In the Tokamak discharge experiment, obtaining the largest possible null field region is a necessary condition for the smooth breakdown of the plasma, and adjusting the poloidal field coil current is key to achieving a better null field region. This paper, based on the Sino-Thai Tokamak cooperation project Thailand Tokamak-1 (TT-1) device, employs an exponentially decreasing Particle Swarm Optimization (PSO) algorithm to optimize the poloidal field coil current to create the desired null field region in the vacuum chamber area. First, a calculation model for the mutual inductance coefficient and the null field region is established according to the characteristics and magnetic structure of the TT-1 device, enabling the calculation of the null field region. Then, an optimization model for the poloidal field coil current is established, aiming to create a sufficiently large null field region (less than 10 Gauss) to facilitate breakdown. The optimization is carried out using both a typical linearly decreasing PSO algorithm and an improved PSO algorithm to determine the optimal poloidal field coil current. Compared to the unmodified PSO algorithm, the improved PSO algorithm reduces the root mean square error by 31.80%. The results show that the improved PSO algorithm is more suitable for the optimization of the poloidal field coil, has stronger optimization capabilities, and can effectively create the desired null field region, providing an important reference for the smooth breakdown of plasma in the TT-1 device.