{"title":"Integrity of SBAS before Reception of Message Type 28","authors":"Takeyasu Sakai","doi":"10.5266/ipntj.14.1","DOIUrl":"https://doi.org/10.5266/ipntj.14.1","url":null,"abstract":"","PeriodicalId":65773,"journal":{"name":"导航定位与授时","volume":"2016 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86517873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Time Correction of Video by GNSS Using Reciprocating Motion","authors":"Yoshiyuki Yamamoto","doi":"10.5266/ipntj.14.15","DOIUrl":"https://doi.org/10.5266/ipntj.14.15","url":null,"abstract":"","PeriodicalId":65773,"journal":{"name":"导航定位与授时","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76811041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Protection Level Computation using Constraints on Bias Vector","authors":"Yuki Sato, R. Hirokawa, M. Higuchi, A. Taira","doi":"10.5266/ipntj.13.1","DOIUrl":"https://doi.org/10.5266/ipntj.13.1","url":null,"abstract":"","PeriodicalId":65773,"journal":{"name":"导航定位与授时","volume":"61 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88139497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
あらまし 衛星航法システムに対する補強情報を送信する補強システムとして,静止衛星を使用する SBAS(Satellite-Based Augmentation System)が標準規格となっている.SBAS の信号は GPS と同一の形式であり,GPS と同様に測位衛星として利用できる. 日本の SBAS である MSAS は過去にこのために必要なメッセージを送信して測距機能を提供していた時期があるが,現在は提供して いない.一方,MSAS の静止衛星は 2020 年 4 月に更新されており,信号生成方式が変更されていることから,測距機能の提供を再開 した場合にはその性能に変化があるものと思われる.静止衛星の更新前後の MSAS について測距精度を評価したところ,現行の MSASでは以前よりも改善されており,GPSと同等であることがわかった. Abstract SBAS (Satellite-Based Augmentation System) is the standard system which augments GNSS using geostationary satellites. The structure of SBAS signal is same with GPS and this means the SBAS satellites have capability to work as additional ranging satellites like GPS. Japanese SBAS called MSAS once provided messages for this ranging function, but nowadays does not. Recently MSAS has updated its geostationary satellite in April 2020, and this likely means the ranging accuracy also has some difference due to change in the signal generation payload if MSAS provides the ranging function again. The authors have evaluated the ranging accuracy of the MSAS signal before and after the replacement of its geostationary satellite and confirm an improvement over the past to the same level with GPS. キーワード SBAS,MSAS,測距精度 Keyword SBAS, MSAS, ranging accuracy
作为向卫星导航系统发送增强信息的增强系统,SBAS(satelly - based Augmentation)使用静止卫星System)为标准规格,SBAS的信号形式与GPS相同,可与GPS一样作为定位卫星使用。日本的SBAS——MSAS过去曾为此提供过发送必要的消息和测距功能,但现在已不再提供。另一方面,MSAS的静止卫星于2020年4月进行了更新,由于信号生成方式发生了变化,所以如果恢复提供测距功能,其性能应该会发生变化。对静止卫星更新前后的MSAS进行测距精度评估后发现,现行MSAS比以前有所改善,与GPS相同。(satelly - based Augmentation System) is the standard System which augments GNSS using geostationarysatellites. The structure of SBAS signal is same with GPS and this means The SBAS satellites havecapability to work as additional ranging satellites like GPS. Japanese SBAS called MSAS onceprovided messages for this ranging function,but nowadays does not. Recently MSAS has updated its geostationary satellite in April 2020,and this likely means the ranging accuracy also has some difference due to change in the signalgeneration payload if MSAS provides the ranging function again. the authors have evaluated theranging accuracy of the MSAS signal before and after the replacement of its geostationary satelliteand confirm an improvement over the past to the same level with GPS.关键词SBAS,MSAS,测距精度KeywordSBAS, MSAS, ranging accuracy
{"title":"Ranging Accuracy of MSAS Signal","authors":"T. Sakai, Mitsunori Kitamura","doi":"10.5266/ipntj.12.1","DOIUrl":"https://doi.org/10.5266/ipntj.12.1","url":null,"abstract":"あらまし 衛星航法システムに対する補強情報を送信する補強システムとして,静止衛星を使用する SBAS(Satellite-Based Augmentation System)が標準規格となっている.SBAS の信号は GPS と同一の形式であり,GPS と同様に測位衛星として利用できる. 日本の SBAS である MSAS は過去にこのために必要なメッセージを送信して測距機能を提供していた時期があるが,現在は提供して いない.一方,MSAS の静止衛星は 2020 年 4 月に更新されており,信号生成方式が変更されていることから,測距機能の提供を再開 した場合にはその性能に変化があるものと思われる.静止衛星の更新前後の MSAS について測距精度を評価したところ,現行の MSASでは以前よりも改善されており,GPSと同等であることがわかった. Abstract SBAS (Satellite-Based Augmentation System) is the standard system which augments GNSS using geostationary satellites. The structure of SBAS signal is same with GPS and this means the SBAS satellites have capability to work as additional ranging satellites like GPS. Japanese SBAS called MSAS once provided messages for this ranging function, but nowadays does not. Recently MSAS has updated its geostationary satellite in April 2020, and this likely means the ranging accuracy also has some difference due to change in the signal generation payload if MSAS provides the ranging function again. The authors have evaluated the ranging accuracy of the MSAS signal before and after the replacement of its geostationary satellite and confirm an improvement over the past to the same level with GPS. キーワード SBAS,MSAS,測距精度 Keyword SBAS, MSAS, ranging accuracy","PeriodicalId":65773,"journal":{"name":"导航定位与授时","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82284862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
あらまし 上部が覆われており,かつ側面は開けている半屋外空間は,GPS による測位精度は低下するものの一方である程度の GPS 信号は受信できるため,既存の屋内外シームレス手法を適用することが難しい.そのような特殊な環境での滞在を安定的に検知するた めに,高さ,奥行き及び側面の開放方向の 3 つのパラメータで構成する半屋外空間の空間特性から滞在検知に必要となる衛星を選定 する手法を設計した.さらに,滞在検知のための明確な閾値を設定することは難しいため,選定した衛星の信号対雑音比の値をもとに, ファジィ推論を利用して滞在を判定するための判定フローを設計した.この手法を利用することにより,3 か所の評価実験箇所において 89.4%の確率で上部を覆われた半屋外空間の滞在を検知できることを確認した. Abstract The semi-outdoor space covered with the upper part and open on the side is difficult to apply the existing indoor-outdoor seamless methods because the GPS positioning accuracy is reduced but some degree of GPS signal can be received. In order to detect a stay in such a special environment, we designed a method to select satellites for stay detection based on the spatial characteristics of the semioutdoor space, which consists of three parameters: height, depth and side opening direction. Furthermore, since it is difficult to set a specific threshold for stay detection, we designed a decision flow to determine the stay by using fuzzy inference based on the values of signal-to-noise ratio of the selected satellites. Using this method, we confirmed that we could detect the stay in the semi-outdoor space covered by the upper part of the space with 89.4% probability at three evaluation experimental locations. キーワード GPS, 信号対雑音比, ファジィ推論,半屋外空間 Keyword GPS, Signal-to-Noise Ratio, fuzzy inference, semi-outdoor space
大致上是上部被覆盖,侧面敞开的半室外空间,虽然GPS的定位精度有所下降,但还是有一定程度的GPS。由于能够接收信号,所以很难适用现有的室内外无缝方法。为了稳定检测在这种特殊环境中的滞留情况,需要在高度、进深及侧面开放方向等3个方面进行调整。从由两个参数构成的半室外空间的空间特性中,选定逗留检测所需的卫星。另外,由于很难设定明确的阈值来进行停留检测,因此可以根据选定卫星的信噪比的值。设计了利用模糊推理判定停留的判定流程。通过使用该方法,在3个评估实验区域我们确认了89.4%的概率可以检测到在上半部分被覆盖的半室外空间停留的情况。and open on the side is difficult to apply the existing indoor-outdoor seamless methods because theGPS positioning accuracy is reduced but some degree of GPS signal can be received. In order todetect a stay in such a特殊环境,we designed a method to select satellites for stay detection based on the spatial characteristics ofthe semioutdoor space, which consists of three parameters:height, depth and side opening direction. Furthermore,since it is difficult to set a specific threshold for stay detection,we designed a decision flow to determine the stay by using fuzzy inference based on the values ofsignal-to-noise ratio of the selected satellites. Using this method,we confirmed that we could detect the stay in the semi-outdoor space covered by the upper part ofthe space with 89.4% probability at three evaluation experimental locations.关键词GPS,信噪比,模糊推理,半室外空间Keyword GPS, Signal-to-Noise Ratio, fuzzy inference, semi-outdoor space
{"title":"Design of Stay Detection Method for Semi-Outdoor Spaces Covered with Topsides Based on GPS Signal-to-Noise Ratio Using Spatial Characteristics and Fuzzy Inference","authors":"K. Tabata, M. Nakajima, N. Kohtake","doi":"10.5266/IPNTJ.11.1","DOIUrl":"https://doi.org/10.5266/IPNTJ.11.1","url":null,"abstract":"あらまし 上部が覆われており,かつ側面は開けている半屋外空間は,GPS による測位精度は低下するものの一方である程度の GPS 信号は受信できるため,既存の屋内外シームレス手法を適用することが難しい.そのような特殊な環境での滞在を安定的に検知するた めに,高さ,奥行き及び側面の開放方向の 3 つのパラメータで構成する半屋外空間の空間特性から滞在検知に必要となる衛星を選定 する手法を設計した.さらに,滞在検知のための明確な閾値を設定することは難しいため,選定した衛星の信号対雑音比の値をもとに, ファジィ推論を利用して滞在を判定するための判定フローを設計した.この手法を利用することにより,3 か所の評価実験箇所において 89.4%の確率で上部を覆われた半屋外空間の滞在を検知できることを確認した. Abstract The semi-outdoor space covered with the upper part and open on the side is difficult to apply the existing indoor-outdoor seamless methods because the GPS positioning accuracy is reduced but some degree of GPS signal can be received. In order to detect a stay in such a special environment, we designed a method to select satellites for stay detection based on the spatial characteristics of the semioutdoor space, which consists of three parameters: height, depth and side opening direction. Furthermore, since it is difficult to set a specific threshold for stay detection, we designed a decision flow to determine the stay by using fuzzy inference based on the values of signal-to-noise ratio of the selected satellites. Using this method, we confirmed that we could detect the stay in the semi-outdoor space covered by the upper part of the space with 89.4% probability at three evaluation experimental locations. キーワード GPS, 信号対雑音比, ファジィ推論,半屋外空間 Keyword GPS, Signal-to-Noise Ratio, fuzzy inference, semi-outdoor space","PeriodicalId":65773,"journal":{"name":"导航定位与授时","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84504848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
あらまし 衛星測位の RTK-GNSSなどの高精度測位における FIX 解の算出状況は,実施地点における衛星配置,衛星数,観 測情報の品質と測位アルゴリズムに依存する.衛星配置は航法メッセージにより推定することが可能であり,可視衛星数と観 測情報の品質は,周辺の建物などによる信号の遮蔽,反射およびアンテナ・受信機の性能を考慮し,シミュレーションにより 推定することが可能である.本研究では衛星測位における観測情報の品質を,3D建物モデルを用いたシミュレーションにより 予測し,実際の観測情報との比較を行った.また,高精度測位を実施した結果と比較し,シミュレーションによる RTK-GNSS 測位の FIX状況予測の可能性を検討した. Abstract The Fixing of RTK-GNSS satellite positioning depends on the satellites' position, number of visible satellites, signal quality and positioning algorithm. The satellites' position can be calculated from the navigation messages, while the number of visible satellites and signal quality can be predicted using simulations taking into consideration the multipath from surrounding buildings, antenna and receiver performance. In this paper, the signal quality is predicted using simulations with 3D buildings and compared with measured data. Furthermore, simulated and measured RTK-GNSS positioning from signal quality are compared to evaluate the possibility of using 3D buildings to predict the Fixing status of RTK-GNSS Positioning. The evaluation gives reasonable comparable results.
卫星定位的RTK-GNSS等高精度定位中FIX解的计算情况主要取决于实施地点的卫星配置、卫星数量、观测信息的质量和定位算法。卫星布局可通过导航消息进行估计,可视卫星数量和观测信息质量可通过模拟计算,考虑到周围建筑物等对信号的遮挡、反射和天线接收机的性能可以估计。本研究利用3d建筑物模型模拟预测了卫星定位观测信息的质量,并与实际观测信息进行了比较,还与高精度定位结果进行了比较,并与模拟进行了比较。研究了RTK-GNSS定位FIX状况预测的可能性。Abstract The Fixing of RTK-GNSS satellite positioning depends on Thesatellites' position, number of visible satellites,signal quality and positioning algorithm. The satellites' position can be calculated from Thenavigation messages,while the number of visible satellites and signal quality can be predicted using simulations takinginto consideration the multipath from surrounding buildings,antenna and receiver performance. In this paper,the signal quality is predicted using simulations with 3d buildings and compared with measured data。furthermore,simulated and measured RTK-GNSS positioning from signal quality are compared to evaluate thepossibility of using 3d buildings to predict the Fixing status of RTK-GNSS Positioning. theevaluation gives reasonable comparable results。
{"title":"Prediction of Fixing of RTK-GNSS Positioning in Multipath Environment Using Radiowave Propagation Simulation","authors":"R. Furukawa, N. Kubo","doi":"10.5266/IPNTJ.10.13","DOIUrl":"https://doi.org/10.5266/IPNTJ.10.13","url":null,"abstract":"あらまし 衛星測位の RTK-GNSSなどの高精度測位における FIX 解の算出状況は,実施地点における衛星配置,衛星数,観 測情報の品質と測位アルゴリズムに依存する.衛星配置は航法メッセージにより推定することが可能であり,可視衛星数と観 測情報の品質は,周辺の建物などによる信号の遮蔽,反射およびアンテナ・受信機の性能を考慮し,シミュレーションにより 推定することが可能である.本研究では衛星測位における観測情報の品質を,3D建物モデルを用いたシミュレーションにより 予測し,実際の観測情報との比較を行った.また,高精度測位を実施した結果と比較し,シミュレーションによる RTK-GNSS 測位の FIX状況予測の可能性を検討した. Abstract The Fixing of RTK-GNSS satellite positioning depends on the satellites' position, number of visible satellites, signal quality and positioning algorithm. The satellites' position can be calculated from the navigation messages, while the number of visible satellites and signal quality can be predicted using simulations taking into consideration the multipath from surrounding buildings, antenna and receiver performance. In this paper, the signal quality is predicted using simulations with 3D buildings and compared with measured data. Furthermore, simulated and measured RTK-GNSS positioning from signal quality are compared to evaluate the possibility of using 3D buildings to predict the Fixing status of RTK-GNSS Positioning. The evaluation gives reasonable comparable results.","PeriodicalId":65773,"journal":{"name":"导航定位与授时","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90792703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Takeru Kadokura, Yuusuke Kawakita, S. Ioroi, Hiroshi Tanaka
あらまし 音波を用いた測位は高い精度が実現されているものの,測位のための音源として超音波やスペクトル拡散した音な ど,特定の音が用いられている.本論文では,実際の利用環境である室内居住空間における各種音源の発生位置を明らかにする ことを目的とし,TDOA(Time Difference Of Arrival:到達時間差)法と CSP(Cross-power Spectrum Phase analysis:白色化相互相 関)法を用いた音源を問わない測位法を提案し,実験的に検証する.音波を受信する各受信点から参照点とする受信点を定め, その点と各受信点での音波の受信時間差を CSP 法で求める.その検出結果と設定している受信点の位置から音源の位置を算出 する.実際の利用範囲を考慮した広さの室内環境内(約 5m×4m の範囲)の天井に 30個の受信点を設定した実験系を構築した. まず,参照点を決定する方法を検討し,実験によって確認した.それに基づいて,実際への適用を考慮し,電子レンジの動作音, アラーム音源である火災報知器,移動履歴のモニタ,移動制御の観点からドローンの飛行音を取り上げ,測位実験を行った.各 音源の特性によって測位精度は異なるものの,数 cm から数十 cmの範囲内の実利用が可能と考えられる測位精度が得られた結 果を示す. Abstract Although positioning using sound waves has achieved high accuracy, specific sounds such as ultrasonic waves and spectrumspread sounds are used as sound sources for positioning. The purpose of this paper is to clarify the location of various sound sources in an indoor living space, which is the actual usage environment. We propose a positioning method using TDOA (Time Difference Of Arrival) and CSP (Cross-power Spectrum Phase analysis) method and verify it experimentally. A reference point is determined from the reception points that receives a sound wave, and a difference in reception time of the sound wave between that reference point and each reception point is obtained by the CSP method. The position of the sound source is calculated from the detection result of the reception time difference and the position of the set reception points. An experimental system was constructed in which 30 reception points were set at a ceiling in an indoor environment (in the range of about 5m x 4m) with an actual usage range. In the beginning, the method of determining the reference point was investigated and its validity was confirmed by experiments. Based on this method, the authors conducted a positioning experiment by considering the actual application using microwave oven operation sound, fire alarm as alarm sound source, and drone flight sound from the viewpoint of its movement monitor and control. Although the positioning accuracy differs depending on the characteristics of each sound source, the results of positioning accuracy considered to be practically usable within the range of several centimeters to several tens of centimeters were obtained by the experiment. キーワード 屋内測位, CSP, TDOA, 音源, アラーム音, ドローン Keyword Indoor positioning, CSP, TDOA, Sound source, Alarm sound, Drone
虽然使用大略声波的定位实现了较高的精度,但定位声源仍采用超声波、频谱扩散声等特定声音。本论文以明确实际使用环境即室内居住空间中各种声源的产生位置为目的,采用了TDOA(Time Difference Of Arrival,到达时间差)法和提出了采用CSP(Cross-power Spectrum Phase analysis,白化相互关)法的不分声源的定位法,并进行了实验验证。根据接收声波的各接收点确定作为参照点的接收点,用CSP法求出该点与各接收点的声波接收时间差,根据检测结果和设定的接收点的位置计算声源的位置。在考虑了实际使用范围的宽敞的室内环境内(约5m×4m的范围)的天花板上,构筑了设定了30个接收点的实验系统。首先,研究了确定参照点的方法,并通过实验进行了确认,在此基础上,考虑到实际应用,确定了微波炉的工作声音;我们选取了作为报警声源的火灾报警器、移动历史监视器以及从移动控制角度出发的无人机飞行声音,进行了定位实验。根据各声源的特性,定位精度也会有所不同,但可以在数cm到数十cm的范围内实际使用定位精度。Abstract Although positioningusing sound waves has achieved high accuracy,specific sounds such as ultrasonic waves and spectrumspread sounds are used as sound sources forpositioning. The purpose of this paper is to clarify The location of various sound sources in anindoor生活空间,which is the actual usage environment. We propose a positioning method using TDOA (Time DifferenceOf Arrival) and CSP (Cross-power Spectrum Phase analysis) method and verify it experimentally. Areference point is determined from the reception points that receives a sound wave,and a difference in reception time of the sound wave between that reference point and each receptionpoint is obtained by the CSP method. the position of the sound source is calculated from thedetection result of the reception time difference and the position of the set reception points. Anexperimental系统was constructed in which 30 reception points were set atceiling in an indoor环境(in the range of about 5m x 4m) with an actual usage range. in the beginning,the method of determining the reference point was investigated and its validity was confirmed byexperiments. Based on this method,the authors conducted a positioning experiment by considering the actual application using microwaveoven operation sound, fire alarm as alarm sound source,and drone flight sound from the viewpoint of its movement monitor and control. Although thepositioning accuracy differs depending on the characteristics of each sound source,the results of positioning accuracy considered to be practically usable within the range of severalcentimeters to several tens of centimeters were obtained by the experiment.关键词室内定位,CSP, TDOA,声源,警报音,无人机Keyword Indoor positioning, CSP, TDOA, Sound source, Alarm Sound, Drone
{"title":"Positioning Method for Various Indoor Sound Sources by Detecting Reception Time Difference using Cross-power Spectrum Phase Analysis and its Experimental Evaluation","authors":"Takeru Kadokura, Yuusuke Kawakita, S. Ioroi, Hiroshi Tanaka","doi":"10.5266/ipntj.10.23","DOIUrl":"https://doi.org/10.5266/ipntj.10.23","url":null,"abstract":"あらまし 音波を用いた測位は高い精度が実現されているものの,測位のための音源として超音波やスペクトル拡散した音な ど,特定の音が用いられている.本論文では,実際の利用環境である室内居住空間における各種音源の発生位置を明らかにする ことを目的とし,TDOA(Time Difference Of Arrival:到達時間差)法と CSP(Cross-power Spectrum Phase analysis:白色化相互相 関)法を用いた音源を問わない測位法を提案し,実験的に検証する.音波を受信する各受信点から参照点とする受信点を定め, その点と各受信点での音波の受信時間差を CSP 法で求める.その検出結果と設定している受信点の位置から音源の位置を算出 する.実際の利用範囲を考慮した広さの室内環境内(約 5m×4m の範囲)の天井に 30個の受信点を設定した実験系を構築した. まず,参照点を決定する方法を検討し,実験によって確認した.それに基づいて,実際への適用を考慮し,電子レンジの動作音, アラーム音源である火災報知器,移動履歴のモニタ,移動制御の観点からドローンの飛行音を取り上げ,測位実験を行った.各 音源の特性によって測位精度は異なるものの,数 cm から数十 cmの範囲内の実利用が可能と考えられる測位精度が得られた結 果を示す. Abstract Although positioning using sound waves has achieved high accuracy, specific sounds such as ultrasonic waves and spectrumspread sounds are used as sound sources for positioning. The purpose of this paper is to clarify the location of various sound sources in an indoor living space, which is the actual usage environment. We propose a positioning method using TDOA (Time Difference Of Arrival) and CSP (Cross-power Spectrum Phase analysis) method and verify it experimentally. A reference point is determined from the reception points that receives a sound wave, and a difference in reception time of the sound wave between that reference point and each reception point is obtained by the CSP method. The position of the sound source is calculated from the detection result of the reception time difference and the position of the set reception points. An experimental system was constructed in which 30 reception points were set at a ceiling in an indoor environment (in the range of about 5m x 4m) with an actual usage range. In the beginning, the method of determining the reference point was investigated and its validity was confirmed by experiments. Based on this method, the authors conducted a positioning experiment by considering the actual application using microwave oven operation sound, fire alarm as alarm sound source, and drone flight sound from the viewpoint of its movement monitor and control. Although the positioning accuracy differs depending on the characteristics of each sound source, the results of positioning accuracy considered to be practically usable within the range of several centimeters to several tens of centimeters were obtained by the experiment. キーワード 屋内測位, CSP, TDOA, 音源, アラーム音, ドローン Keyword Indoor positioning, CSP, TDOA, Sound source, Alarm sound, Drone","PeriodicalId":65773,"journal":{"name":"导航定位与授时","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89598569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}