Pub Date : 2021-01-10DOI: 10.1109/ICPR48806.2021.9412560
Matthew Watson, N. A. Moubayed
Explainable machine learning has become increasingly prevalent, especially in healthcare where explainable models are vital for ethical and trusted automated decision making. Work on the susceptibility of deep learning models to adversarial attacks has shown the ease of designing samples to mislead a model into making incorrect predictions. In this work, we propose a model agnostic explainability-based method for the accurate detection of adversarial samples on two datasets with different complexity and properties: Electronic Health Record (EHR) and chest X-ray (CXR) data. On the MIMIC-III and Henan-Renmin EHR datasets, we report a detection accuracy of 77% against the Longitudinal Adversarial Attack. On the MIMIC-CXR dataset, we achieve an accuracy of 88%; significantly improving on the state of the art of adversarial detection in both datasets by over 10% in all settings. We propose an anomaly detection based method using explainability techniques to detect adversarial samples which is able to generalise to different attack methods without a need for retraining.
{"title":"Attack-agnostic Adversarial Detection on Medical Data Using Explainable Machine Learning","authors":"Matthew Watson, N. A. Moubayed","doi":"10.1109/ICPR48806.2021.9412560","DOIUrl":"https://doi.org/10.1109/ICPR48806.2021.9412560","url":null,"abstract":"Explainable machine learning has become increasingly prevalent, especially in healthcare where explainable models are vital for ethical and trusted automated decision making. Work on the susceptibility of deep learning models to adversarial attacks has shown the ease of designing samples to mislead a model into making incorrect predictions. In this work, we propose a model agnostic explainability-based method for the accurate detection of adversarial samples on two datasets with different complexity and properties: Electronic Health Record (EHR) and chest X-ray (CXR) data. On the MIMIC-III and Henan-Renmin EHR datasets, we report a detection accuracy of 77% against the Longitudinal Adversarial Attack. On the MIMIC-CXR dataset, we achieve an accuracy of 88%; significantly improving on the state of the art of adversarial detection in both datasets by over 10% in all settings. We propose an anomaly detection based method using explainability techniques to detect adversarial samples which is able to generalise to different attack methods without a need for retraining.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"8 1","pages":"8180-8187"},"PeriodicalIF":0.0,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76282375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-10DOI: 10.1109/ICPR48806.2021.9413295
M. Tellamekala, M. Valstar, Michael P. Pound, T. Giesbrecht
Self-supervised learning has emerged as a candidate approach to learn semantic visual features from unlabeled video data. In self-supervised learning, intrinsic correspondences between data points are used to define a proxy task that forces the model to learn semantic representations. Most existing proxy tasks applied to video data exploit only either intra-modal (e.g. temporal) or cross-modal (e.g. audio-visual) correspondences separately. In theory, jointly learning both these correspondences may result in richer visual features; but, as we show in this work, doing so is non-trivial in practice. To address this problem, we introduce ‘Audio-Visual Permutative Predictive Coding’ (AV-PPC), a multi-task learning framework designed to fully leverage the temporal and cross-modal correspondences as natural supervision signals. In AV-PPC, the model is trained to simultaneously learn multiple intra- and cross-modal predictive coding sub-tasks. By using visual speech recognition (lip-reading) as the downstream evaluation task, we show that our proposed proxy task can learn higher quality visual features than existing proxy tasks. We also show that AV-PPC visual features are highly data-efficient. Without further finetuning, AV-PPC visual encoder achieves 80.30% spoken word classification rate on the LRW dataset, performing on par with directly supervised visual encoders that are learned from large amounts of labeled data.
{"title":"Audio-Visual Predictive Coding for Self-Supervised Visual Representation Learning","authors":"M. Tellamekala, M. Valstar, Michael P. Pound, T. Giesbrecht","doi":"10.1109/ICPR48806.2021.9413295","DOIUrl":"https://doi.org/10.1109/ICPR48806.2021.9413295","url":null,"abstract":"Self-supervised learning has emerged as a candidate approach to learn semantic visual features from unlabeled video data. In self-supervised learning, intrinsic correspondences between data points are used to define a proxy task that forces the model to learn semantic representations. Most existing proxy tasks applied to video data exploit only either intra-modal (e.g. temporal) or cross-modal (e.g. audio-visual) correspondences separately. In theory, jointly learning both these correspondences may result in richer visual features; but, as we show in this work, doing so is non-trivial in practice. To address this problem, we introduce ‘Audio-Visual Permutative Predictive Coding’ (AV-PPC), a multi-task learning framework designed to fully leverage the temporal and cross-modal correspondences as natural supervision signals. In AV-PPC, the model is trained to simultaneously learn multiple intra- and cross-modal predictive coding sub-tasks. By using visual speech recognition (lip-reading) as the downstream evaluation task, we show that our proposed proxy task can learn higher quality visual features than existing proxy tasks. We also show that AV-PPC visual features are highly data-efficient. Without further finetuning, AV-PPC visual encoder achieves 80.30% spoken word classification rate on the LRW dataset, performing on par with directly supervised visual encoders that are learned from large amounts of labeled data.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"89 1","pages":"9912-9919"},"PeriodicalIF":0.0,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85910649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-10DOI: 10.1109/ICPR48806.2021.9413100
Ruohan Zhao, Qin Li, J. You
Retinal fundus images reveal the condition of retina, blood vessels and optic nerve, and is becoming widely adopted in clinical work because any subtle changes to the structures at the back of the eyes can affect the eyes and indicate the overall health. Recently, machine learning, in particular deep learning by convolutional neural network (CNN), has been increasingly adopted for computer-aided detection (CAD) of retinal lesions. However, a significant barrier to the high performance of CNN based CAD approach is the lack of sufficient labeled image samples for training. Unlike the fully-supervised learning which relies on pixel-level annotation of pathology in fundus images, this paper presents a new approach to discriminate the location of various lesions based on image-level labels via weakly learning. More specifically, our proposed method leverages the multilevel feature maps and classification score to cope with both bright and red lesions in fundus images. To enhance capability of learning less discriminative parts of objects (e.g. small blobs of microaneurysms opposed to bulk of exudates), the classifier is regularized by refining images with corresponding labels. The experimental results of the performance evaluation and benchmarking at both image-level and pixel-level on the public DIARETDB1 dataset demonstrate the feasibility and excellent potentials of our method in practical usage.
{"title":"Robust Localization of Retinal Lesions via Weakly-supervised Learning","authors":"Ruohan Zhao, Qin Li, J. You","doi":"10.1109/ICPR48806.2021.9413100","DOIUrl":"https://doi.org/10.1109/ICPR48806.2021.9413100","url":null,"abstract":"Retinal fundus images reveal the condition of retina, blood vessels and optic nerve, and is becoming widely adopted in clinical work because any subtle changes to the structures at the back of the eyes can affect the eyes and indicate the overall health. Recently, machine learning, in particular deep learning by convolutional neural network (CNN), has been increasingly adopted for computer-aided detection (CAD) of retinal lesions. However, a significant barrier to the high performance of CNN based CAD approach is the lack of sufficient labeled image samples for training. Unlike the fully-supervised learning which relies on pixel-level annotation of pathology in fundus images, this paper presents a new approach to discriminate the location of various lesions based on image-level labels via weakly learning. More specifically, our proposed method leverages the multilevel feature maps and classification score to cope with both bright and red lesions in fundus images. To enhance capability of learning less discriminative parts of objects (e.g. small blobs of microaneurysms opposed to bulk of exudates), the classifier is regularized by refining images with corresponding labels. The experimental results of the performance evaluation and benchmarking at both image-level and pixel-level on the public DIARETDB1 dataset demonstrate the feasibility and excellent potentials of our method in practical usage.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"7 1","pages":"4613-4618"},"PeriodicalIF":0.0,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78355413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-10DOI: 10.1109/ICPR48806.2021.9411995
Maria Tzelepi, N. Passalis, A. Tefas
Deploying state-of-the-art deep learning models on embedded systems dictates certain storage and computation limitations. During the recent few years Knowledge Distillation (KD) has been recognized as a prominent approach to address this issue. That is, KD has been effectively proposed for training fast and compact deep learning models by transferring knowledge from more complex and powerful models. However, knowledge distillation, in its conventional form, involves multiple stages of training, rendering it a computationally and memory demanding procedure. In this paper, a novel single-stage self knowledge distillation method is proposed, namely Online Subclass Knowledge Distillation (OSKD), that aims at revealing the similarities inside classes, so as to improve the performance of any deep neural model in an online manner. Hence, as opposed to existing online distillation methods, we are able to acquire further knowledge from the model itself, without building multiple identical models or using multiple models to teach each other, rendering the proposed OSKD approach more efficient. The experimental evaluation on two datasets validates that the proposed method improves the classification performance.
{"title":"Efficient Online Subclass Knowledge Distillation for Image Classification","authors":"Maria Tzelepi, N. Passalis, A. Tefas","doi":"10.1109/ICPR48806.2021.9411995","DOIUrl":"https://doi.org/10.1109/ICPR48806.2021.9411995","url":null,"abstract":"Deploying state-of-the-art deep learning models on embedded systems dictates certain storage and computation limitations. During the recent few years Knowledge Distillation (KD) has been recognized as a prominent approach to address this issue. That is, KD has been effectively proposed for training fast and compact deep learning models by transferring knowledge from more complex and powerful models. However, knowledge distillation, in its conventional form, involves multiple stages of training, rendering it a computationally and memory demanding procedure. In this paper, a novel single-stage self knowledge distillation method is proposed, namely Online Subclass Knowledge Distillation (OSKD), that aims at revealing the similarities inside classes, so as to improve the performance of any deep neural model in an online manner. Hence, as opposed to existing online distillation methods, we are able to acquire further knowledge from the model itself, without building multiple identical models or using multiple models to teach each other, rendering the proposed OSKD approach more efficient. The experimental evaluation on two datasets validates that the proposed method improves the classification performance.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"70 1","pages":"1007-1014"},"PeriodicalIF":0.0,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72933953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-10DOI: 10.1109/ICPR48806.2021.9412299
Junzhe Xu, Jianhua Zhang, Shengyong Chen, Honghai Liu
Environment exploration by autonomous robots through deep reinforcement learning (DRL) based methods has attracted more and more attention. However, existing methods usually focus on robot navigation to single or multiple fixed goals, while ignoring the perception and construction of external environments. In this paper, we propose a novel environment exploration task based on DRL, which requires a robot fast and completely perceives all objects of interest, and reconstructs their poses in a global environment map, as much as the robot can do. To this end, we design an auxiliary task aided DRL model, which is integrated with the auxiliary object detection and 6-DoF pose estimation components. The outcome of auxiliary tasks can improve the learning speed and robustness of DRL, as well as the accuracy of object pose estimation. Comprehensive experimental results on the indoor simulation platform AI2-THOR have shown the effectiveness and robustness of our method.
{"title":"Object-oriented Map Exploration and Construction Based on Auxiliary Task Aided DRL","authors":"Junzhe Xu, Jianhua Zhang, Shengyong Chen, Honghai Liu","doi":"10.1109/ICPR48806.2021.9412299","DOIUrl":"https://doi.org/10.1109/ICPR48806.2021.9412299","url":null,"abstract":"Environment exploration by autonomous robots through deep reinforcement learning (DRL) based methods has attracted more and more attention. However, existing methods usually focus on robot navigation to single or multiple fixed goals, while ignoring the perception and construction of external environments. In this paper, we propose a novel environment exploration task based on DRL, which requires a robot fast and completely perceives all objects of interest, and reconstructs their poses in a global environment map, as much as the robot can do. To this end, we design an auxiliary task aided DRL model, which is integrated with the auxiliary object detection and 6-DoF pose estimation components. The outcome of auxiliary tasks can improve the learning speed and robustness of DRL, as well as the accuracy of object pose estimation. Comprehensive experimental results on the indoor simulation platform AI2-THOR have shown the effectiveness and robustness of our method.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"2016 1","pages":"8507-8514"},"PeriodicalIF":0.0,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73302935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-10DOI: 10.1109/ICPR48806.2021.9412734
Ling Mei, J. Lai, Zhanxiang Feng, Xiaohua Xie
Group retrieval has attracted plenty of attention in artificial intelligence, traditional group retrieval researches assume that members in a group are unique and do not change under different cameras. However, the assumption may not be met for practical situations such as open-world and group-ambiguity scenarios. This paper tackles an important yet non-studied problem: re-identifying changing groups of people under the open-world and group-ambiguity scenarios in different camera fields. The open-world scenario considers that there are probably non-target people for the probe set appear in the searching gallery, while the group-ambiguity scenario means the group members may change. The open-world and group-ambiguity issue is very challenging for the existing methods because the changing of group members results in dramatic visual variations. Nevertheless, as far as we know, the existing literature lacks benchmarks which target on coping with this issue. In this paper, we propose a new group retrieval dataset named OWGA-Campus to consider these challenges. Moreover, we propose a person-to-group similarity matching based ambiguity removal (P2GSM-AR) method to solve these problems and realize the intention of group retrieval. Experimental results on OWGA-Campus dataset demonstrate the effectiveness and robustness of the proposed P2GSM-AR approach in improving the performance of the state-of-the-art feature extraction methods of person re-id towards the open-world and ambiguous group retrieval task.
{"title":"Open-World Group Retrieval with Ambiguity Removal: A Benchmark","authors":"Ling Mei, J. Lai, Zhanxiang Feng, Xiaohua Xie","doi":"10.1109/ICPR48806.2021.9412734","DOIUrl":"https://doi.org/10.1109/ICPR48806.2021.9412734","url":null,"abstract":"Group retrieval has attracted plenty of attention in artificial intelligence, traditional group retrieval researches assume that members in a group are unique and do not change under different cameras. However, the assumption may not be met for practical situations such as open-world and group-ambiguity scenarios. This paper tackles an important yet non-studied problem: re-identifying changing groups of people under the open-world and group-ambiguity scenarios in different camera fields. The open-world scenario considers that there are probably non-target people for the probe set appear in the searching gallery, while the group-ambiguity scenario means the group members may change. The open-world and group-ambiguity issue is very challenging for the existing methods because the changing of group members results in dramatic visual variations. Nevertheless, as far as we know, the existing literature lacks benchmarks which target on coping with this issue. In this paper, we propose a new group retrieval dataset named OWGA-Campus to consider these challenges. Moreover, we propose a person-to-group similarity matching based ambiguity removal (P2GSM-AR) method to solve these problems and realize the intention of group retrieval. Experimental results on OWGA-Campus dataset demonstrate the effectiveness and robustness of the proposed P2GSM-AR approach in improving the performance of the state-of-the-art feature extraction methods of person re-id towards the open-world and ambiguous group retrieval task.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"1 1","pages":"584-591"},"PeriodicalIF":0.0,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79829810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-10DOI: 10.1109/ICPR48806.2021.9412086
Ming Zhang, Hong Yan
Deep supervised hashing for image retrieval has attracted researchers' attention due to its high efficiency and superior retrieval performance. Most existing deep supervised hashing works, which are based on pairwise/triplet labels, suffer from the expensive computational cost and insufficient utilization of the semantics information. Recently, deep classwise hashing introduced a classwise loss supervised by class labels information alternatively; however, we find it still has its drawback. In this paper, we propose an improved deep classwise hashing, which enables hashing learning and class centers learning simultaneously. Specifically, we design a two-step strategy on center similarity learning. It interacts with the classwise loss to attract the class center to concentrate on the intra-class samples while pushing other class centers as far as possible. The centers similarity learning contributes to generating more compact and discriminative hashing codes. We conduct experiments on three benchmark datasets. It shows that the proposed method effectively surpasses the original method and outperforms state-of-the-art baselines under various commonly-used evaluation metrics for image retrieval.
{"title":"Improved Deep Classwise Hashing With Centers Similarity Learning for Image Retrieval","authors":"Ming Zhang, Hong Yan","doi":"10.1109/ICPR48806.2021.9412086","DOIUrl":"https://doi.org/10.1109/ICPR48806.2021.9412086","url":null,"abstract":"Deep supervised hashing for image retrieval has attracted researchers' attention due to its high efficiency and superior retrieval performance. Most existing deep supervised hashing works, which are based on pairwise/triplet labels, suffer from the expensive computational cost and insufficient utilization of the semantics information. Recently, deep classwise hashing introduced a classwise loss supervised by class labels information alternatively; however, we find it still has its drawback. In this paper, we propose an improved deep classwise hashing, which enables hashing learning and class centers learning simultaneously. Specifically, we design a two-step strategy on center similarity learning. It interacts with the classwise loss to attract the class center to concentrate on the intra-class samples while pushing other class centers as far as possible. The centers similarity learning contributes to generating more compact and discriminative hashing codes. We conduct experiments on three benchmark datasets. It shows that the proposed method effectively surpasses the original method and outperforms state-of-the-art baselines under various commonly-used evaluation metrics for image retrieval.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"4 1","pages":"10516-10523"},"PeriodicalIF":0.0,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79962276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-10DOI: 10.1109/ICPR48806.2021.9413244
Karam Park, Jae Woong Soh, N. Cho
Deep convolutional neural networks have shown significant improvement in the single image super-resolution (SISR) field. Recently, there have been attempts to solve the SISR problem using lightweight networks, considering limited computational resources for real-world applications. Especially for lightweight networks, balancing between parameter demand and performance is very difficult to adjust, and most lightweight SISR networks are manually designed based on a huge number of brute-force experiments. Besides, a critical key to the network performance relies on the skip connection of building blocks that are repeatedly in the architecture. Notably, in previous works, these connections are pre-defined and manually determined by human researchers. Hence, they are less flexible to the input image statistics, and there can be a better solution for the given number of parameters. Therefore, we focus on the automated design of networks regarding the connection of basic building blocks (residual networks), and as a result, propose a dynamic residual attention network (DRAN). The proposed method allows the network to dynamically select residual paths depending on the input image, based on the idea of attention mechanism. For this, we design a dynamic residual module that determines the residual paths between the basic building blocks for the given input image. By finding optimal residual paths between the blocks, the network can selectively bypass informative features needed to reconstruct the target high-resolution (HR) image. Experimental results show that our proposed DRAN outperforms most of the existing state-of-the-arts lightweight models in SISR.
{"title":"Single Image Super-Resolution with Dynamic Residual Connection","authors":"Karam Park, Jae Woong Soh, N. Cho","doi":"10.1109/ICPR48806.2021.9413244","DOIUrl":"https://doi.org/10.1109/ICPR48806.2021.9413244","url":null,"abstract":"Deep convolutional neural networks have shown significant improvement in the single image super-resolution (SISR) field. Recently, there have been attempts to solve the SISR problem using lightweight networks, considering limited computational resources for real-world applications. Especially for lightweight networks, balancing between parameter demand and performance is very difficult to adjust, and most lightweight SISR networks are manually designed based on a huge number of brute-force experiments. Besides, a critical key to the network performance relies on the skip connection of building blocks that are repeatedly in the architecture. Notably, in previous works, these connections are pre-defined and manually determined by human researchers. Hence, they are less flexible to the input image statistics, and there can be a better solution for the given number of parameters. Therefore, we focus on the automated design of networks regarding the connection of basic building blocks (residual networks), and as a result, propose a dynamic residual attention network (DRAN). The proposed method allows the network to dynamically select residual paths depending on the input image, based on the idea of attention mechanism. For this, we design a dynamic residual module that determines the residual paths between the basic building blocks for the given input image. By finding optimal residual paths between the blocks, the network can selectively bypass informative features needed to reconstruct the target high-resolution (HR) image. Experimental results show that our proposed DRAN outperforms most of the existing state-of-the-arts lightweight models in SISR.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"67 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76711010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-10DOI: 10.1109/ICPR48806.2021.9413338
J. Zamora-Esquivel, Jesus Adan Cruz Vargas, P. López-Meyer
In this work, we introduce a generalization methodology for the automatic selection of the activation functions inside a neural network, taking advantage of concepts defined in fractional calculus. This methodology enables the neural network to search and optimize its own activation functions during the training process, by defining the fractional order of the derivative of a given primitive activation function. This fractional order is tuned as an additional training hyper-parameter $a$ for intrafamily selection and $b$ for cross family selection. By following this approach, the neurons inside the network can adjust their activation functions, e.g. from MLP to RBF networks, to best fit the input data, and reduce the output error. The experimental results obtained show the benefits of using this technique implemented on a ResNet18 topology, by outperforming the accuracy of a ResNet100 trained with CIFAR10 and Improving 1% ImageNet reported in the literature.
{"title":"Fractional Adaptation of Activation Functions In Neural Networks","authors":"J. Zamora-Esquivel, Jesus Adan Cruz Vargas, P. López-Meyer","doi":"10.1109/ICPR48806.2021.9413338","DOIUrl":"https://doi.org/10.1109/ICPR48806.2021.9413338","url":null,"abstract":"In this work, we introduce a generalization methodology for the automatic selection of the activation functions inside a neural network, taking advantage of concepts defined in fractional calculus. This methodology enables the neural network to search and optimize its own activation functions during the training process, by defining the fractional order of the derivative of a given primitive activation function. This fractional order is tuned as an additional training hyper-parameter $a$ for intrafamily selection and $b$ for cross family selection. By following this approach, the neurons inside the network can adjust their activation functions, e.g. from MLP to RBF networks, to best fit the input data, and reduce the output error. The experimental results obtained show the benefits of using this technique implemented on a ResNet18 topology, by outperforming the accuracy of a ResNet100 trained with CIFAR10 and Improving 1% ImageNet reported in the literature.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"2 1","pages":"7544-7550"},"PeriodicalIF":0.0,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76794420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-10DOI: 10.1109/ICPR48806.2021.9412519
M. Mameli, M. Paolanti, N. Conci, Filippo Tessaro, E. Frontoni, P. Zingaretti
The development of so-called soft-biometrics aims at providing information related to the physical and behavioural characteristics of a person. This paper focuses on body weight estimation based on the observation from a top-view RGB-D camera. In fact, the capability to estimate the weight of a person can be of help in many different applications, from health-related scenarios, to business intelligence and retail analytics. To deal with this issue, a TVWE (Top-View Weight Estimation) framework is proposed with the aim of predicting the weight. The approach relies on the adoption of Deep Neural Networks (DNNs) that have been trained on depth data. Each network has also been modified in their top section to replace classification with prediction inference. The performance of five state-of-art DNNs have been compared, namely VGG16, ResNet, Inception, DenseNet and Efficient-Net. In addition, a convolutional auto-encoder has also been included for completeness. Considering the limited literature in this domain, the TVWE framework has been evaluated on a new publicly available dataset: “VRAI Weight estimation Dataset”, which also collects, for each subject, labels related to weight, gender, and height. The experimental results have demonstrated that the proposed methods are suitable for this task, bringing different and significant insights for the application of the solution in different domains.
{"title":"Weight Estimation from an RGB-D camera in top-view configuration","authors":"M. Mameli, M. Paolanti, N. Conci, Filippo Tessaro, E. Frontoni, P. Zingaretti","doi":"10.1109/ICPR48806.2021.9412519","DOIUrl":"https://doi.org/10.1109/ICPR48806.2021.9412519","url":null,"abstract":"The development of so-called soft-biometrics aims at providing information related to the physical and behavioural characteristics of a person. This paper focuses on body weight estimation based on the observation from a top-view RGB-D camera. In fact, the capability to estimate the weight of a person can be of help in many different applications, from health-related scenarios, to business intelligence and retail analytics. To deal with this issue, a TVWE (Top-View Weight Estimation) framework is proposed with the aim of predicting the weight. The approach relies on the adoption of Deep Neural Networks (DNNs) that have been trained on depth data. Each network has also been modified in their top section to replace classification with prediction inference. The performance of five state-of-art DNNs have been compared, namely VGG16, ResNet, Inception, DenseNet and Efficient-Net. In addition, a convolutional auto-encoder has also been included for completeness. Considering the limited literature in this domain, the TVWE framework has been evaluated on a new publicly available dataset: “VRAI Weight estimation Dataset”, which also collects, for each subject, labels related to weight, gender, and height. The experimental results have demonstrated that the proposed methods are suitable for this task, bringing different and significant insights for the application of the solution in different domains.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"49 1","pages":"7715-7722"},"PeriodicalIF":0.0,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77115749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}