首页 > 最新文献

2011 International Conference on Computer Vision最新文献

英文 中文
Illumination demultiplexing from a single image 从单个图像进行照明解复用
Pub Date : 2011-11-06 DOI: 10.1109/ICCV.2011.6126220
Christine Chen, D. Vaquero, M. Turk
A class of techniques in computer vision and graphics is based on capturing multiple images of a scene under different illumination conditions. These techniques explore variations in illumination from image to image to extract interesting information about the scene. However, their applicability to dynamic environments is limited due to the need for robust motion compensation algorithms. To overcome this issue, we propose a method to separate multiple illuminants from a single image. Given an image of a scene simultaneously illuminated by multiple light sources, our method generates individual images as if they had been illuminated by each of the light sources separately. To facilitate the illumination separation process, we encode each light source with a distinct sinusoidal pattern, strategically selected given the relative position of each light with respect to the camera, such that the observed sinusoids become independent of the scene geometry. The individual illuminants are then demultiplexed by analyzing local frequencies. We show applications of our approach in image-based relighting, photometric stereo, and multiflash imaging.
计算机视觉和图形学中的一类技术是基于在不同照明条件下捕获场景的多个图像。这些技术探索从图像到图像的照明变化,以提取有关场景的有趣信息。然而,由于需要鲁棒运动补偿算法,它们在动态环境中的适用性受到限制。为了克服这个问题,我们提出了一种从单幅图像中分离多个光源的方法。给定一个场景同时被多个光源照亮的图像,我们的方法生成单独的图像,就好像它们分别被每个光源照亮一样。为了方便照明分离过程,我们用不同的正弦模式编码每个光源,策略性地选择每个光源相对于相机的相对位置,这样观察到的正弦波就独立于场景几何形状。然后通过分析本地频率对单个光源进行解复用。我们展示了我们的方法在基于图像的重照明、光度立体和多闪光灯成像中的应用。
{"title":"Illumination demultiplexing from a single image","authors":"Christine Chen, D. Vaquero, M. Turk","doi":"10.1109/ICCV.2011.6126220","DOIUrl":"https://doi.org/10.1109/ICCV.2011.6126220","url":null,"abstract":"A class of techniques in computer vision and graphics is based on capturing multiple images of a scene under different illumination conditions. These techniques explore variations in illumination from image to image to extract interesting information about the scene. However, their applicability to dynamic environments is limited due to the need for robust motion compensation algorithms. To overcome this issue, we propose a method to separate multiple illuminants from a single image. Given an image of a scene simultaneously illuminated by multiple light sources, our method generates individual images as if they had been illuminated by each of the light sources separately. To facilitate the illumination separation process, we encode each light source with a distinct sinusoidal pattern, strategically selected given the relative position of each light with respect to the camera, such that the observed sinusoids become independent of the scene geometry. The individual illuminants are then demultiplexed by analyzing local frequencies. We show applications of our approach in image-based relighting, photometric stereo, and multiflash imaging.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"2 1","pages":"17-24"},"PeriodicalIF":0.0,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84217797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Sparse dictionary-based representation and recognition of action attributes 基于稀疏字典的动作属性表示与识别
Pub Date : 2011-11-06 DOI: 10.1109/ICCV.2011.6126307
Qiang Qiu, Zhuolin Jiang, R. Chellappa
We present an approach for dictionary learning of action attributes via information maximization. We unify the class distribution and appearance information into an objective function for learning a sparse dictionary of action attributes. The objective function maximizes the mutual information between what has been learned and what remains to be learned in terms of appearance information and class distribution for each dictionary item. We propose a Gaussian Process (GP) model for sparse representation to optimize the dictionary objective function. The sparse coding property allows a kernel with a compact support in GP to realize a very efficient dictionary learning process. Hence we can describe an action video by a set of compact and discriminative action attributes. More importantly, we can recognize modeled action categories in a sparse feature space, which can be generalized to unseen and unmodeled action categories. Experimental results demonstrate the effectiveness of our approach in action recognition applications.
提出了一种基于信息最大化的动作属性字典学习方法。我们将类分布和外观信息统一到一个目标函数中,用于学习稀疏的动作属性字典。目标函数在每个字典项的外观信息和类分布方面最大化了已经学习的内容和有待学习的内容之间的互信息。我们提出了一个高斯过程(GP)模型用于稀疏表示,以优化字典目标函数。稀疏编码的特性使得在GP中具有紧凑支持的内核能够实现非常高效的字典学习过程。因此,我们可以用一组紧凑和判别的动作属性来描述动作视频。更重要的是,我们可以在稀疏的特征空间中识别建模的动作类别,这可以推广到未见过和未建模的动作类别。实验结果证明了该方法在动作识别应用中的有效性。
{"title":"Sparse dictionary-based representation and recognition of action attributes","authors":"Qiang Qiu, Zhuolin Jiang, R. Chellappa","doi":"10.1109/ICCV.2011.6126307","DOIUrl":"https://doi.org/10.1109/ICCV.2011.6126307","url":null,"abstract":"We present an approach for dictionary learning of action attributes via information maximization. We unify the class distribution and appearance information into an objective function for learning a sparse dictionary of action attributes. The objective function maximizes the mutual information between what has been learned and what remains to be learned in terms of appearance information and class distribution for each dictionary item. We propose a Gaussian Process (GP) model for sparse representation to optimize the dictionary objective function. The sparse coding property allows a kernel with a compact support in GP to realize a very efficient dictionary learning process. Hence we can describe an action video by a set of compact and discriminative action attributes. More importantly, we can recognize modeled action categories in a sparse feature space, which can be generalized to unseen and unmodeled action categories. Experimental results demonstrate the effectiveness of our approach in action recognition applications.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"58 1","pages":"707-714"},"PeriodicalIF":0.0,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83947116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 161
Contour Code: Robust and efficient multispectral palmprint encoding for human recognition 轮廓码:用于人类识别的鲁棒和高效的多光谱掌纹编码
Pub Date : 2011-11-06 DOI: 10.1109/ICCV.2011.6126463
Zohaib Khan, A. Mian, Yiqun Hu
We propose ‘Contour Code’, a novel representation and binary hash table encoding for multispectral palmprint recognition. We first present a reliable technique for the extraction of a region of interest (ROI) from palm images acquired with non-contact sensors. The Contour Code representation is then derived from the Nonsubsampled Contourlet Transform. A uniscale pyramidal filter is convolved with the ROI followed by the application of a directional filter bank. The dominant directional subband establishes the orientation at each pixel and the index corresponding to this subband is encoded in the Contour Code representation. Unlike existing representations which extract orientation features directly from the palm images, the Contour Code uses a two stage filtering to extract robust orientation features. The Contour Code is binarized into an efficient hash table structure that only requires indexing and summation operations for simultaneous one-to-many matching with an embedded score level fusion of multiple bands. We quantitatively evaluate the accuracy of the ROI extraction by comparison with a manually produced ground truth. Multispectral palmprint verification results on the PolyU and CASIA databases show that the Contour Code achieves an EER reduction upto 50%, compared to state-of-the-art methods.
我们提出了“轮廓码”,这是一种用于多光谱掌纹识别的新颖表示和二进制哈希表编码。我们首先提出了一种可靠的技术,用于从非接触式传感器获取的手掌图像中提取感兴趣区域(ROI)。然后从非下采样Contourlet变换中得到轮廓码表示。将一个非标锥体滤波器与ROI进行卷积,然后应用一个方向滤波器组。主导方向子带在每个像素处建立方向,对应于该子带的索引在轮廓码表示中编码。与直接从手掌图像中提取方向特征的现有表示不同,轮廓代码使用两阶段滤波来提取稳健的方向特征。轮廓码被二值化成一个高效的哈希表结构,只需要索引和求和操作,即可同时进行一对多匹配,并嵌入多个频带的分数级融合。我们定量地评估ROI提取的准确性,通过与人工产生的地面真值进行比较。在理大和CASIA数据库的多光谱掌纹验证结果显示,与最先进的方法相比,轮廓码的EER降低了50%。
{"title":"Contour Code: Robust and efficient multispectral palmprint encoding for human recognition","authors":"Zohaib Khan, A. Mian, Yiqun Hu","doi":"10.1109/ICCV.2011.6126463","DOIUrl":"https://doi.org/10.1109/ICCV.2011.6126463","url":null,"abstract":"We propose ‘Contour Code’, a novel representation and binary hash table encoding for multispectral palmprint recognition. We first present a reliable technique for the extraction of a region of interest (ROI) from palm images acquired with non-contact sensors. The Contour Code representation is then derived from the Nonsubsampled Contourlet Transform. A uniscale pyramidal filter is convolved with the ROI followed by the application of a directional filter bank. The dominant directional subband establishes the orientation at each pixel and the index corresponding to this subband is encoded in the Contour Code representation. Unlike existing representations which extract orientation features directly from the palm images, the Contour Code uses a two stage filtering to extract robust orientation features. The Contour Code is binarized into an efficient hash table structure that only requires indexing and summation operations for simultaneous one-to-many matching with an embedded score level fusion of multiple bands. We quantitatively evaluate the accuracy of the ROI extraction by comparison with a manually produced ground truth. Multispectral palmprint verification results on the PolyU and CASIA databases show that the Contour Code achieves an EER reduction upto 50%, compared to state-of-the-art methods.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"42 1","pages":"1935-1942"},"PeriodicalIF":0.0,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90672924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 75
Learning to cluster using high order graphical models with latent variables 学习使用具有潜在变量的高阶图形模型聚类
Pub Date : 2011-11-06 DOI: 10.1109/ICCV.2011.6126227
N. Komodakis
This paper proposes a very general max-margin learning framework for distance-based clustering. To this end, it formulates clustering as a high order energy minimization problem with latent variables, and applies a dual decomposition approach for training this model. The resulting framework allows learning a very broad class of distance functions, permits an automatic determination of the number of clusters during testing, and is also very efficient. As an additional contribution, we show how our method can be generalized to handle the training of a very broad class of important models in computer vision: arbitrary high-order latent CRFs. Experimental results verify its effectiveness.
本文提出了一个非常通用的基于距离聚类的最大边际学习框架。为此,本文将聚类问题表述为具有潜在变量的高阶能量最小化问题,并采用对偶分解方法对该模型进行训练。生成的框架允许学习非常广泛的距离函数类,允许在测试期间自动确定簇的数量,并且非常高效。作为额外的贡献,我们展示了如何将我们的方法推广到处理计算机视觉中非常广泛的一类重要模型的训练:任意高阶潜在crf。实验结果验证了该方法的有效性。
{"title":"Learning to cluster using high order graphical models with latent variables","authors":"N. Komodakis","doi":"10.1109/ICCV.2011.6126227","DOIUrl":"https://doi.org/10.1109/ICCV.2011.6126227","url":null,"abstract":"This paper proposes a very general max-margin learning framework for distance-based clustering. To this end, it formulates clustering as a high order energy minimization problem with latent variables, and applies a dual decomposition approach for training this model. The resulting framework allows learning a very broad class of distance functions, permits an automatic determination of the number of clusters during testing, and is also very efficient. As an additional contribution, we show how our method can be generalized to handle the training of a very broad class of important models in computer vision: arbitrary high-order latent CRFs. Experimental results verify its effectiveness.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"31 1","pages":"73-80"},"PeriodicalIF":0.0,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80649971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Large-scale image annotation using visual synset 基于视觉同义词集的大规模图像标注
Pub Date : 2011-11-06 DOI: 10.1109/ICCV.2011.6126295
David Tsai, Yushi Jing, Yi Liu, H. Rowley, Sergey Ioffe, James M. Rehg
We address the problem of large-scale annotation of web images. Our approach is based on the concept of visual synset, which is an organization of images which are visually-similar and semantically-related. Each visual synset represents a single prototypical visual concept, and has an associated set of weighted annotations. Linear SVM's are utilized to predict the visual synset membership for unseen image examples, and a weighted voting rule is used to construct a ranked list of predicted annotations from a set of visual synsets. We demonstrate that visual synsets lead to better performance than standard methods on a new annotation database containing more than 200 million im- ages and 300 thousand annotations, which is the largest ever reported
我们解决了网络图像的大规模标注问题。我们的方法是基于视觉同义词集的概念,它是视觉相似和语义相关的图像的组织。每个视觉同义词集代表一个单一的原型视觉概念,并具有一组相关的加权注释。利用线性支持向量机预测未见图像样本的视觉同义词集隶属度,并使用加权投票规则从一组视觉同义词集构建预测注释的排序列表。我们证明了在包含超过2亿个图像和30万个注释的新注释数据库上,视觉同义词集比标准方法具有更好的性能,这是迄今为止报道的最大的注释数据库
{"title":"Large-scale image annotation using visual synset","authors":"David Tsai, Yushi Jing, Yi Liu, H. Rowley, Sergey Ioffe, James M. Rehg","doi":"10.1109/ICCV.2011.6126295","DOIUrl":"https://doi.org/10.1109/ICCV.2011.6126295","url":null,"abstract":"We address the problem of large-scale annotation of web images. Our approach is based on the concept of visual synset, which is an organization of images which are visually-similar and semantically-related. Each visual synset represents a single prototypical visual concept, and has an associated set of weighted annotations. Linear SVM's are utilized to predict the visual synset membership for unseen image examples, and a weighted voting rule is used to construct a ranked list of predicted annotations from a set of visual synsets. We demonstrate that visual synsets lead to better performance than standard methods on a new annotation database containing more than 200 million im- ages and 300 thousand annotations, which is the largest ever reported","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"27 1","pages":"611-618"},"PeriodicalIF":0.0,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78037490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 66
Locally rigid globally non-rigid surface registration 局部刚性全局非刚性曲面配准
Pub Date : 2011-11-06 DOI: 10.1109/ICCV.2011.6126411
Kent Fujiwara, K. Nishino, J. Takamatsu, Bo Zheng, K. Ikeuchi
We present a novel non-rigid surface registration method that achieves high accuracy and matches characteristic features without manual intervention. The key insight is to consider the entire shape as a collection of local structures that individually undergo rigid transformations to collectively deform the global structure. We realize this locally rigid but globally non-rigid surface registration with a newly derived dual-grid Free-form Deformation (FFD) framework. We first represent the source and target shapes with their signed distance fields (SDF). We then superimpose a sampling grid onto a conventional FFD grid that is dual to the control points. Each control point is then iteratively translated by a rigid transformation that minimizes the difference between two SDFs within the corresponding sampling region. The translated control points then interpolate the embedding space within the FFD grid and determine the overall deformation. The experimental results clearly demonstrate that our method is capable of overcoming the difficulty of preserving and matching local features.
提出了一种新的非刚性曲面配准方法,该方法可以在不需要人工干预的情况下实现高精度和特征匹配。关键的洞察力是将整个形状视为局部结构的集合,这些局部结构单独经历刚性转换以集体变形全局结构。我们利用新导出的双网格自由变形(FFD)框架实现了这种局部刚性而全局非刚性的曲面配准。我们首先用它们的符号距离域(SDF)表示源和目标形状。然后,我们将采样网格叠加到传统的FFD网格上,该网格与控制点对偶。然后,每个控制点都通过一个严格的转换来迭代地转换,该转换将相应采样区域内两个sdf之间的差异最小化。平移后的控制点然后在FFD网格内插值嵌入空间并确定整体变形。实验结果清楚地表明,我们的方法能够克服局部特征的保留和匹配困难。
{"title":"Locally rigid globally non-rigid surface registration","authors":"Kent Fujiwara, K. Nishino, J. Takamatsu, Bo Zheng, K. Ikeuchi","doi":"10.1109/ICCV.2011.6126411","DOIUrl":"https://doi.org/10.1109/ICCV.2011.6126411","url":null,"abstract":"We present a novel non-rigid surface registration method that achieves high accuracy and matches characteristic features without manual intervention. The key insight is to consider the entire shape as a collection of local structures that individually undergo rigid transformations to collectively deform the global structure. We realize this locally rigid but globally non-rigid surface registration with a newly derived dual-grid Free-form Deformation (FFD) framework. We first represent the source and target shapes with their signed distance fields (SDF). We then superimpose a sampling grid onto a conventional FFD grid that is dual to the control points. Each control point is then iteratively translated by a rigid transformation that minimizes the difference between two SDFs within the corresponding sampling region. The translated control points then interpolate the embedding space within the FFD grid and determine the overall deformation. The experimental results clearly demonstrate that our method is capable of overcoming the difficulty of preserving and matching local features.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"100 1","pages":"1527-1534"},"PeriodicalIF":0.0,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84980846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 39
BiCoS: A Bi-level co-segmentation method for image classification BiCoS:一种用于图像分类的双水平共分割方法
Pub Date : 2011-11-06 DOI: 10.1109/ICCV.2011.6126546
Yuning Chai, V. Lempitsky, Andrew Zisserman
The objective of this paper is the unsupervised segmentation of image training sets into foreground and background in order to improve image classification performance. To this end we introduce a new scalable, alternation-based algorithm for co-segmentation, BiCoS, which is simpler than many of its predecessors, and yet has superior performance on standard benchmark image datasets.
本文的目标是对图像训练集进行前景和背景的无监督分割,以提高图像分类性能。为此,我们引入了一种新的可扩展的,基于交替的共分割算法,BiCoS,它比它的许多前辈更简单,但在标准基准图像数据集上具有优越的性能。
{"title":"BiCoS: A Bi-level co-segmentation method for image classification","authors":"Yuning Chai, V. Lempitsky, Andrew Zisserman","doi":"10.1109/ICCV.2011.6126546","DOIUrl":"https://doi.org/10.1109/ICCV.2011.6126546","url":null,"abstract":"The objective of this paper is the unsupervised segmentation of image training sets into foreground and background in order to improve image classification performance. To this end we introduce a new scalable, alternation-based algorithm for co-segmentation, BiCoS, which is simpler than many of its predecessors, and yet has superior performance on standard benchmark image datasets.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"14 1","pages":"2579-2586"},"PeriodicalIF":0.0,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88670474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 201
Diffusion runs low on persistence fast 扩散在持久性上运行得很快
Pub Date : 2011-11-06 DOI: 10.1109/ICCV.2011.6126271
Chao Chen, H. Edelsbrunner
Interpreting an image as a function on a compact subset of the Euclidean plane, we get its scale-space by diffusion, spreading the image over the entire plane. This generates a 1-parameter family of functions alternatively defined as convolutions with a progressively wider Gaussian kernel. We prove that the corresponding 1-parameter family of persistence diagrams have norms that go rapidly to zero as time goes to infinity. This result rationalizes experimental observations about scale-space. We hope this will lead to targeted improvements of related computer vision methods.
将图像解释为欧几里得平面紧子集上的函数,我们通过扩散得到它的尺度空间,将图像扩展到整个平面上。这产生了一个1参数的函数族,或者定义为具有逐渐变宽的高斯核的卷积。我们证明了相应的1参数持久性图族具有随着时间趋于无穷而迅速趋近于零的范数。这一结果为尺度空间的实验观察提供了理论依据。我们希望这将导致相关计算机视觉方法的有针对性的改进。
{"title":"Diffusion runs low on persistence fast","authors":"Chao Chen, H. Edelsbrunner","doi":"10.1109/ICCV.2011.6126271","DOIUrl":"https://doi.org/10.1109/ICCV.2011.6126271","url":null,"abstract":"Interpreting an image as a function on a compact subset of the Euclidean plane, we get its scale-space by diffusion, spreading the image over the entire plane. This generates a 1-parameter family of functions alternatively defined as convolutions with a progressively wider Gaussian kernel. We prove that the corresponding 1-parameter family of persistence diagrams have norms that go rapidly to zero as time goes to infinity. This result rationalizes experimental observations about scale-space. We hope this will lead to targeted improvements of related computer vision methods.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"106 1","pages":"423-430"},"PeriodicalIF":0.0,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76107376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 31
Tracking multiple people under global appearance constraints 在全局外观约束下跟踪多个人
Pub Date : 2011-11-06 DOI: 10.1109/ICCV.2011.6126235
Horesh Ben Shitrit, J. Berclaz, F. Fleuret, P. Fua
In this paper, we show that tracking multiple people whose paths may intersect can be formulated as a convex global optimization problem. Our proposed framework is designed to exploit image appearance cues to prevent identity switches. Our method is effective even when such cues are only available at distant time intervals. This is unlike many current approaches that depend on appearance being exploitable from frame to frame. We validate our approach on three multi-camera sport and pedestrian datasets that contain long and complex sequences. Our algorithm perseveres identities better than state-of-the-art algorithms while keeping similar MOTA scores.
在本文中,我们证明了跟踪路径可能相交的多个人可以表述为一个凸全局优化问题。我们提出的框架旨在利用图像外观线索来防止身份转换。我们的方法是有效的,即使这些线索只在遥远的时间间隔可用。这不同于当前许多依赖于从一帧到另一帧可利用的外观的方法。我们在三个包含长而复杂序列的多相机运动和行人数据集上验证了我们的方法。我们的算法比最先进的算法更好地保留身份,同时保持相似的MOTA分数。
{"title":"Tracking multiple people under global appearance constraints","authors":"Horesh Ben Shitrit, J. Berclaz, F. Fleuret, P. Fua","doi":"10.1109/ICCV.2011.6126235","DOIUrl":"https://doi.org/10.1109/ICCV.2011.6126235","url":null,"abstract":"In this paper, we show that tracking multiple people whose paths may intersect can be formulated as a convex global optimization problem. Our proposed framework is designed to exploit image appearance cues to prevent identity switches. Our method is effective even when such cues are only available at distant time intervals. This is unlike many current approaches that depend on appearance being exploitable from frame to frame. We validate our approach on three multi-camera sport and pedestrian datasets that contain long and complex sequences. Our algorithm perseveres identities better than state-of-the-art algorithms while keeping similar MOTA scores.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"79 1","pages":"137-144"},"PeriodicalIF":0.0,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75385237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 258
Delta-Dual Hierarchical Dirichlet Processes: A pragmatic abnormal behaviour detector Delta-Dual分层狄利克雷过程:一种实用的异常行为检测器
Pub Date : 2011-11-06 DOI: 10.1109/ICCV.2011.6126497
T. Haines, T. Xiang
In the security domain a key problem is identifying rare behaviours of interest. Training examples for these behaviours may or may not exist, and if they do exist there will be few examples, quite probably one. We present a novel weakly supervised algorithm that can detect behaviours that either have never before been seen or for which there are few examples. Global context is modelled, allowing the detection of abnormal behaviours that in isolation appear normal. Pragmatic aspects are considered, such that no parameter tuning is required and real time performance is achieved.
在安全领域,一个关键问题是识别感兴趣的罕见行为。这些行为的训练例子可能存在,也可能不存在,即使存在,也很少有例子,很可能只有一个。我们提出了一种新的弱监督算法,可以检测以前从未见过或很少有例子的行为。对全局上下文进行建模,从而可以检测到孤立出现的正常异常行为。考虑了实用方面,因此不需要参数调优并实现实时性能。
{"title":"Delta-Dual Hierarchical Dirichlet Processes: A pragmatic abnormal behaviour detector","authors":"T. Haines, T. Xiang","doi":"10.1109/ICCV.2011.6126497","DOIUrl":"https://doi.org/10.1109/ICCV.2011.6126497","url":null,"abstract":"In the security domain a key problem is identifying rare behaviours of interest. Training examples for these behaviours may or may not exist, and if they do exist there will be few examples, quite probably one. We present a novel weakly supervised algorithm that can detect behaviours that either have never before been seen or for which there are few examples. Global context is modelled, allowing the detection of abnormal behaviours that in isolation appear normal. Pragmatic aspects are considered, such that no parameter tuning is required and real time performance is achieved.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"1 1","pages":"2198-2205"},"PeriodicalIF":0.0,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91389644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
期刊
2011 International Conference on Computer Vision
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1