型进行采样训练过程实例。我们表明,我们的实例选择过程可以显著提高下一个活动和剩余时间预测方法的训练速度,同时保持可靠的预测精度水平。
{"title":"Performance-preserving event log sampling for predictive monitoring","authors":"Mohammadreza Fani Sani, Mozhgan Vazifehdoostirani, Gyunam Park, Marco Pegoraro, Sebastiaan J. van Zelst, Wil M. P. van der Aalst","doi":"10.1007/s10844-022-00775-9","DOIUrl":"https://doi.org/10.1007/s10844-022-00775-9","url":null,"abstract":"Abstract Predictive process monitoring is a subfield of process mining that aims to estimate case or event features for running process instances. Such predictions are of significant interest to the process stakeholders. However, most of the state-of-the-art methods for predictive monitoring require the training of complex machine learning models, which is often inefficient. Moreover, most of these methods require a hyper-parameter optimization that requires several repetitions of the training process which is not feasible in many real-life applications. In this paper, we propose an instance selection procedure that allows sampling training process instances for prediction models. We show that our instance selection procedure allows for a significant increase of training speed for next activity and remaining time prediction methods while maintaining reliable levels of prediction accuracy.","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135001685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Leveraging posts’ and authors’ metadata to spot several forms of abusive comments in Twitter 利用帖子和作者的元数据来发现Twitter上几种形式的滥用评论
IF 3.4 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-02-22 DOI: 10.1007/s10844-023-00779-z
Marco Casavantes, Mario Ezra Aragón, Luis C. González, M. Montes-y-Gómez
{"title":"Leveraging posts’ and authors’ metadata to spot several forms of abusive comments in Twitter","authors":"Marco Casavantes, Mario Ezra Aragón, Luis C. González, M. Montes-y-Gómez","doi":"10.1007/s10844-023-00779-z","DOIUrl":"https://doi.org/10.1007/s10844-023-00779-z","url":null,"abstract":"","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"42 1","pages":"1-21"},"PeriodicalIF":3.4,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81032325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
MCD: A modified community diversity approach for detecting influential nodes in social networks MCD:一种改进的社区多样性方法,用于检测社会网络中的影响节点
3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-01-26 DOI: 10.1007/s10844-023-00776-2
Aaryan Gupta, Inder Khatri, Arjun Choudhry, Sanjay Kumar
Over the last couple of decades, Social Networks have connected people on the web from across the globe and have become a crucial part of our daily life. These networks have also rapidly grown as platforms for propagating products, ideas, and opinions to target a wider audience. This calls for the need to find influential nodes in a network for a variety of reasons, including the curb of misinformation being spread across the networks, advertising products efficiently, finding prominent protein structures in biological networks, etc. In this paper, we propose Modified Community Diversity (MCD), a novel method for finding influential nodes in a network by exploiting community detection and a modified community diversity approach. We extend the concept of community diversity to a two-hop scenario. This helps us evaluate a node’s possible influence over a network more accurately and also avoids the selection of seed nodes with an overlapping scope of influence. Experimental results verify that MCD outperforms various other state-of-the-art approaches on eight datasets cumulatively across three performance metrics.
在过去的几十年里,社交网络将世界各地的人们联系在一起,并成为我们日常生活中至关重要的一部分。这些网络也迅速发展成为宣传产品、思想和观点的平台,以瞄准更广泛的受众。这就需要在网络中找到有影响力的节点,原因有很多,包括抑制错误信息在网络中传播,有效地宣传产品,在生物网络中找到突出的蛋白质结构等。在本文中,我们提出了修正社区多样性(Modified Community Diversity, MCD),这是一种利用社区检测和修正社区多样性方法来寻找网络中有影响节点的新方法。我们将社区多样性的概念扩展到两跳场景。这有助于我们更准确地评估节点对网络的可能影响,也避免了选择影响范围重叠的种子节点。实验结果证实,MCD在八个数据集上的三个性能指标累积优于其他各种最先进的方法。
{"title":"MCD: A modified community diversity approach for detecting influential nodes in social networks","authors":"Aaryan Gupta, Inder Khatri, Arjun Choudhry, Sanjay Kumar","doi":"10.1007/s10844-023-00776-2","DOIUrl":"https://doi.org/10.1007/s10844-023-00776-2","url":null,"abstract":"Over the last couple of decades, Social Networks have connected people on the web from across the globe and have become a crucial part of our daily life. These networks have also rapidly grown as platforms for propagating products, ideas, and opinions to target a wider audience. This calls for the need to find influential nodes in a network for a variety of reasons, including the curb of misinformation being spread across the networks, advertising products efficiently, finding prominent protein structures in biological networks, etc. In this paper, we propose Modified Community Diversity (MCD), a novel method for finding influential nodes in a network by exploiting community detection and a modified community diversity approach. We extend the concept of community diversity to a two-hop scenario. This helps us evaluate a node’s possible influence over a network more accurately and also avoids the selection of seed nodes with an overlapping scope of influence. Experimental results verify that MCD outperforms various other state-of-the-art approaches on eight datasets cumulatively across three performance metrics.","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135839835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Applying MAPE-K control loops for adaptive workflow management in smart factories MAPE-K控制回路在智能工厂自适应工作流管理中的应用
IF 3.4 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-01-25 DOI: 10.1007/s10844-022-00766-w
Lukas Malburg, Maximilian Hoffmann, R. Bergmann
{"title":"Applying MAPE-K control loops for adaptive workflow management in smart factories","authors":"Lukas Malburg, Maximilian Hoffmann, R. Bergmann","doi":"10.1007/s10844-022-00766-w","DOIUrl":"https://doi.org/10.1007/s10844-022-00766-w","url":null,"abstract":"","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"45 1","pages":"1-29"},"PeriodicalIF":3.4,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74727354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Reducing the user labeling effort in effective high recall tasks by fine-tuning active learning 通过微调主动学习,减少了高效高召回任务中用户标注的工作量
IF 3.4 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-01-19 DOI: 10.1007/s10844-022-00772-y
Guilherme Dal Bianco, Denio Duarte, Marcos André Gonçalves
{"title":"Reducing the user labeling effort in effective high recall tasks by fine-tuning active learning","authors":"Guilherme Dal Bianco, Denio Duarte, Marcos André Gonçalves","doi":"10.1007/s10844-022-00772-y","DOIUrl":"https://doi.org/10.1007/s10844-022-00772-y","url":null,"abstract":"","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"20 1","pages":"1-20"},"PeriodicalIF":3.4,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82437228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
Journal of Intelligent Information Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1