首页 > 最新文献

计算机应用最新文献

英文 中文
Design of pseudorandom-number generator based on spatiotemporal chaos: Design of pseudorandom-number generator based on spatiotemporal chaos 基于时空混沌的伪随机数发生器设计基于时空混沌的伪随机数发生器设计
Pub Date : 2013-12-17 DOI: 10.3724/SP.J.1087.2013.03499
Guangyou Tu, Bohr He
{"title":"Design of pseudorandom-number generator based on spatiotemporal chaos: Design of pseudorandom-number generator based on spatiotemporal chaos","authors":"Guangyou Tu, Bohr He","doi":"10.3724/SP.J.1087.2013.03499","DOIUrl":"https://doi.org/10.3724/SP.J.1087.2013.03499","url":null,"abstract":"","PeriodicalId":61778,"journal":{"name":"计算机应用","volume":"33 1","pages":"3499-3502"},"PeriodicalIF":0.0,"publicationDate":"2013-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69949301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of geometric moving average martingale algorithm in anomaly analysis before earthquake based on sliding window: Application of geometric moving average martingale algorithm in anomaly analysis before earthquake based on sliding window 几何移动平均鞅算法在基于滑动窗口的震前异常分析中的应用几何移动平均鞅算法在基于滑动窗口的震前异常分析中的应用
Pub Date : 2013-12-17 DOI: 10.3724/SP.J.1087.2013.03608
Liping Chen, Xiangzeng Kong, Zhi Zheng, X. Lin, Xiaoshan Zhan
{"title":"Application of geometric moving average martingale algorithm in anomaly analysis before earthquake based on sliding window: Application of geometric moving average martingale algorithm in anomaly analysis before earthquake based on sliding window","authors":"Liping Chen, Xiangzeng Kong, Zhi Zheng, X. Lin, Xiaoshan Zhan","doi":"10.3724/SP.J.1087.2013.03608","DOIUrl":"https://doi.org/10.3724/SP.J.1087.2013.03608","url":null,"abstract":"","PeriodicalId":61778,"journal":{"name":"计算机应用","volume":"33 1","pages":"3608-3610"},"PeriodicalIF":0.0,"publicationDate":"2013-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69949366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Polymorphic worms signature extraction based on improved ant colony algorithm: Polymorphic worms signature extraction based on improved ant colony algorithm 基于改进蚁群算法的多态蠕虫签名提取:基于改进蚁群算法的多态蠕虫签名提取
Pub Date : 2013-12-17 DOI: 10.3724/SP.J.1087.2013.03494
Hui-xian Huang, Fan Guo, Shufang Xu
{"title":"Polymorphic worms signature extraction based on improved ant colony algorithm: Polymorphic worms signature extraction based on improved ant colony algorithm","authors":"Hui-xian Huang, Fan Guo, Shufang Xu","doi":"10.3724/SP.J.1087.2013.03494","DOIUrl":"https://doi.org/10.3724/SP.J.1087.2013.03494","url":null,"abstract":"","PeriodicalId":61778,"journal":{"name":"计算机应用","volume":"33 1","pages":"3494-3498"},"PeriodicalIF":0.0,"publicationDate":"2013-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69949271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification method of spam comments in microblog based on AdaBoost 基于AdaBoost的微博垃圾评论识别方法
Pub Date : 2013-12-17 DOI: 10.3724/SP.J.1087.2013.03563
Ling Huang, Xueming Li
In view of the existence of a lot of spam comments in microblog,a new method based on AdaBoost was proposed to identify spam comments. This method firstly extracted feature vectors which consisted of eight feature values to represent the comments,then trained several weak classifiers which were better than random prediction on these features via AdaBoost algorithm,and finally combined these weighted weak classifiers to build a strong classifier with a high precision. The experimental results on comment data sets extracted from the popular Sina microblogs indicate that the selected eight features are effective for the method,and it has a high recognition rate in the identification of spam comments in microblog.
针对微博中存在大量的垃圾评论,提出了一种基于AdaBoost的垃圾评论识别新方法。该方法首先提取由8个特征值组成的特征向量来表示评论,然后通过AdaBoost算法对这些特征训练出优于随机预测的几个弱分类器,最后将这些加权弱分类器组合在一起,构建精度较高的强分类器。对新浪热门微博评论数据集的实验结果表明,所选择的8个特征对该方法是有效的,在微博垃圾评论的识别中具有较高的识别率。
{"title":"Identification method of spam comments in microblog based on AdaBoost","authors":"Ling Huang, Xueming Li","doi":"10.3724/SP.J.1087.2013.03563","DOIUrl":"https://doi.org/10.3724/SP.J.1087.2013.03563","url":null,"abstract":"In view of the existence of a lot of spam comments in microblog,a new method based on AdaBoost was proposed to identify spam comments. This method firstly extracted feature vectors which consisted of eight feature values to represent the comments,then trained several weak classifiers which were better than random prediction on these features via AdaBoost algorithm,and finally combined these weighted weak classifiers to build a strong classifier with a high precision. The experimental results on comment data sets extracted from the popular Sina microblogs indicate that the selected eight features are effective for the method,and it has a high recognition rate in the identification of spam comments in microblog.","PeriodicalId":61778,"journal":{"name":"计算机应用","volume":"33 1","pages":"3563-3566"},"PeriodicalIF":0.0,"publicationDate":"2013-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69949496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Artificial bee colony algorithm inspired by particle swarm optimization and differential evolution 基于粒子群优化和差分进化的人工蜂群算法
Pub Date : 2013-12-17 DOI: 10.3724/SP.J.1087.2013.03571
Lin Jinhui, C.-Z. Zhong, Xu Dalin
Concerning the problem that Artificial Bee Colony(ABC) is good at exploring but lack of exploitation,two new solution search strategies named PSO-DE-PABC and PSO-DE-GABC were proposed based on Particle Swarm Optimization(PSO) and Differential Evolution(DE). PSO-DE-PABC generated new candidate position around the random particle to improve divergence. PSO-DE-GABC generated new candidate position around the global best solution to accelerate the convergence,and differential vectors were also used to increase the divergence. Besides,Dimension Factor(DF) was introduced to control the search rate of the algorithms. A new scout strategy considering current swarm state was used to replace the original random scout strategy to enhance the local search ability. Comparison with basic ABC,GABC(Gbestguided ABC) and ABC / best algorithm was given on 10 groups of standard benchmark function. The results show that PSO-DEGABC and PSO-DE-PABC have better convergence rate and accuracy.
针对人工蜂群(ABC)善于探索但缺乏开发的问题,提出了基于粒子群优化(PSO)和差分进化(DE)的PSO-DE- pabc和PSO-DE- gabc两种新的解搜索策略。PSO-DE-PABC在随机粒子周围生成新的候选位置以提高散度。PSO-DE-GABC围绕全局最优解生成新的候选位置以加速收敛,并使用微分向量增加散度。此外,还引入了维度因子(DF)来控制算法的搜索率。采用一种考虑当前群体状态的新侦察策略取代原有的随机侦察策略,增强了局部搜索能力。对10组标准基准函数与基本ABC、GABC(Gbestguided ABC)和ABC / best算法进行了比较。结果表明,PSO-DEGABC和PSO-DE-PABC具有更好的收敛速度和精度。
{"title":"Artificial bee colony algorithm inspired by particle swarm optimization and differential evolution","authors":"Lin Jinhui, C.-Z. Zhong, Xu Dalin","doi":"10.3724/SP.J.1087.2013.03571","DOIUrl":"https://doi.org/10.3724/SP.J.1087.2013.03571","url":null,"abstract":"Concerning the problem that Artificial Bee Colony(ABC) is good at exploring but lack of exploitation,two new solution search strategies named PSO-DE-PABC and PSO-DE-GABC were proposed based on Particle Swarm Optimization(PSO) and Differential Evolution(DE). PSO-DE-PABC generated new candidate position around the random particle to improve divergence. PSO-DE-GABC generated new candidate position around the global best solution to accelerate the convergence,and differential vectors were also used to increase the divergence. Besides,Dimension Factor(DF) was introduced to control the search rate of the algorithms. A new scout strategy considering current swarm state was used to replace the original random scout strategy to enhance the local search ability. Comparison with basic ABC,GABC(Gbestguided ABC) and ABC / best algorithm was given on 10 groups of standard benchmark function. The results show that PSO-DEGABC and PSO-DE-PABC have better convergence rate and accuracy.","PeriodicalId":61778,"journal":{"name":"计算机应用","volume":"33 1","pages":"3571-3575"},"PeriodicalIF":0.0,"publicationDate":"2013-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69949556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Path planning for multiple unmanned combat aerial vehicles based on improved artificial bee colony algorithm: Path planning for multiple unmanned combat aerial vehicles based on improved artificial bee colony algorithm 基于改进人工蜂群算法的多架作战无人机路径规划:基于改进人工蜂群算法的多架作战无人机路径规划
Pub Date : 2013-12-17 DOI: 10.3724/SP.J.1087.2013.03596
Lu Cao, Yinping Jia, An Zhang
{"title":"Path planning for multiple unmanned combat aerial vehicles based on improved artificial bee colony algorithm: Path planning for multiple unmanned combat aerial vehicles based on improved artificial bee colony algorithm","authors":"Lu Cao, Yinping Jia, An Zhang","doi":"10.3724/SP.J.1087.2013.03596","DOIUrl":"https://doi.org/10.3724/SP.J.1087.2013.03596","url":null,"abstract":"","PeriodicalId":61778,"journal":{"name":"计算机应用","volume":"33 1","pages":"3596-3599"},"PeriodicalIF":0.0,"publicationDate":"2013-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69949790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Multi-region image reconstruction algorithm: Multi-region image reconstruction algorithm 多区域图像重建算法:多区域图像重建算法
Pub Date : 2013-12-17 DOI: 10.3724/SP.J.1087.2013.03544
J. Wan, L. Ye
{"title":"Multi-region image reconstruction algorithm: Multi-region image reconstruction algorithm","authors":"J. Wan, L. Ye","doi":"10.3724/SP.J.1087.2013.03544","DOIUrl":"https://doi.org/10.3724/SP.J.1087.2013.03544","url":null,"abstract":"","PeriodicalId":61778,"journal":{"name":"计算机应用","volume":"33 1","pages":"3544-3547"},"PeriodicalIF":0.0,"publicationDate":"2013-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69949329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of almost optimal resilient Boolean functions via concatenation: Construction of almost optimal resilient Boolean functions via concatenation 通过连接构造几乎最优的弹性布尔函数:通过连接构造几乎最优的弹性布尔函数
Pub Date : 2013-12-17 DOI: 10.3724/SP.J.1087.2013.03503
H. Yuan, Xiaoyuan Yang
{"title":"Construction of almost optimal resilient Boolean functions via concatenation: Construction of almost optimal resilient Boolean functions via concatenation","authors":"H. Yuan, Xiaoyuan Yang","doi":"10.3724/SP.J.1087.2013.03503","DOIUrl":"https://doi.org/10.3724/SP.J.1087.2013.03503","url":null,"abstract":"","PeriodicalId":61778,"journal":{"name":"计算机应用","volume":"33 1","pages":"3503-3505"},"PeriodicalIF":0.0,"publicationDate":"2013-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69948856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iteration MapReduce framework for evolution algorithm: Iteration MapReduce framework for evolution algorithm 进化算法的迭代MapReduce框架:进化算法的迭代MapReduce框架
Pub Date : 2013-12-17 DOI: 10.3724/SP.J.1087.2013.03591
Weijian Jin, Chunzhi Wang
{"title":"Iteration MapReduce framework for evolution algorithm: Iteration MapReduce framework for evolution algorithm","authors":"Weijian Jin, Chunzhi Wang","doi":"10.3724/SP.J.1087.2013.03591","DOIUrl":"https://doi.org/10.3724/SP.J.1087.2013.03591","url":null,"abstract":"","PeriodicalId":61778,"journal":{"name":"计算机应用","volume":"33 1","pages":"3591-3595"},"PeriodicalIF":0.0,"publicationDate":"2013-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69949699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Three dimensional localization algorithm for wireless sensor networks based on projection and grid scan: Three dimensional localization algorithm for wireless sensor networks based on projection and grid scan 基于投影和网格扫描的无线传感器网络三维定位算法:基于投影和网格扫描的无线传感器网络三维定位算法
Pub Date : 2013-12-03 DOI: 10.3724/SP.J.1087.2013.02470
Jie Tang, Hong-Chen Huang
{"title":"Three dimensional localization algorithm for wireless sensor networks based on projection and grid scan: Three dimensional localization algorithm for wireless sensor networks based on projection and grid scan","authors":"Jie Tang, Hong-Chen Huang","doi":"10.3724/SP.J.1087.2013.02470","DOIUrl":"https://doi.org/10.3724/SP.J.1087.2013.02470","url":null,"abstract":"","PeriodicalId":61778,"journal":{"name":"计算机应用","volume":"33 1","pages":"2470-2473"},"PeriodicalIF":0.0,"publicationDate":"2013-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69941234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
计算机应用
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1