首页 > 最新文献

Gravitation and Cosmology最新文献

英文 中文
Stability of Asymptotically Flat (mathbf{(2+1)})-Dimensional Black Holes with Gauss–Bonnet Corrections 具有高斯-波内特校正的渐近平坦 $$mathbf{(2+1)}$ -维黑洞的稳定性
IF 1.2 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-04 DOI: 10.1134/S0202289324010110
M. V. Skvortsova

Using integration of the wave equation in time domain, we show that scalar field perturbations around the ((2+1))-dimensional asymptotically flat black hole with Gauss–Bonnet corrections is dynamically stable even for the near-extreme values of the coupling constant.

摘要利用时域波方程的积分,我们证明了在((2+1))维渐近平坦黑洞周围具有高斯-波奈修正的标量场扰动是动态稳定的,即使耦合常数的值接近极限。
{"title":"Stability of Asymptotically Flat (mathbf{(2+1)})-Dimensional Black Holes with Gauss–Bonnet Corrections","authors":"M. V. Skvortsova","doi":"10.1134/S0202289324010110","DOIUrl":"10.1134/S0202289324010110","url":null,"abstract":"<p>Using integration of the wave equation in time domain, we show that scalar field perturbations around the <span>((2+1))</span>-dimensional asymptotically flat black hole with Gauss–Bonnet corrections is dynamically stable even for the near-extreme values of the coupling constant.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":"30 1","pages":"68 - 70"},"PeriodicalIF":1.2,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140602843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deformed Lorentz Symmetry and Corresponding Geometry in Ultra-High Energy Astrophysics 超高能天体物理学中的变形洛伦兹对称性和相应几何图形
IF 1.2 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-04 DOI: 10.1134/S0202289324010122
G. Ter-Kazarian

This paper purports to develop a consistent microscopic theory of deformed Lorentz symmetry and the corresponding deformed geometry. Among the key geometric predictions of this approach, one lies in both the deformed line element (DLE) and the deformed maximum attainable velocity (DMAV) of a particle leading to potentially observable signatures in ultra-high energy astrophysics. In particular, the DMAV has in the past often been tested in a phenomenological approach to cosmic-ray and astrophysical-photon physics in order to extract constraints on those velocities. To this aim, we develop the theory of, so-called, master space (MS({}_{p})) induced supersymmetry, subject to certain rules. We derive the Standard Lorentz Code (SLC) in a new perspective of global double MS({}_{p})-SUSY transformations in terms of Lorentz spinors ((underline{theta},underline{bar{theta}})) referred to MS({}_{p}). The MS({}_{p}), embedded in the background 4D-space, is an unmanifested indispensable individual companion to the particle of interest as the intrinsic property devoid of any external influence. While all particles are living on (M_{4}), their superpartners can be viewed as living on MS({}_{p}). In the sequel, we turn to the deformation of these spinors: (underline{theta}tounderline{tilde{theta}}=lambda^{1/2},underline{theta}), etc., where (lambda) appears as a deformation scalar function of the Lorentz invariance (LIDF). This yields both the DLE and DMAV, respectively, in the form (tilde{ds}=lambda ds) and (tilde{c}=lambda c), provided the invariance of DLE, and the same value of DMAV in free space holds for all inertial systems. Thus the LID (Lorentz invariance deformation) generalization of global MS({}_{p})-SUSY theory formulates the generalized relativity postulates in a way that preserve the relativity of inertial frames, in spite of the appearance of modified terms in the LID dispersion relations. We complement this conceptual investigation with testing of various LIDFs in the UHECR- and TeV-(gamma) threshold anomalies by implications for several scenarios: the Coleman and Glashow-type perturbative extension of SLC, the LID extension of standard model, the LID in quantum gravity motivated space-time models, the LID in loop quantum gravity models, and the LID for the models preserving the relativity of inertial frames.

摘要 本文旨在发展变形洛伦兹对称性和相应变形几何的一致微观理论。这种方法的关键几何预言之一是粒子的变形线元(DLE)和变形最大可达到速度(DMAV),这将导致超高能天体物理学中潜在的可观测特征。特别是,在宇宙射线和天体物理光子物理学的现象学方法中,过去经常对 DMAV 进行测试,以提取对这些速度的约束。为此,我们发展了所谓的主空间(MS({}_{p}))诱导超对称理论,并遵循一定的规则。我们从全局双 MS({}_{p})-SUSY 变换的新角度推导出了标准洛伦兹编码(SLC),它是以洛伦兹旋量((underline/{theta},underline/{bar/{theta}}))为参照的MS({}_{p})。MS({}_{p})嵌入到背景4D空间中,是感兴趣的粒子的一个未显现的不可或缺的个体伴生体,它是粒子的固有属性,不受任何外部影响。当所有粒子都生活在 (M_{4}) 上时,它们的超级伙伴可以被视为生活在 MS({}_{p}) 上。接下来,我们将讨论这些旋量的变形:(underline{theta}tounderline{tilde{theta}}=lambda^{1/2},underline{theta})等等,其中(lambda)作为洛伦兹不变性(LIDF)的变形标量函数出现。这就产生了DLE和DMAV,其形式分别为(tilde{ds}=lambda ds) 和(tilde{c}=lambda c) ,前提是DLE的不变性和自由空间中DMAV的相同值对所有惯性系都成立。因此,全局MS({}_{p})-SUSY理论的LID(洛伦兹不变性变形)广义制定了广义相对论公设,尽管在LID色散关系中出现了修正项,但它保留了惯性框架的相对性。我们通过对UHECR-和TeV-(gamma)阈值反常中的各种LIDFs的测试来补充这一概念性研究,这些测试涉及几种情况:SLC的Coleman和Glashow型微扰扩展、标准模型的LID扩展、量子引力动机时空模型中的LID、环量子引力模型中的LID以及保留惯性框架相对性的模型的LID。
{"title":"Deformed Lorentz Symmetry and Corresponding Geometry in Ultra-High Energy Astrophysics","authors":"G. Ter-Kazarian","doi":"10.1134/S0202289324010122","DOIUrl":"10.1134/S0202289324010122","url":null,"abstract":"<p>This paper purports to develop a consistent microscopic theory of deformed Lorentz symmetry and the corresponding deformed geometry. Among the key geometric predictions of this approach, one lies in both the deformed line element (DLE) and the deformed maximum attainable velocity (DMAV) of a particle leading to potentially observable signatures in ultra-high energy astrophysics. In particular, the DMAV has in the past often been tested in a phenomenological approach to cosmic-ray and astrophysical-photon physics in order to extract constraints on those velocities. To this aim, we develop the theory of, so-called, <i>master space</i> (MS<span>({}_{p})</span>) induced supersymmetry, subject to certain rules. We derive the Standard Lorentz Code (SLC) in a new perspective of global double MS<span>({}_{p})</span>-SUSY transformations in terms of Lorentz spinors (<span>(underline{theta},underline{bar{theta}})</span>) referred to MS<span>({}_{p})</span>. The MS<span>({}_{p})</span>, embedded in the background 4D-space, is an <i>unmanifested</i> indispensable individual companion to the particle of interest as the intrinsic property devoid of any external influence. While all particles are living on <span>(M_{4})</span>, their superpartners can be viewed as living on MS<span>({}_{p})</span>. In the sequel, we turn to the deformation of these spinors: <span>(underline{theta}tounderline{tilde{theta}}=lambda^{1/2},underline{theta})</span>, etc., where <span>(lambda)</span> appears as a deformation scalar function of the Lorentz invariance (LIDF). This yields both the DLE and DMAV, respectively, in the form <span>(tilde{ds}=lambda ds)</span> and <span>(tilde{c}=lambda c)</span>, provided the invariance of DLE, and the same value of DMAV in free space holds for all inertial systems. Thus the LID (Lorentz invariance deformation) generalization of global MS<span>({}_{p})</span>-SUSY theory formulates the generalized relativity postulates in a way that preserve the relativity of inertial frames, in spite of the appearance of modified terms in the LID dispersion relations. We complement this conceptual investigation with testing of various LIDFs in the UHECR- and TeV-<span>(gamma)</span> threshold anomalies by implications for several scenarios: the Coleman and Glashow-type perturbative extension of SLC, the LID extension of standard model, the LID in quantum gravity motivated space-time models, the LID in loop quantum gravity models, and the LID for the models preserving the relativity of inertial frames.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":"30 1","pages":"8 - 27"},"PeriodicalIF":1.2,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140575489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biquaternionic Analysis, Cyclic Quaternionic Fields, and Generalization of the Kerr–Penrose Theorem 双四元分析、循环四元场和克尔-彭罗斯定理的广义化
IF 1.2 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-04 DOI: 10.1134/S0202289324010079
V. V. Kassandrov, J. A. Rizcallah

We give a concise introduction to biquaternionic analysis and the so-called algebrodynamical approach to field theory and highlight some of its connections to twistors, shear-free null congruences and classical field/particle dynamics. We also attempt to extend the analysis to another (“cyclic”) class of solutions to the equations of biquaternionic differentiability and explore some of the properties of the associated congruences and static singularities which allow for the construction of classical models of particles.

摘要 我们简明扼要地介绍了双四元数分析和所谓的场论的代数动力学方法,并强调了它与扭因子、无剪切力空全等和经典场/粒子动力学的一些联系。我们还试图将分析扩展到双四元可微分方程的另一类("循环")解,并探索相关全等和静态奇点的一些特性,从而构建经典粒子模型。
{"title":"Biquaternionic Analysis, Cyclic Quaternionic Fields, and Generalization of the Kerr–Penrose Theorem","authors":"V. V. Kassandrov,&nbsp;J. A. Rizcallah","doi":"10.1134/S0202289324010079","DOIUrl":"10.1134/S0202289324010079","url":null,"abstract":"<p>We give a concise introduction to biquaternionic analysis and the so-called algebrodynamical approach to field theory and highlight some of its connections to twistors, shear-free null congruences and classical field/particle dynamics. We also attempt to extend the analysis to another (“cyclic”) class of solutions to the equations of biquaternionic differentiability and explore some of the properties of the associated congruences and static singularities which allow for the construction of classical models of particles.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":"30 1","pages":"1 - 7"},"PeriodicalIF":1.2,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140575492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics of Modified Rényi Holographic Dark Energy in Sáez–Ballester Theory of Gravitation 萨伊斯-巴勒斯特引力理论中的修正雷尼全息暗能量动力学
IF 1.2 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-04 DOI: 10.1134/S0202289324010031
Jumi Bharali

The cosmic expansion phenomenon is being studied through the interaction of newly proposed dark energy model (the Modified Rényi holographic dark energy (MRHDE) model) with cold dark matter (CDM) in the framework of Sáez–Ballester (SB) theory of gravitation. To determine the solution of the field equations, the concept of a time-dependent deceleration parameter (DP) is used. The Universe begins with an initial singular state and changes with time from an early deceleration phase to a late acceleration phase. In this paper, it is shown that this expanding solution is stable against perturbations with respect to anisotropic spatial directions. Some important features of the models thus obtained are discussed.

摘要 在萨伊斯-巴勒斯特引力理论(SB)框架内,通过新提出的暗能量模型(修正雷尼全息暗能量模型(MRHDE))与冷暗物质(CDM)的相互作用研究宇宙膨胀现象。为了确定场方程的解,使用了随时间变化的减速参数(DP)概念。宇宙以初始奇异状态开始,并随时间从早期减速阶段变为晚期加速阶段。本文表明,这种膨胀解在面对各向异性空间方向的扰动时是稳定的。本文讨论了由此获得的模型的一些重要特征。
{"title":"Dynamics of Modified Rényi Holographic Dark Energy in Sáez–Ballester Theory of Gravitation","authors":"Jumi Bharali","doi":"10.1134/S0202289324010031","DOIUrl":"10.1134/S0202289324010031","url":null,"abstract":"<p>The cosmic expansion phenomenon is being studied through the interaction of newly proposed dark energy model (the Modified Rényi holographic dark energy (MRHDE) model) with cold dark matter (CDM) in the framework of Sáez–Ballester (SB) theory of gravitation. To determine the solution of the field equations, the concept of a time-dependent deceleration parameter (DP) is used. The Universe begins with an initial singular state and changes with time from an early deceleration phase to a late acceleration phase. In this paper, it is shown that this expanding solution is stable against perturbations with respect to anisotropic spatial directions. Some important features of the models thus obtained are discussed.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":"30 1","pages":"107 - 115"},"PeriodicalIF":1.2,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140602598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proof for the Weak and the Strong Energy Conditions Theorems in Einstein–Yang–Mills Theories 爱因斯坦-杨-米尔斯理论中弱和强能量条件定理的证明
IF 0.9 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-23 DOI: 10.1134/S0202289323040096
Alcides Garat

We present the manifest proof of the validity of the local weak and strong energy conditions in all Einstein–Maxwell–Yang–Mills space-times where nonnull electromagnetic and Yang–Mills fields are present. To this end, we make use of the new tetrads introduced previously. These new tetrads have remarkable properties in curved four-dimensional Lorentzian space-times. For example, they diagonalize locally and covariantly any stress-energy tensor in Einstein–Maxwell space-times and also in Einstein–Maxwell–Yang–Mills space-times for nonnull electromagnetic and Yang–Mills fields. We use these properties in order to prove the energy conditions for any space-time with these characteristics.

我们给出了在所有存在非零电磁场和杨-米尔斯场的爱因斯坦-麦克斯韦-杨-米尔斯时空中局部弱能量和强能量条件的有效性的明显证明。为此,我们利用前面介绍的新的四分体。这些新的四分体在弯曲的四维洛伦兹时空中具有显著的性质。例如,对于非零电磁场和杨-米尔斯场,它们对角化了爱因斯坦-麦克斯韦时空和爱因斯坦-麦克斯韦-杨-米尔斯时空中任何应力-能量张量的局部协变。我们用这些性质来证明具有这些特征的任何时空的能量条件。
{"title":"Proof for the Weak and the Strong Energy Conditions Theorems in Einstein–Yang–Mills Theories","authors":"Alcides Garat","doi":"10.1134/S0202289323040096","DOIUrl":"10.1134/S0202289323040096","url":null,"abstract":"<p>We present the manifest proof of the validity of the local weak and strong energy conditions in all Einstein–Maxwell–Yang–Mills space-times where nonnull electromagnetic and Yang–Mills fields are present. To this end, we make use of the new tetrads introduced previously. These new tetrads have remarkable properties in curved four-dimensional Lorentzian space-times. For example, they diagonalize locally and covariantly any stress-energy tensor in Einstein–Maxwell space-times and also in Einstein–Maxwell–Yang–Mills space-times for nonnull electromagnetic and Yang–Mills fields. We use these properties in order to prove the energy conditions for any space-time with these characteristics.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":"29 4","pages":"387 - 399"},"PeriodicalIF":0.9,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138437102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studies of Density Contrast of Cold Dark Matter in Cosmological Radiation and Dark Energy Background: A Symmetry-Based Approach 宇宙辐射和暗能量背景中冷暗物质密度对比研究:一种基于对称性的方法
IF 0.9 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-23 DOI: 10.1134/S0202289323040084
Aritra Ganguly, Amitava Choudhuri

We study the density contrast equations for cold dark matter (CDM) in the cosmological radiation and dark energy (DE) background. We provide a general prescription for the derivation of the aforesaid density contrast equations of the CDM using the metric perturbation technique. In particular, in the early radiation domination, the density contrast equation, the so-called Mészáros equation is derived, considering a four-fluid model, while on the other hand, in the late time DE domination, the “w-Mészáros equation” is derived, using the two-fluid system of CDM and DE. In the first case, we find eight-parameter Lie symmetries, while in the second case we also obtain eight symmetry generators of the “w-Mészáros equation,” each for the values of the equation-of-state parameter (w=-2/3) and (-1). Finding group-invariant solutions using the invariant curve condition for both cases, we have investigated the sub-horizon evolution of density contrasts of the CDM and provided a qualitative study on the nature of evolution of the CDM perturbations. The density contrast of CDM shows no growth during the radiation dominated era, but growth is seen just at the time of matter-radiation equality. The freezing or stagnation of the density contrast of the CDM prior to the matter-radiation equilibrium is due to the rapid expansion of the radiation background at early time, while the decay of the density contrast with increasing scale factor, which results in suppression in the growth of the inhomogeneity, is due to the DE dominated accelerated expansion.

研究了宇宙辐射和暗能量背景下冷暗物质(CDM)的密度对比方程。我们利用度规摄动技术为上述CDM密度对比方程的推导提供了一个一般的公式。特别是,在早期辐射支配下,考虑到四流体模型,推导了密度对比方程,即所谓的Mészáros方程,而另一方面,在后期DE支配下,使用CDM和DE的双流体系统推导了“w-Mészáros方程”。在第一种情况下,我们发现了8参数李对称,而在第二种情况下,我们也得到了“w-Mészáros方程”的8个对称发生器。分别表示状态方程参数(w=-2/3)和(-1)的值。利用这两种情况的不变曲线条件找到群不变解,研究了CDM密度差的亚水平演化,并对CDM扰动的演化性质进行了定性研究。CDM的密度对比显示,在辐射占主导的时期没有增长,而刚好在物质-辐射相等的时期出现增长。CDM密度对比在物质-辐射平衡之前的冻结或停滞是由于早期辐射背景的快速膨胀,而密度对比随着尺度因子的增加而衰减,导致非均匀性的增长受到抑制,是由于DE主导的加速膨胀。
{"title":"Studies of Density Contrast of Cold Dark Matter in Cosmological Radiation and Dark Energy Background: A Symmetry-Based Approach","authors":"Aritra Ganguly,&nbsp;Amitava Choudhuri","doi":"10.1134/S0202289323040084","DOIUrl":"10.1134/S0202289323040084","url":null,"abstract":"<p>We study the density contrast equations for cold dark matter (CDM) in the cosmological radiation and dark energy (DE) background. We provide a general prescription for the derivation of the aforesaid density contrast equations of the CDM using the metric perturbation technique. In particular, in the early radiation domination, the density contrast equation, the so-called Mészáros equation is derived, considering a four-fluid model, while on the other hand, in the late time DE domination, the “w-Mészáros equation” is derived, using the two-fluid system of CDM and DE. In the first case, we find eight-parameter Lie symmetries, while in the second case we also obtain eight symmetry generators of the “w-Mészáros equation,” each for the values of the equation-of-state parameter <span>(w=-2/3)</span> and <span>(-1)</span>. Finding group-invariant solutions using the invariant curve condition for both cases, we have investigated the sub-horizon evolution of density contrasts of the CDM and provided a qualitative study on the nature of evolution of the CDM perturbations. The density contrast of CDM shows no growth during the radiation dominated era, but growth is seen just at the time of matter-radiation equality. The freezing or stagnation of the density contrast of the CDM prior to the matter-radiation equilibrium is due to the rapid expansion of the radiation background at early time, while the decay of the density contrast with increasing scale factor, which results in suppression in the growth of the inhomogeneity, is due to the DE dominated accelerated expansion.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":"29 4","pages":"419 - 431"},"PeriodicalIF":0.9,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138437195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photon Spheres near Dilatonic Dyon-Like Black Holes in a Model with Two Abelian Gauge Fields and Two Scalar Fields 两个阿贝尔规范场和两个标量场模型中类狄龙黑洞附近的光子球
IF 0.9 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-23 DOI: 10.1134/S0202289323040114
V. D. Ivashchuk, A. N. Malybayev, G. S. Nurbakova, G. Takey

Dilatonic dyon-like black hole solutions with two (color) charges (Q_{1}) and (Q_{2}) (electric and magnetic ones) are considered in a gravitational 4D model with two scalar fields and two 2-forms. Two-dimensional dilatonic coupling vectors (vec{lambda}_{i}), (i=1,2), determining the model, obey the relation (vec{lambda}_{1}vec{lambda}_{2}=1/2). Circular null geodesics in the field of such black holes are explored. The master equation for the photon sphere radius (R) is derived. A conjecture is suggested on the existence and uniqueness of the solution to the master equation with (R>R_{g}), where (R_{g}) is the horizon radius. This conjecture is varified for certain special cases, e.g., for a charge symmetric configuration: (Q_{1}^{2}=Q_{2}^{2}). In this charge symmetric case, we present a relation for the spectrum of quasinormal modes of a test massless scalar field in the eikonal approximation, and an example of circular orbits of a massive particle.

带两个(彩色)电荷的类狄龙黑洞解 (Q_{1}) 和 (Q_{2}) 在一个具有两个标量场和两个2-形式的引力四维模型中考虑(电和磁)。二维扩张耦合矢量 (vec{lambda}_{i}), (i=1,2),确定模型,服从关系 (vec{lambda}_{1}vec{lambda}_{2}=1/2). 探讨了这类黑洞场中的圆零测地线。光子球半径的主方程 (R) 是派生的。给出了主方程解的存在唯一性的一个猜想 (R>R_{g}),其中 (R_{g}) 是视界半径。这个猜想在某些特殊情况下是可变的,例如,对于电荷对称结构: (Q_{1}^{2}=Q_{2}^{2}). 在这种电荷对称的情况下,我们给出了在斜角近似下测试无质量标量场的拟正规模谱的关系式,并给出了一个大质量粒子的圆轨道的例子。
{"title":"Photon Spheres near Dilatonic Dyon-Like Black Holes in a Model with Two Abelian Gauge Fields and Two Scalar Fields","authors":"V. D. Ivashchuk,&nbsp;A. N. Malybayev,&nbsp;G. S. Nurbakova,&nbsp;G. Takey","doi":"10.1134/S0202289323040114","DOIUrl":"10.1134/S0202289323040114","url":null,"abstract":"<p>Dilatonic dyon-like black hole solutions with two (color) charges <span>(Q_{1})</span> and <span>(Q_{2})</span> (electric and magnetic ones) are considered in a gravitational 4D model with two scalar fields and two 2-forms. Two-dimensional dilatonic coupling vectors <span>(vec{lambda}_{i})</span>, <span>(i=1,2)</span>, determining the model, obey the relation <span>(vec{lambda}_{1}vec{lambda}_{2}=1/2)</span>. Circular null geodesics in the field of such black holes are explored. The master equation for the photon sphere radius <span>(R)</span> is derived. A conjecture is suggested on the existence and uniqueness of the solution to the master equation with <span>(R&gt;R_{g})</span>, where <span>(R_{g})</span> is the horizon radius. This conjecture is varified for certain special cases, e.g., for a charge symmetric configuration: <span>(Q_{1}^{2}=Q_{2}^{2})</span>. In this charge symmetric case, we present a relation for the spectrum of quasinormal modes of a test massless scalar field in the eikonal approximation, and an example of circular orbits of a massive particle.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":"29 4","pages":"411 - 418"},"PeriodicalIF":0.9,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138437132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GZK Cutoff in Presence of a Specified Modified Dispersion Relation 存在特定修正色散关系的GZK截止
IF 0.9 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-23 DOI: 10.1134/S020228932304014X
Arash Majidian, Mehdi Jafari Matehkolaeer

In this study, based on the constraints of modified dispersion relation parameters from Ultra High Energy Cosmic Rays (UHECR), we investigate the wavelength shift of scattered photons in a Compton process. In other words, the main motivation here is to consider the effects of modified dispersion relation and Lorentz invariance violation on inverse Compton scattering of cosmic microwave background (CMB) photons and the GZK cutoff. Our calculations indicate that the change in wavelength depends on the incident photon wavelength. In addition, we obtain a threshold momentum of an electron as (|P|leq 10^{12}) eV. This threshold indicates the reasonable values for (|P|). Also, we find that with respect to the specified modified dispersion relation it is possible to extend the GZK cutoff in the UHECR spectrum beyond (10^{20}) eV, and we expect to detect cosmic rays from deep space having energies greater than (10^{20}) eV, as suggested in some experiments.

本文在超高能宇宙射线(UHECR)修正色散关系参数约束下,研究了康普顿过程中散射光子的波长移。换句话说,这里的主要动机是考虑修正色散关系和洛伦兹不变性破坏对宇宙微波背景(CMB)光子的逆康普顿散射和GZK截止的影响。我们的计算表明,波长的变化取决于入射光子的波长。此外,我们得到了一个电子的阈值动量为(|P|leq 10^{12}) eV。该阈值表示(|P|)的合理值。此外,我们发现,对于指定的修正色散关系,可以将UHECR谱中的GZK截止点扩展到(10^{20}) eV以上,并且我们期望探测到来自深空的能量大于(10^{20}) eV的宇宙射线,正如一些实验所表明的那样。
{"title":"GZK Cutoff in Presence of a Specified Modified Dispersion Relation","authors":"Arash Majidian,&nbsp;Mehdi Jafari Matehkolaeer","doi":"10.1134/S020228932304014X","DOIUrl":"10.1134/S020228932304014X","url":null,"abstract":"<p>In this study, based on the constraints of modified dispersion relation parameters from Ultra High Energy Cosmic Rays (UHECR), we investigate the wavelength shift of scattered photons in a Compton process. In other words, the main motivation here is to consider the effects of modified dispersion relation and Lorentz invariance violation on inverse Compton scattering of cosmic microwave background (CMB) photons and the GZK cutoff. Our calculations indicate that the change in wavelength depends on the incident photon wavelength. In addition, we obtain a threshold momentum of an electron as <span>(|P|leq 10^{12})</span> eV. This threshold indicates the reasonable values for <span>(|P|)</span>. Also, we find that with respect to the specified modified dispersion relation it is possible to extend the GZK cutoff in the UHECR spectrum beyond <span>(10^{20})</span> eV, and we expect to detect cosmic rays from deep space having energies greater than <span>(10^{20})</span> eV, as suggested in some experiments.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":"29 4","pages":"432 - 436"},"PeriodicalIF":0.9,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138437156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formation of Supermassive Nuclei of Black Holes in the Early Universe by the Mechanism of Scalar-Gravitational Instability. I. Local Picture({}^{1}) 早期宇宙中超大质量黑洞核形成的尺度引力不稳定性机制。一、当地情况({}^{1})
IF 0.9 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-23 DOI: 10.1134/S0202289323040102
Yu. G. Ignat’ev

On the basis of the formulated and proven similarity properties of cosmological models based on a statistical system of degenerate scalarly charged fermions, as well as the previously identified mechanism of scalar-gravitational instability of cosmological models, a numerical and analytical study of the formation of supermassive black hole nuclei in the early Universe is carried out. A mathematical model of the evolution of spherical perturbations is constructed, making itt possible to reveal the main regularities of the process of evolution of collapsing masses and the dependence of the parameters of forming black holes on the fundamental parameters of the cosmological model and the wavelength of gravitational perturbations. In this case, the mass loss of the black hole due to quantum evaporation is taken into account. A stable tendency for the early formation of supermassive black hole nuclei in the class of cosmological models under study is shown, and a close connection between the growth of masses of spherical perturbations and the nature of the singular points of these models is shown.

基于简并标量带电费米子统计系统的宇宙学模型的公式化和证明的相似性,以及先前确定的宇宙学模型的标量引力不稳定性机制,对早期宇宙中超大质量黑洞核的形成进行了数值和解析研究。建立了球面微扰演化的数学模型,揭示了坍缩质量演化过程的主要规律,揭示了黑洞形成参数与宇宙学模型基本参数和引力微扰波长的关系。在这种情况下,由于量子蒸发,黑洞的质量损失被考虑在内。在所研究的一类宇宙学模型中,表明了超大质量黑洞核早期形成的稳定趋势,并表明了球面扰动质量的增长与这些模型奇点的性质之间的密切联系。
{"title":"Formation of Supermassive Nuclei of Black Holes in the Early Universe by the Mechanism of Scalar-Gravitational Instability. I. Local Picture({}^{1})","authors":"Yu. G. Ignat’ev","doi":"10.1134/S0202289323040102","DOIUrl":"10.1134/S0202289323040102","url":null,"abstract":"<p>On the basis of the formulated and proven similarity properties of cosmological models based on a statistical system of degenerate scalarly charged fermions, as well as the previously identified mechanism of scalar-gravitational instability of cosmological models, a numerical and analytical study of the formation of supermassive black hole nuclei in the early Universe is carried out. A mathematical model of the evolution of spherical perturbations is constructed, making itt possible to reveal the main regularities of the process of evolution of collapsing masses and the dependence of the parameters of forming black holes on the fundamental parameters of the cosmological model and the wavelength of gravitational perturbations. In this case, the mass loss of the black hole due to quantum evaporation is taken into account. A stable tendency for the early formation of supermassive black hole nuclei in the class of cosmological models under study is shown, and a close connection between the growth of masses of spherical perturbations and the nature of the singular points of these models is shown.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":"29 4","pages":"327 - 344"},"PeriodicalIF":0.9,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138437103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
“New Inflation” for a Bianchi Type IX Cosmological Model with Rotation and Dark Energy 包含旋转和暗能量的Bianchi IX型宇宙学模型的“新暴胀”
IF 0.9 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-23 DOI: 10.1134/S0202289323040175
V. F. Panov, O. V. Sandakova, E. V. Kuvshinova

The first inflationary stage of the Bianchi type IX metric is considered for the case of inflation near the maximum potential according to the old terminology, “new inflation.” The evolution of rotation is studied with dark energy modeled by an anisotropic fluid.

根据旧术语“新通货膨胀”,在通货膨胀接近最大潜力的情况下,考虑比安奇IX型指标的第一个通货膨胀阶段。用各向异性流体模拟暗能量,研究了暗能量的旋转演化。
{"title":"“New Inflation” for a Bianchi Type IX Cosmological Model with Rotation and Dark Energy","authors":"V. F. Panov,&nbsp;O. V. Sandakova,&nbsp;E. V. Kuvshinova","doi":"10.1134/S0202289323040175","DOIUrl":"10.1134/S0202289323040175","url":null,"abstract":"<p>The first inflationary stage of the Bianchi type IX metric is considered for the case of inflation near the maximum potential according to the old terminology, “new inflation.” The evolution of rotation is studied with dark energy modeled by an anisotropic fluid.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":"29 4","pages":"362 - 366"},"PeriodicalIF":0.9,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138437133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Gravitation and Cosmology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1