The characteristics of joint flows of evaporating liquid and a laminar gas stream in a plane horizontal channel are studied based on an exact partially invariant solution of thermosolutal convection equations. The influence of the liquid layer thickness and the conditions for the temperature function on the upper wall of the channel on the rate of evaporation caused by gas pumping is investigated. The exact solution is verified by comparison with experimental data. The linear stability of the exact solutions is studied. It is established that regardless of the type of boundary thermal regime, oscillatory instability in the form of cellular convection always appears in the system. Thermal insulation of the upper wall does not lead to a change in the structure of the most dangerous perturbations, slightly destabilizes the flow in the case of long-wave perturbations, and has a stabilizing effect in the case of short-wave perturbations.
扫码关注我们
求助内容:
应助结果提醒方式:
