The local flow structure in a turbulent gas-droplet flow behind a single obstacle has been studied numerically with varying initial mass fraction and diameter of dispersed particles. The effect of evaporating droplets flowing over a single square obstacle on the local mean and fluctuating flow structure and dispersed-phase propagation has been analyzed. The mean longitudinal velocity profiles for the gas and dispersed phases are similar to those for single-phase flow. The gas velocity in the gas-droplet flow is insignificantly (less than 3%) higher than that in single-phase flow. The turbulence kinetic energy increases in approaching the obstacle. Maximum gas-phase turbulence was obtained on the obstacle at (x/h= -1{-}0), and it is more than 50% higher than the turbulence kinetic energy before and after the obstacle.