首页 > 最新文献

International Journal of Thermophysics最新文献

英文 中文
Liquid Viscosity and Surface Tension of Cyclohexane Between 280 and 473 K by Surface Light Scattering 通过表面光散射测量 280 至 473 K 之间环己烷的液体粘度和表面张力
IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-28 DOI: 10.1007/s10765-024-03453-w
Paul Damp, Yongzhen Sun, Peter S. Schulz, Thomas M. Koller, Andreas P. Fröba

The present study provides experimental data for the liquid viscosity and surface tension of cyclohexane at or close to saturation conditions by surface light scattering between (280 and 473) K. By applying the hydrodynamic theory for surface fluctuations at the vapor–liquid phase boundary, which could be verified experimentally, the liquid viscosity and surface tension were determined simultaneously at macroscopic thermodynamic equilibrium with average relative expanded (k = 2) uncertainties of Ur(η′) = 0.020 and Ur(σ) = 0.012. For both properties, the present measurement results agree well with reference values in the literature which are restricted to a maximum temperature of 393 K for viscosity and 337 K for surface tension. The experimental results from this work contribute to an improved database for the viscosity and surface tension of cyclohexane over a wide temperature range from a temperature close to the melting point up to 473 K.

本研究提供了通过表面光散射在 (280 和 473) K 之间测定环己烷在饱和或接近饱和状态下的液体粘度和表面张力的实验数据。通过应用汽液相界表面波动的流体力学理论(可通过实验验证),同时测定了宏观热力学平衡时的液体粘度和表面张力,其平均相对扩展(k = 2)不确定度为 Ur(η′) = 0.020 和 Ur(σ) = 0.012。对于这两种特性,目前的测量结果与文献中的参考值非常吻合,文献中的参考值仅限于最高温度为 393 K 的粘度和 337 K 的表面张力。这项工作的实验结果有助于改进环己烷粘度和表面张力的数据库,其温度范围很广,从接近熔点的温度一直到 473 K。
{"title":"Liquid Viscosity and Surface Tension of Cyclohexane Between 280 and 473 K by Surface Light Scattering","authors":"Paul Damp,&nbsp;Yongzhen Sun,&nbsp;Peter S. Schulz,&nbsp;Thomas M. Koller,&nbsp;Andreas P. Fröba","doi":"10.1007/s10765-024-03453-w","DOIUrl":"10.1007/s10765-024-03453-w","url":null,"abstract":"<div><p>The present study provides experimental data for the liquid viscosity and surface tension of cyclohexane at or close to saturation conditions by surface light scattering between (280 and 473) K. By applying the hydrodynamic theory for surface fluctuations at the vapor–liquid phase boundary, which could be verified experimentally, the liquid viscosity and surface tension were determined simultaneously at macroscopic thermodynamic equilibrium with average relative expanded (<i>k</i> = 2) uncertainties of <i>U</i><sub>r</sub>(<i>η</i>′) = 0.020 and <i>U</i><sub>r</sub>(<i>σ</i>) = 0.012. For both properties, the present measurement results agree well with reference values in the literature which are restricted to a maximum temperature of 393 K for viscosity and 337 K for surface tension. The experimental results from this work contribute to an improved database for the viscosity and surface tension of cyclohexane over a wide temperature range from a temperature close to the melting point up to 473 K.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 11","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10765-024-03453-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Binary Isobaric Vapor–Liquid Equilibrium for Methyl Benzoate with Benzyl Alcohol and Benzaldehyde 苯甲酸甲酯与苯甲醇和苯甲醛的二元等压气液平衡
IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-18 DOI: 10.1007/s10765-024-03441-0
Seon Hwa Baek, Won Wook Seo, Tae Hyun Kim, Jeong Won Kang

The binary vapor–liquid equilibria (VLE) of (methyl benzoate + benzyl alcohol) and (methyl benzoate + benzaldehyde) were measured and correlated using activity coefficient models. The measurements were performed using a modified Othmer still at constant pressures of 101.3, 51.3, and 21.3 kPa. The measured data were tested for consistency and correlated using the non-random two-liquid (NRTL), Wilson, and universal quasi-chemical (UNIQUAC) models. The data were also compared with predictive models, such as UNIFAC and the machine learning version of COSMO-SAC. Temperature dependence of the interaction parameters was required to accurately represent the data, covering the pressure range of the experiments. These results can be used to design a purification process for methyl benzoate production.

测量了(苯甲酸甲酯 + 苯甲醇)和(苯甲酸甲酯 + 苯甲醛)的二元气液平衡 (VLE),并使用活度系数模型将其联系起来。测量是在 101.3、51.3 和 21.3 千帕的恒压下使用改进的 Othmer 蒸馏器进行的。使用非随机双液模型 (NRTL)、威尔逊模型和通用准化学模型 (UNIQUAC) 检验了测量数据的一致性和相关性。数据还与 UNIFAC 和机器学习版 COSMO-SAC 等预测模型进行了比较。相互作用参数的温度依赖性是准确表示数据的必要条件,涵盖了实验的压力范围。这些结果可用于设计苯甲酸甲酯生产的净化工艺。
{"title":"Binary Isobaric Vapor–Liquid Equilibrium for Methyl Benzoate with Benzyl Alcohol and Benzaldehyde","authors":"Seon Hwa Baek,&nbsp;Won Wook Seo,&nbsp;Tae Hyun Kim,&nbsp;Jeong Won Kang","doi":"10.1007/s10765-024-03441-0","DOIUrl":"10.1007/s10765-024-03441-0","url":null,"abstract":"<div><p>The binary vapor–liquid equilibria (VLE) of (methyl benzoate + benzyl alcohol) and (methyl benzoate + benzaldehyde) were measured and correlated using activity coefficient models. The measurements were performed using a modified Othmer still at constant pressures of 101.3, 51.3, and 21.3 kPa. The measured data were tested for consistency and correlated using the non-random two-liquid (NRTL), Wilson, and universal quasi-chemical (UNIQUAC) models. The data were also compared with predictive models, such as UNIFAC and the machine learning version of COSMO-SAC. Temperature dependence of the interaction parameters was required to accurately represent the data, covering the pressure range of the experiments. These results can be used to design a purification process for methyl benzoate production.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 10","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Bionic Fins on Supercritical CO2 Serpentine Microtube in Various Flow Directions 仿生鳍片对不同流向超临界二氧化碳蛇形微管的影响
IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-18 DOI: 10.1007/s10765-024-03443-y
Zhengming Yi, Qiu Meng, Yong Xu, Xiaolin Chen, Wenzhe Wang

In supercritical carbon dioxide (S-CO2) serpentine microtube heat exchangers, heat transfer deterioration often occurs at the bend of serpentine microtube, which reduces the efficiency and shortens the lifetime of the tube. To solve this problem, RNG k-ε turbulence model is used to simulate the flow and heat transfer of S-CO2 when bionic fins are added. The results show that adding fins can significantly improve heat transfer, especially at low mass flux. By increasing the length of the long axis and short axis of the fins, the heat transfer efficiency is significantly improved, but the flow resistance is also increased. When the long axis and short axis are increased in the same proportion, the effect of increasing the short axis on the heat transfer performance is more obvious. This study provides a new way to strengthen the design of S-CO2 serpentine microtube heat exchangers, which has great potential for practical application.

在超临界二氧化碳(S-CO2)蛇形微管热交换器中,蛇形微管弯曲处经常出现传热恶化,从而降低效率并缩短管子的使用寿命。为解决这一问题,采用 RNG k-ε 湍流模型模拟了添加仿生翅片后 S-CO2 的流动和传热情况。结果表明,添加翅片可以显著改善传热,尤其是在低质量通量时。通过增加翅片长轴和短轴的长度,传热效率显著提高,但流动阻力也随之增加。当长轴和短轴按相同比例增加时,增加短轴对传热性能的影响更为明显。本研究为加强 S-CO2 蛇形微管换热器的设计提供了一条新途径,具有很大的实际应用潜力。
{"title":"Impact of Bionic Fins on Supercritical CO2 Serpentine Microtube in Various Flow Directions","authors":"Zhengming Yi,&nbsp;Qiu Meng,&nbsp;Yong Xu,&nbsp;Xiaolin Chen,&nbsp;Wenzhe Wang","doi":"10.1007/s10765-024-03443-y","DOIUrl":"10.1007/s10765-024-03443-y","url":null,"abstract":"<div><p>In supercritical carbon dioxide (S-CO<sub>2</sub>) serpentine microtube heat exchangers, heat transfer deterioration often occurs at the bend of serpentine microtube, which reduces the efficiency and shortens the lifetime of the tube. To solve this problem, RNG k-ε turbulence model is used to simulate the flow and heat transfer of S-CO<sub>2</sub> when bionic fins are added. The results show that adding fins can significantly improve heat transfer, especially at low mass flux. By increasing the length of the long axis and short axis of the fins, the heat transfer efficiency is significantly improved, but the flow resistance is also increased. When the long axis and short axis are increased in the same proportion, the effect of increasing the short axis on the heat transfer performance is more obvious. This study provides a new way to strengthen the design of S-CO<sub>2</sub> serpentine microtube heat exchangers, which has great potential for practical application.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 10","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Measurements and Modeling of Density and Viscosity for Methyl Caprate + 1-Alkanol at Atmospheric Pressure and Different Temperatures 癸酸甲酯 + 1-烷醇在常压和不同温度下的密度和粘度的实验测量与模型建立
IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-18 DOI: 10.1007/s10765-024-03444-x
Mohammad Almasi, Ariel Hernández

This study provides new experimental data for the density and viscosity of mixtures containing methyl caprate and 1-alkanol (1-propanol to 1-hexanol) at 0.1 MPa and different temperatures (293.15 K to 323.15 K). We analyzed the molecular interactions between the components and found that are weak. The PC-SAFT equation of state accurately modeled the density of the mixtures without fitted parameters. This equation of state considered hydrogen bonding between methyl caprate and 1-alkanol. Moreover, two correlations for viscosity were successfully applied to fit the experimental viscosity data with good accuracy.

本研究提供了含有癸酸甲酯和 1-烷醇(1-丙醇至 1-己醇)的混合物在 0.1 兆帕和不同温度(293.15 K 至 323.15 K)下的密度和粘度的新实验数据。我们分析了各组分之间的分子相互作用,发现它们之间的相互作用很微弱。PC-SAFT 状态方程在没有拟合参数的情况下准确地模拟了混合物的密度。该状态方程考虑了癸酸甲酯和 1-乙醇之间的氢键作用。此外,还成功地应用了两种粘度相关关系来拟合实验粘度数据,且准确度很高。
{"title":"Experimental Measurements and Modeling of Density and Viscosity for Methyl Caprate + 1-Alkanol at Atmospheric Pressure and Different Temperatures","authors":"Mohammad Almasi,&nbsp;Ariel Hernández","doi":"10.1007/s10765-024-03444-x","DOIUrl":"10.1007/s10765-024-03444-x","url":null,"abstract":"<div><p>This study provides new experimental data for the density and viscosity of mixtures containing methyl caprate and 1-alkanol (1-propanol to 1-hexanol) at 0.1 MPa and different temperatures (293.15 K to 323.15 K). We analyzed the molecular interactions between the components and found that are weak. The PC-SAFT equation of state accurately modeled the density of the mixtures without fitted parameters. This equation of state considered hydrogen bonding between methyl caprate and 1-alkanol. Moreover, two correlations for viscosity were successfully applied to fit the experimental viscosity data with good accuracy.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 10","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Speed of Sound Measurements of Binary Mixtures of 1,1-Difluoroethylene (R-1132a) + Propane and Derived Speed of Sound of Pure R-1132a 1,1-二氟乙烯 (R-1132a) + 丙烷二元混合物的声速测量结果和纯 R-1132a 的推导声速
IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-16 DOI: 10.1007/s10765-024-03431-2
Aaron J. Rowane, Richard A. Perkins

Speed of sound data, measured using a dual-path pulse-echo instrument, are reported for three binary mixtures of 1,1-difluoroethylene (R-1132a) with propane at temperatures ranging from 230 to 345 K and pressures ranging from slightly above the bubble curve to a maximum pressure of 50 MPa. Significant attenuation of the pulse-echo signals was observed for measurements on pure R-1132a. Therefore, the R-1132a sample was doped with propane at mole fractions ranging from 0.0274 to 0.0887 and the propane + R-1132a mixture data was used to derive sound speeds for pure R-1132a. The data were compared to a preliminary equation of state for R-1132a, and deviations ranged from 2 % to 8 %. This demonstrates that the preliminary R-1132a EoS needs to be refit to better represent the speed of sound.

报告了使用双路径脉冲回波仪器测量的 1,1-二氟乙烯(R-1132a)与丙烷的三种二元混合物的声速数据,温度范围为 230 至 345 K,压力范围为略高于气泡曲线到最大压力 50 MPa。在对纯 R-1132a 进行测量时,脉冲回波信号出现明显衰减。因此,在 R-1132a 样品中掺入了分子分数为 0.0274 至 0.0887 的丙烷,并使用丙烷 + R-1132a 混合物数据来推导纯 R-1132a 的声速。数据与 R-1132a 的初步状态方程进行了比较,偏差在 2 % 到 8 % 之间。这表明需要对初步的 R-1132a 态方程进行修改,以更好地表示声速。
{"title":"Speed of Sound Measurements of Binary Mixtures of 1,1-Difluoroethylene (R-1132a) + Propane and Derived Speed of Sound of Pure R-1132a","authors":"Aaron J. Rowane,&nbsp;Richard A. Perkins","doi":"10.1007/s10765-024-03431-2","DOIUrl":"10.1007/s10765-024-03431-2","url":null,"abstract":"<div><p>Speed of sound data, measured using a dual-path pulse-echo instrument, are reported for three binary mixtures of 1,1-difluoroethylene (R-1132a) with propane at temperatures ranging from 230 to 345 K and pressures ranging from slightly above the bubble curve to a maximum pressure of 50 MPa. Significant attenuation of the pulse-echo signals was observed for measurements on pure R-1132a. Therefore, the R-1132a sample was doped with propane at mole fractions ranging from 0.0274 to 0.0887 and the propane + R-1132a mixture data was used to derive sound speeds for pure R-1132a. The data were compared to a preliminary equation of state for R-1132a, and deviations ranged from 2 % to 8 %. This demonstrates that the preliminary R-1132a EoS needs to be refit to better represent the speed of sound.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 10","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10765-024-03431-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating Molecular Interactions in O-Toluidine and 1-Alkanol via Density, Viscosity and DFT Analyses 通过密度、粘度和 DFT 分析研究 O-Toluidine 和 1-Alkanol 中的分子相互作用
IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-11 DOI: 10.1007/s10765-024-03442-z
Fatemeh Alboghobeish, Ayeh Rayatzadeh, Mohammad Almasi, Neda Hasanzadeh

In this study, we performed a combined density functional theory (DFT) and experimental investigation of the hydrogen bonding strength and thermodynamic properties in mixtures of o-toluidine and 1-alkanol (1-propanol to 1-hexanol). The DFT calculations were carried out using the M05-2X/6–311 +  + G ∗  ∗ computational level to optimize the structures and calculate the hydrogen bonding energies. The experimental measurements were conducted using density and viscosity measurements to determine excess and deviation properties, and unraveling the strength of molecular interactions in the mixtures. The results showed that the hydrogen bonding strength and thermodynamic behavior of the mixtures were strongly influenced by the length of the alkyl chain in the 1-alkanol molecule. The DFT calculations revealed that the hydrogen bonding energies decreased with increasing alkyl chain length, while the experimental measurements showed that the excess molar volumes are increased and deviation in the viscosity are decreased. Overall, this study provides valuable insights into the interplay between hydrogen bonding and thermodynamics in o-toluidine and 1-alkanol mixtures and highlights the importance of combining DFT calculations and experimental measurements to understand complex intermolecular interactions.

在本研究中,我们对邻甲苯胺和 1-甲醇(1-丙醇到 1-己醇)混合物中的氢键强度和热力学性质进行了密度泛函理论(DFT)和实验相结合的研究。DFT 计算采用 M05-2X/6-311 + + G ∗ ∗ 计算水平,以优化结构并计算氢键能量。实验测量使用密度和粘度测量来确定过量和偏差特性,并揭示混合物中分子相互作用的强度。结果表明,混合物的氢键强度和热力学行为受到 1- 烷醇分子中烷基链长度的强烈影响。DFT 计算显示,氢键能量随着烷基链长度的增加而降低,而实验测量显示,过量摩尔体积增加,粘度偏差减小。总之,这项研究为了解邻甲苯胺和 1-烷醇混合物中氢键和热力学之间的相互作用提供了宝贵的见解,并强调了结合 DFT 计算和实验测量来理解复杂的分子间相互作用的重要性。
{"title":"Investigating Molecular Interactions in O-Toluidine and 1-Alkanol via Density, Viscosity and DFT Analyses","authors":"Fatemeh Alboghobeish,&nbsp;Ayeh Rayatzadeh,&nbsp;Mohammad Almasi,&nbsp;Neda Hasanzadeh","doi":"10.1007/s10765-024-03442-z","DOIUrl":"10.1007/s10765-024-03442-z","url":null,"abstract":"<div><p>In this study, we performed a combined density functional theory (DFT) and experimental investigation of the hydrogen bonding strength and thermodynamic properties in mixtures of o-toluidine and 1-alkanol (1-propanol to 1-hexanol). The DFT calculations were carried out using the M05-2X/6–311 +  + G ∗  ∗ computational level to optimize the structures and calculate the hydrogen bonding energies. The experimental measurements were conducted using density and viscosity measurements to determine excess and deviation properties, and unraveling the strength of molecular interactions in the mixtures. The results showed that the hydrogen bonding strength and thermodynamic behavior of the mixtures were strongly influenced by the length of the alkyl chain in the 1-alkanol molecule. The DFT calculations revealed that the hydrogen bonding energies decreased with increasing alkyl chain length, while the experimental measurements showed that the excess molar volumes are increased and deviation in the viscosity are decreased. Overall, this study provides valuable insights into the interplay between hydrogen bonding and thermodynamics in o-toluidine and 1-alkanol mixtures and highlights the importance of combining DFT calculations and experimental measurements to understand complex intermolecular interactions.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 10","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10765-024-03442-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reference Correlation for the Viscosity of Nitrogen from the Triple Point to 1000 K and Pressures up to 2200 MPa 从三相点到 1000 K 和压力高达 2200 MPa 的氮粘度参考相关性
IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-10 DOI: 10.1007/s10765-024-03440-1
Marcia L. Huber, Richard A. Perkins, Eric W. Lemmon

We present a new wide-ranging correlation for the viscosity of nitrogen based on critically evaluated experimental data as well as ab-initio calculations. The correlation is designed to be used with densities from an existing equation of state, which is valid from the triple point to 1000 K, at pressures up to 2200 MPa. The estimated uncertainty (at the 95% confidence level) for the viscosity varies depending on the temperature and pressure, from a low of 0.2% in the dilute-gas range near room temperature, to 4% for the liquid phase at pressures from saturation up to 34 MPa, and maximum of 8% in the supercritical region at pressures above 650 MPa. Extensive comparisons with experimental data are provided.

我们根据经过严格评估的实验数据和非线性计算,提出了氮气粘度的新的广泛相关性。该相关性设计用于现有状态方程中的密度,其有效值从三相点到 1000 K,压力高达 2200 MPa。粘度的估计不确定性(95% 置信度)因温度和压力而异,室温附近稀释气体范围的不确定性最低为 0.2%,饱和至 34 兆帕压力下液相的不确定性为 4%,压力超过 650 兆帕的超临界区域的不确定性最高为 8%。提供了与实验数据的广泛比较。
{"title":"Reference Correlation for the Viscosity of Nitrogen from the Triple Point to 1000 K and Pressures up to 2200 MPa","authors":"Marcia L. Huber,&nbsp;Richard A. Perkins,&nbsp;Eric W. Lemmon","doi":"10.1007/s10765-024-03440-1","DOIUrl":"10.1007/s10765-024-03440-1","url":null,"abstract":"<div><p>We present a new wide-ranging correlation for the viscosity of nitrogen based on critically evaluated experimental data as well as <i>ab-initio</i> calculations. The correlation is designed to be used with densities from an existing equation of state, which is valid from the triple point to 1000 K, at pressures up to 2200 MPa. The estimated uncertainty (at the 95% confidence level) for the viscosity varies depending on the temperature and pressure, from a low of 0.2% in the dilute-gas range near room temperature, to 4% for the liquid phase at pressures from saturation up to 34 MPa, and maximum of 8% in the supercritical region at pressures above 650 MPa. Extensive comparisons with experimental data are provided.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 10","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10765-024-03440-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and Modeling Molecular Interactions Between Ethyl Myristate and 2-Alkanol 肉豆蔻酸乙酯与 2-烷醇之间的分子相互作用的实验和建模
IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-10-04 DOI: 10.1007/s10765-024-03438-9
Mohammad Almasi, Ariel Hernández

This manuscript presents new experimental data (density and viscosity) for the binary mixtures of ethyl myristate with different secondary alcohols (2-propanol, 2-butanol, 2-pentanol, and 2-hexanol). Experimental measurements were conducted at various temperatures (293.15 K to 323.15 K), atmospheric pressure (0.1 MPa), covering a wide range of compositions for the binary mixtures. Using the experimental density and viscosity values, the molar volume excess and deviation in viscosity were obtained and the molecular interaction forces were studied as weak or strong. PC-SAFT successfully modeled the density of the mixtures without requiring any fitted parameters for the mixture. In this modeling, hydrogen bond interactions between ethyl myristate and 2-alkanol were considered. Finally, the experimental viscosity data were successfully modeled with a non-linear Belda model.

本手稿提供了肉豆蔻酸乙酯与不同仲醇(2-丙醇、2-丁醇、2-戊醇和 2-己醇)二元混合物的新实验数据(密度和粘度)。实验测量在不同的温度(293.15 K 至 323.15 K)和大气压力(0.1 MPa)下进行,涵盖了二元混合物的多种成分。利用实验密度和粘度值,得出了摩尔体积过量和粘度偏差,并研究了分子相互作用力的强弱。PC-SAFT 成功地模拟了混合物的密度,而不需要混合物的任何拟合参数。在建模过程中,考虑了肉豆蔻酸乙酯和 2-乙醇之间的氢键相互作用。最后,利用非线性贝尔达模型成功地模拟了实验粘度数据。
{"title":"Experimental and Modeling Molecular Interactions Between Ethyl Myristate and 2-Alkanol","authors":"Mohammad Almasi,&nbsp;Ariel Hernández","doi":"10.1007/s10765-024-03438-9","DOIUrl":"10.1007/s10765-024-03438-9","url":null,"abstract":"<div><p>This manuscript presents new experimental data (density and viscosity) for the binary mixtures of ethyl myristate with different secondary alcohols (2-propanol, 2-butanol, 2-pentanol, and 2-hexanol). Experimental measurements were conducted at various temperatures (293.15 K to 323.15 K), atmospheric pressure (0.1 MPa), covering a wide range of compositions for the binary mixtures. Using the experimental density and viscosity values, the molar volume excess and deviation in viscosity were obtained and the molecular interaction forces were studied as weak or strong. PC-SAFT successfully modeled the density of the mixtures without requiring any fitted parameters for the mixture. In this modeling, hydrogen bond interactions between ethyl myristate and 2-alkanol were considered. Finally, the experimental viscosity data were successfully modeled with a non-linear Belda model.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 10","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crucible-less Processing of Ti with TiC Heterogeneous Nucleation Site Particles by Electrostatic Levitation 通过静电悬浮法无坩埚加工钛与钛碳异质成核点颗粒
IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-09-28 DOI: 10.1007/s10765-024-03435-y
Yoshimi Watanabe, Goro Takahashi, Ryosei Saguchi, Hisashi Sato, Hirokazu Aoki, Shinsuke Suzuki, Shizuka Nakano, Yuki Watanabe, Chihiro Koyama, Hirohisa Oda, Takehiko Ishikawa

In this study, the microstructure, hardness, density, viscosity, and surface tension of molten pure Ti with TiC particles were studied via electrostatic levitation experiments, where the electrostatic levitation experiment involved container-less processing, which can suppress heterogeneous nucleation via crucibles. Microstructural observation revealed long needle-shaped α-grains across the whole area in the pure Ti sample. On the other hand, smaller needle-shaped α-grains were found in the samples with TiC particles. However, the detailed microstructural analysis of Ti + 0.7vo l%TiC sample revealed that the fine α-grains observed in the Ti + 0.7vo l%TiC are transformed from single grain of prior β phase. This is because the TiC particles dissolve into the molten Ti during the electrostatic levitation experiment. Instead, Ti–rich TiC precipitates formed by cooling can act as pinning sites rather than heterogeneous nucleation sites, which results in a finer microstructure for the samples with TiC particles during the electrostatic levitation experiment. The density of the samples is linearly related to the temperature, and it decreases with increasing temperature. In addition, a higher density is observed for the samples with TiC particles. Although linear relationships between the surface tension and temperature were found, the addition of TiC particles had no notable effect on the viscosity of the molten pure Ti.

本研究通过静电悬浮实验研究了含有 TiC 粒子的熔融纯 Ti 的微观结构、硬度、密度、粘度和表面张力,其中静电悬浮实验涉及无容器加工,可通过坩埚抑制异质成核。显微结构观察显示,纯 Ti 样品的整个区域都出现了长针状的 α 晶粒。另一方面,在含有 TiC 颗粒的样品中发现了较小的针状 α 晶粒。然而,对 Ti + 0.7vo l%TiC 样品进行的详细微观结构分析表明,在 Ti + 0.7vo l%TiC 中观察到的细小 α 晶粒是由先前的 β 相单个晶粒转变而来的。这是因为在静电悬浮实验中,TiC 颗粒溶解到了熔融 Ti 中。相反,冷却时形成的富钛 TiC 沉淀可以作为钉扎点,而不是异质成核点,这导致在静电悬浮实验中含有 TiC 颗粒的样品具有更精细的微观结构。样品的密度与温度呈线性关系,并且随着温度的升高而降低。此外,含有 TiC 颗粒的样品密度更高。虽然表面张力与温度之间存在线性关系,但添加 TiC 粒子对熔融纯 Ti 的粘度没有明显影响。
{"title":"Crucible-less Processing of Ti with TiC Heterogeneous Nucleation Site Particles by Electrostatic Levitation","authors":"Yoshimi Watanabe,&nbsp;Goro Takahashi,&nbsp;Ryosei Saguchi,&nbsp;Hisashi Sato,&nbsp;Hirokazu Aoki,&nbsp;Shinsuke Suzuki,&nbsp;Shizuka Nakano,&nbsp;Yuki Watanabe,&nbsp;Chihiro Koyama,&nbsp;Hirohisa Oda,&nbsp;Takehiko Ishikawa","doi":"10.1007/s10765-024-03435-y","DOIUrl":"10.1007/s10765-024-03435-y","url":null,"abstract":"<div><p>In this study, the microstructure, hardness, density, viscosity, and surface tension of molten pure Ti with TiC particles were studied via electrostatic levitation experiments, where the electrostatic levitation experiment involved container-less processing, which can suppress heterogeneous nucleation via crucibles. Microstructural observation revealed long needle-shaped α-grains across the whole area in the pure Ti sample. On the other hand, smaller needle-shaped α-grains were found in the samples with TiC particles. However, the detailed microstructural analysis of Ti + 0.7vo l%TiC sample revealed that the fine α-grains observed in the Ti + 0.7vo l%TiC are transformed from single grain of prior β phase. This is because the TiC particles dissolve into the molten Ti during the electrostatic levitation experiment. Instead, Ti–rich TiC precipitates formed by cooling can act as pinning sites rather than heterogeneous nucleation sites, which results in a finer microstructure for the samples with TiC particles during the electrostatic levitation experiment. The density of the samples is linearly related to the temperature, and it decreases with increasing temperature. In addition, a higher density is observed for the samples with TiC particles. Although linear relationships between the surface tension and temperature were found, the addition of TiC particles had no notable effect on the viscosity of the molten pure Ti.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 10","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10765-024-03435-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Graphite-Based Thermal Greases For Optimal Microelectronic Device Cooling 探索石墨基导热硅脂,优化微电子设备冷却效果
IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-09-26 DOI: 10.1007/s10765-024-03437-w
Roman Shishkin, Vicktoria Arkhipova, Nina Zhirenkina, Zillara Fattakhova, Andrey Leshok

The quest for effective thermal management solutions for microelectronic devices, catering to the escalating heat flows, necessitates innovative strategies. The significance of thermal interface materials, especially thermal greases, in minimizing thermal resistance within the "microelectronic device—heat-dissipating element" interface, has been widely acknowledged across industries such as microelectronics, aviation, and space engineering. Despite the promising reported values, a crucial consideration entails the method of ascertaining effective thermal conductivity, necessitating measurements in bulk samples to ensure accurate representations. Graphite, owing to its commercial accessibility and commendable thermal conductivity, emerges as a standout candidate for composite material development, as demonstrated in recent research. We observed that the use of graphite-based fillers, particularly in the form of well-crystallized graphite particles, effectively reduced processor temperatures and enhanced effective thermal conductivity, outperforming industrially utilized thermal greases. Our findings accentuate the potential of these materials in contributing to the development of cutting-edge composite materials for microelectronics, highlighting their high prospects for future applications in high-performance devices.

为满足不断增长的热流需求,微电子设备需要有效的热管理解决方案,这就需要创新的策略。热界面材料,尤其是导热硅脂,对于最大限度地降低 "微电子器件-散热元件 "界面内的热阻具有重要意义,这一点已在微电子、航空和航天工程等行业得到广泛认可。尽管报告的数值很有前景,但一个重要的考虑因素是确定有效热导率的方法,这就需要对大块样品进行测量,以确保准确的表述。最近的研究表明,石墨因其商业可得性和令人称道的导热性,成为复合材料开发的最佳候选材料。我们观察到,使用石墨基填料,特别是结晶良好的石墨颗粒形式的填料,可有效降低处理器温度并提高有效热导率,其性能优于工业上使用的导热脂。我们的研究结果凸显了这些材料在促进微电子尖端复合材料开发方面的潜力,并强调了它们在未来高性能设备中的应用前景。
{"title":"Exploring Graphite-Based Thermal Greases For Optimal Microelectronic Device Cooling","authors":"Roman Shishkin,&nbsp;Vicktoria Arkhipova,&nbsp;Nina Zhirenkina,&nbsp;Zillara Fattakhova,&nbsp;Andrey Leshok","doi":"10.1007/s10765-024-03437-w","DOIUrl":"10.1007/s10765-024-03437-w","url":null,"abstract":"<div><p>The quest for effective thermal management solutions for microelectronic devices, catering to the escalating heat flows, necessitates innovative strategies. The significance of thermal interface materials, especially thermal greases, in minimizing thermal resistance within the \"microelectronic device—heat-dissipating element\" interface, has been widely acknowledged across industries such as microelectronics, aviation, and space engineering. Despite the promising reported values, a crucial consideration entails the method of ascertaining effective thermal conductivity, necessitating measurements in bulk samples to ensure accurate representations. Graphite, owing to its commercial accessibility and commendable thermal conductivity, emerges as a standout candidate for composite material development, as demonstrated in recent research. We observed that the use of graphite-based fillers, particularly in the form of well-crystallized graphite particles, effectively reduced processor temperatures and enhanced effective thermal conductivity, outperforming industrially utilized thermal greases. Our findings accentuate the potential of these materials in contributing to the development of cutting-edge composite materials for microelectronics, highlighting their high prospects for future applications in high-performance devices.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 10","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Thermophysics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1