It is now recognized that many geomaterials have nonlinear failure envelopes. This non-linearity is most marked at lower stress levels, the failure envelope being of quasi-parabolic shape. It is not easy to calibrate these nonlinear failure envelopes from triaxial test data. Currently only the power-type failure envelope has been studied with an established formal procedure for its determination from triaxial test data. In this paper, a simplified procedure is evolved for the development of four different types of nonlinear envelopes. These are of invaluable assistance in the evaluation of true factors of safety in problems of slope stability and correct computation of lateral earth pressure and bearing capacity. The use of the Mohr-Coulomb failure envelopes leads to an overestimation of the factors of safety and other geotechnical quantities.
{"title":"Calibration of Four Nonlinear Failure Envelopes from Triaxial Test Data and Influence of Nonlinearity on Geotechnical Computations","authors":"A. J. Anyaegbunam, F. Okafor","doi":"10.4236/GM.2021.112003","DOIUrl":"https://doi.org/10.4236/GM.2021.112003","url":null,"abstract":"It is now recognized that many geomaterials have nonlinear failure envelopes. This non-linearity is most marked at lower stress levels, the failure envelope being of quasi-parabolic shape. It is not easy to calibrate these nonlinear failure envelopes from triaxial test data. Currently only the power-type failure envelope has been studied with an established formal procedure for its determination from triaxial test data. In this paper, a simplified procedure is evolved for the development of four different types of nonlinear envelopes. These are of invaluable assistance in the evaluation of true factors of safety in problems of slope stability and correct computation of lateral earth pressure and bearing capacity. The use of the Mohr-Coulomb failure envelopes leads to an overestimation of the factors of safety and other geotechnical quantities.","PeriodicalId":67978,"journal":{"name":"地质材料(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46128560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multicomponent Ore Mineralization in Ultrabasites of the Ospa-Kitoy Massif of the East Sayan Ophiolite Belt: Formational Parageneses and Origin (Diamond, Nephrite, Noble Metals, Chromium, Nickel)","authors":"A. V. Tatarinov, L. I. Yalovik","doi":"10.4236/gm.2021.114005","DOIUrl":"https://doi.org/10.4236/gm.2021.114005","url":null,"abstract":"","PeriodicalId":67978,"journal":{"name":"地质材料(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70611057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kavula Ngoy Elysée, Kasongo wa Mutombo Portance, L. Sow, Ngoy Biyukaleza Bilez, Kavula Mwenze Corneille, Tshibwabwa Kasongo Obed
This study focuses on the determination of physical and mechanical characteristics based on in vitro tests, by using field samples for the Kampemba urban area in the city of Lubumbashi. At the end of this study, we identified the soils according to their parameters, and established the geotechnical classification by determining their bearing capacity by the group index method using from the identification tests carried out. By using the AASHTO classification method (American Association for State Highway Transportation Official), the results obtained after our studies revealed five classes of soil: A-2, A-4, A-5, A-6, A-7 in a general way, and particularly eight subgroups of soil: A-2-4, A-2-6, A-2-7, A-4, A-5, A-6, A-7-5 and A-7-6 for the concerned area. The latter has given statistical analysis and deep learning based on multi-layer perceptron, the global values of the physical parameters. It’s about: 31.77% ± 1.05% for the limit of liquidity; 18.71% ± 0.76% for the plastic limit; 13.06% ± 0.79% for the plasticity index; 83.00% ± 3.33% for passing of 2 mm sieve; 76.22% ± 3.2% for passing of 400 μm sieve; 89.07% ± 2.99% for passing of 4.75 mm sieve; 70.62% ± 2.39% passing of 80 μm sieve; 1.66 ± 0.61 for the consistency index; −0.67 ± 0.62 for the liquidity index and 8 ± 1 for the group index.
{"title":"Coupling Discriminating Statistical Analysis and Artificial Intelligence for Geotechnical Characterization of the Kampemba’s Municipality Soils (Lubumbashi, DR Congo)","authors":"Kavula Ngoy Elysée, Kasongo wa Mutombo Portance, L. Sow, Ngoy Biyukaleza Bilez, Kavula Mwenze Corneille, Tshibwabwa Kasongo Obed","doi":"10.4236/gm.2020.103003","DOIUrl":"https://doi.org/10.4236/gm.2020.103003","url":null,"abstract":"This study focuses on the determination of physical and mechanical characteristics based on in vitro tests, by using field samples for the Kampemba urban area in the city of Lubumbashi. At the end of this study, we identified the soils according to their parameters, and established the geotechnical classification by determining their bearing capacity by the group index method using from the identification tests carried out. By using the AASHTO classification method (American Association for State Highway Transportation Official), the results obtained after our studies revealed five classes of soil: A-2, A-4, A-5, A-6, A-7 in a general way, and particularly eight subgroups of soil: A-2-4, A-2-6, A-2-7, A-4, A-5, A-6, A-7-5 and A-7-6 for the concerned area. The latter has given statistical analysis and deep learning based on multi-layer perceptron, the global values of the physical parameters. It’s about: 31.77% ± 1.05% for the limit of liquidity; 18.71% ± 0.76% for the plastic limit; 13.06% ± 0.79% for the plasticity index; 83.00% ± 3.33% for passing of 2 mm sieve; 76.22% ± 3.2% for passing of 400 μm sieve; 89.07% ± 2.99% for passing of 4.75 mm sieve; 70.62% ± 2.39% passing of 80 μm sieve; 1.66 ± 0.61 for the consistency index; −0.67 ± 0.62 for the liquidity index and 8 ± 1 for the group index.","PeriodicalId":67978,"journal":{"name":"地质材料(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49631767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. C. Kouadio, Owochi Quentin Aristide Offo, C. H. Kouakou, E. Eméruwa
Raw rubber Latex contents, from 0% to 30% were used to stabilize lateritic samples to provide an alternative to cement stabilization. These samples were submitted to physical tests (water resistance test, absorption test) and mechanical tests (dry compressive strength test). The results indicate that samples made of latex content less than 15% dissolve completely into water. So it was impossible to make sample with these contents. Samples with 15% of raw rubber content or more are steady after water resistance test. The absorption rate of these samples decreases as the latex content increases. It goes from 14.45% for the samples at 15% to 5.87% for those at 30%. Therefore, the compressive strength test indicates that the resistance increases from 0.37 MPa for samples without latex to 3.15 MPa for those at 30% of latex content. Also, the rheological study shows that the samples pass from a brittle behaviour to a plastic behaviour when the latex content increases. The behaviour of the sample according to these different tests shows that this material can be used in several activity areas, such as construction, road building and sports area.
{"title":"Use of Alternative Binder: Influence of Latex Content on Physical and Mechanical Properties of Laterite Stabilized with Raw Rubber Latex","authors":"K. C. Kouadio, Owochi Quentin Aristide Offo, C. H. Kouakou, E. Eméruwa","doi":"10.4236/gm.2020.103004","DOIUrl":"https://doi.org/10.4236/gm.2020.103004","url":null,"abstract":"Raw rubber Latex contents, from 0% to 30% were used to stabilize lateritic samples to provide an alternative to cement stabilization. These samples were submitted to physical tests (water resistance test, absorption test) and mechanical tests (dry compressive strength test). The results indicate that samples made of latex content less than 15% dissolve completely into water. So it was impossible to make sample with these contents. Samples with 15% of raw rubber content or more are steady after water resistance test. The absorption rate of these samples decreases as the latex content increases. It goes from 14.45% for the samples at 15% to 5.87% for those at 30%. Therefore, the compressive strength test indicates that the resistance increases from 0.37 MPa for samples without latex to 3.15 MPa for those at 30% of latex content. Also, the rheological study shows that the samples pass from a brittle behaviour to a plastic behaviour when the latex content increases. The behaviour of the sample according to these different tests shows that this material can be used in several activity areas, such as construction, road building and sports area.","PeriodicalId":67978,"journal":{"name":"地质材料(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45218365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a comparative study of Physical-Chemical characteristics of Limestone and Basalt (from Senegalese quarries). First, chemical tests show that Basalt is richer in silica 51.59% versus 2.84% for Limestone. Basalt is made up of silica minerals and essentially carbonated minerals with a CaO percentage of 50.05%. Chemical results also show that Basalt is richer in iron 12.71% versus 0.44% for Limestone. Finally, they revealed a fire loss of 40.91% for Limestone and 2.44% for Basalt. Second, physical analysis results show that Diack Basalt has the best characteristics with a flattening coefficient of 5% between 5% and 20%; the percentage of pollutants is 0.36% less than 1%; the Los Angeles coefficient is 12.21% below 15, while Bandia Limestone gives a flattening coefficient of 3%; the Los Angeles coefficient of 40.17% and the percentage of pollutant (2.4%) well above 2%. It is noted that the percentage of Limestone pollutant is too high. These important results show the net advantage of Basalt compared to Limestone in terms of physical-chemical characteristics.
{"title":"Contribution to Comparative Study of Physical-Chemical Characteristics of Diack Basalt and Bandia Limestone for Use in Railway Engineering","authors":"A. Diédhiou, L. Sow, A. Dione","doi":"10.4236/gm.2020.102002","DOIUrl":"https://doi.org/10.4236/gm.2020.102002","url":null,"abstract":"This paper presents a comparative study of Physical-Chemical characteristics of Limestone and Basalt (from Senegalese quarries). First, chemical tests show that Basalt is richer in silica 51.59% versus 2.84% for Limestone. Basalt is made up of silica minerals and essentially carbonated minerals with a CaO percentage of 50.05%. Chemical results also show that Basalt is richer in iron 12.71% versus 0.44% for Limestone. Finally, they revealed a fire loss of 40.91% for Limestone and 2.44% for Basalt. Second, physical analysis results show that Diack Basalt has the best characteristics with a flattening coefficient of 5% between 5% and 20%; the percentage of pollutants is 0.36% less than 1%; the Los Angeles coefficient is 12.21% below 15, while Bandia Limestone gives a flattening coefficient of 3%; the Los Angeles coefficient of 40.17% and the percentage of pollutant (2.4%) well above 2%. It is noted that the percentage of Limestone pollutant is too high. These important results show the net advantage of Basalt compared to Limestone in terms of physical-chemical characteristics.","PeriodicalId":67978,"journal":{"name":"地质材料(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44115592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The shallow Soft Clayey deposit is common in Alexandria-Egypt. Most soft clays in their natural state are unsuitable for supporting any structure. Thus, improvement treatments exist to strengthen these soils so that improved soil can have adequate bearing capacity without undergoing failure or producing substantial excessive settlement post construction and applied loads to them. This paper presents a case study of an improved site in the city center, which reclaimed part of Maryout Lake, where the highly compressible clay with water content varies from 200% near the surface to 90% at the base of the shallow clay deposit. A prefabricated vertical drain with preloading has been used to improve this soft soil. Values of shear parameters and consolidation coefficient back-calculated from field measurements and have been compared with the values from lab and in situ tests. The study provides different relation-ships from comparisons of prediction and estimation compressibility and consolidation settlement from laboratory studies and particularly field case studies. Also, some correlation related to the compressibility with index properties of soft clay is presented. The results display that a substantial improvement is noticeable in the compressibility properties.
{"title":"Improve Geotechnical Design Parameter of Some Soft Clayey Soils","authors":"N. Ali","doi":"10.4236/gm.2022.124005","DOIUrl":"https://doi.org/10.4236/gm.2022.124005","url":null,"abstract":"The shallow Soft Clayey deposit is common in Alexandria-Egypt. Most soft clays in their natural state are unsuitable for supporting any structure. Thus, improvement treatments exist to strengthen these soils so that improved soil can have adequate bearing capacity without undergoing failure or producing substantial excessive settlement post construction and applied loads to them. This paper presents a case study of an improved site in the city center, which reclaimed part of Maryout Lake, where the highly compressible clay with water content varies from 200% near the surface to 90% at the base of the shallow clay deposit. A prefabricated vertical drain with preloading has been used to improve this soft soil. Values of shear parameters and consolidation coefficient back-calculated from field measurements and have been compared with the values from lab and in situ tests. The study provides different relation-ships from comparisons of prediction and estimation compressibility and consolidation settlement from laboratory studies and particularly field case studies. Also, some correlation related to the compressibility with index properties of soft clay is presented. The results display that a substantial improvement is noticeable in the compressibility properties.","PeriodicalId":67978,"journal":{"name":"地质材料(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44758478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charlène Bassolokidi Nkengue, N. Malanda, G. Ganga, P. Louzolo-Kimbémbé, G. Mouengue
The main objective of this study is to contribute to the optimization of the formulation of sand concretes and its valorisation according to natural sands from different quarries or extraction sites. Physical characteristics of natural sands have been determined and improved by the addition of crushing sand, taking into account the too fine elements of the sand. Four types of sand were used (Congo River, Djiri, Mfilou, crushed sand). The concrete formulations proposed from improved sands (30% crushed sand and 70% natural sand) reveal an increase in mechanical strength. Thus, it appeared that this improvement of the natural fine sands by the crushing sand has brought a clear increase in the maneuverability of the concretes and the physico-mechanical characteristics of nearly 50%, although this crushing sand has a sand equivalent value of less than 70%. These results augur well for the durability of structures in the construction industry in Congo.
{"title":"Influence of Aggregate Grain Size on the Formulation of Sand Concrete in the Construction Industry in Congo","authors":"Charlène Bassolokidi Nkengue, N. Malanda, G. Ganga, P. Louzolo-Kimbémbé, G. Mouengue","doi":"10.4236/gm.2019.94007","DOIUrl":"https://doi.org/10.4236/gm.2019.94007","url":null,"abstract":"The main objective of this study is to contribute to the optimization of the formulation of sand concretes and its valorisation according to natural sands from different quarries or extraction sites. Physical characteristics of natural sands have been determined and improved by the addition of crushing sand, taking into account the too fine elements of the sand. Four types of sand were used (Congo River, Djiri, Mfilou, crushed sand). The concrete formulations proposed from improved sands (30% crushed sand and 70% natural sand) reveal an increase in mechanical strength. Thus, it appeared that this improvement of the natural fine sands by the crushing sand has brought a clear increase in the maneuverability of the concretes and the physico-mechanical characteristics of nearly 50%, although this crushing sand has a sand equivalent value of less than 70%. These results augur well for the durability of structures in the construction industry in Congo.","PeriodicalId":67978,"journal":{"name":"地质材料(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41868319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Sarr, Oustasse Abdoulaye Sall, M. Ndiaye, Nayini Joseph Serge Lompo
The purpose of this paper is to characterize rock mass stability using basic rock mass method and to compare them. Rock mass quality and strength are determined using rock mass classification and numerical methods. The Factors of safety are calculated with the results of stereographic projection. Results show that quality of ultrabasite and marble are better than quality of andesite. The Slope Mass Ratings (SMR) show that rocks with the best quality are stable and andesite partially stable. The calculation of the factors of Safety by limit equilibrium assigns a stable state for ultrabasite and marble and instable for andesite. Calculation of Safety factor using stereographic parameters in one hand and finite element code in another shows more possibility of planar sliding along discontinuities than rock matrix failure. At last, quality of endogeneous rock mass is correlated with its stability state. The better rock mass is, the more stable the rock it is.
{"title":"Comparative Analysis of the Hard Hillsides Stability by Empirical Methods and Limit Equilibrium: Case of Ultra Basic and Andesites of Mako and Marbles of Bandafassi (Senegal)","authors":"D. Sarr, Oustasse Abdoulaye Sall, M. Ndiaye, Nayini Joseph Serge Lompo","doi":"10.4236/GM.2019.93006","DOIUrl":"https://doi.org/10.4236/GM.2019.93006","url":null,"abstract":"The purpose of this paper is to characterize rock mass stability using basic rock mass method and to compare them. Rock mass quality and strength are determined using rock mass classification and numerical methods. The Factors of safety are calculated with the results of stereographic projection. Results show that quality of ultrabasite and marble are better than quality of andesite. The Slope Mass Ratings (SMR) show that rocks with the best quality are stable and andesite partially stable. The calculation of the factors of Safety by limit equilibrium assigns a stable state for ultrabasite and marble and instable for andesite. Calculation of Safety factor using stereographic parameters in one hand and finite element code in another shows more possibility of planar sliding along discontinuities than rock matrix failure. At last, quality of endogeneous rock mass is correlated with its stability state. The better rock mass is, the more stable the rock it is.","PeriodicalId":67978,"journal":{"name":"地质材料(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47844418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stevina Bouyila, R. Elenga, L. Ahouet, M. Ngoulou, Serge Konda
NaOH activation of soils is an affordable and promising way to improve mechanical properties of earthen bricks. If for well-activated geopolymers, the hard polymeric network limits the influence of water on mechanical properties, for the weakly activated one, as non-calcined raw clayey soils, the influence of water on these properties would be more critical. This work aims to determine the effect of sodium hydroxide concentration on the drying kinetics of bricks made with raw clayey soils, and to model this kinetics. The results show that the drying kinetics is governed by the diffusion of water due to the absence of free water. The drying duration increases linearly with the increasing of NaOH content, while the volumetric shrinkage decreases, probably thanks to the reduction of the material porosity during the formation of the zeolitic structures. Besides, the drying duration is strongly and negatively correlated with the initial drying rate (−0.97) and bricks did not show visible cracks. Among the five parametric models tested, the Khazaei’s model is the best in terms of all statistical criteria considered. For all models used, the coefficient of determination is ranged from 0.993 to 0.999, and the evolution of the models’ parameters is in accordance with that of the drying kinetics observed.
{"title":"NaOH Activation of Raw Soils: Effect of NaOH Content on the Drying Kinetic and Its Modelling","authors":"Stevina Bouyila, R. Elenga, L. Ahouet, M. Ngoulou, Serge Konda","doi":"10.4236/GM.2019.92005","DOIUrl":"https://doi.org/10.4236/GM.2019.92005","url":null,"abstract":"NaOH activation of soils is an affordable and promising way to improve mechanical properties of earthen bricks. If for well-activated geopolymers, the hard polymeric network limits the influence of water on mechanical properties, for the weakly activated one, as non-calcined raw clayey soils, the influence of water on these properties would be more critical. This work aims to determine the effect of sodium hydroxide concentration on the drying kinetics of bricks made with raw clayey soils, and to model this kinetics. The results show that the drying kinetics is governed by the diffusion of water due to the absence of free water. The drying duration increases linearly with the increasing of NaOH content, while the volumetric shrinkage decreases, probably thanks to the reduction of the material porosity during the formation of the zeolitic structures. Besides, the drying duration is strongly and negatively correlated with the initial drying rate (−0.97) and bricks did not show visible cracks. Among the five parametric models tested, the Khazaei’s model is the best in terms of all statistical criteria considered. For all models used, the coefficient of determination is ranged from 0.993 to 0.999, and the evolution of the models’ parameters is in accordance with that of the drying kinetics observed.","PeriodicalId":67978,"journal":{"name":"地质材料(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49526026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The agate dyeing industry has been commonly seen as a high-pollution industry. Dyeing wastewater treatment is considered one of the most important categories for water-pollution control, because of its intense colour and the high concentration of organic contaminants. Most dyes used in the process present minimal biodegradability due to aromatic organic compounds in their structure. Using a photocatalytic reactor, experiments were carried out to study the decolorization of a water solution containing 8% ethylic alcohol and 200 mg L−1 of the dye Rhodamine B (RhB), the most difficult colorant to degrade among the used by the agate industry. The best conditions were further applied to treat the same agate water/ethyl alcohol solution containing a mixture of 200 mg L−1 of Rhodamine B (RhB), Crystal Violet (CV), Brilliant Green (BG), and Blood Red (BR). All the experiments were performed in a 2 L reactor equipped with ultraviolet (UV) lamps, at a wavelength of 365 nm, with powdered TiO2 or ZnO as the catalyst. The results indicated that the optimal decolorization conditions were attained with 2.5 g L−1 of the catalyst at pH 10 and an irradiation time of 80 min. The process resulted in complete degradation of CV, BG and 80% - 90% degradation of RhB and BR. The catalyst ZnO presented a performance somewhat better than TiO2. It is possible to conclude that the process of heterogeneous photocatalysis is effective for decolorization of water streams from the agate industry.
{"title":"Heterogeneous Photocatalytic Degradation of Dyes in Water/Alcohol Solution Used by the Brazilian Agate Industry","authors":"C. M. Mistura, I. Schneider, Y. Vieira","doi":"10.4236/GM.2019.91003","DOIUrl":"https://doi.org/10.4236/GM.2019.91003","url":null,"abstract":"The agate dyeing industry has been commonly seen as a high-pollution industry. Dyeing wastewater treatment is considered one of the most important categories for water-pollution control, because of its intense colour and the high concentration of organic contaminants. Most dyes used in the process present minimal biodegradability due to aromatic organic compounds in their structure. Using a photocatalytic reactor, experiments were carried out to study the decolorization of a water solution containing 8% ethylic alcohol and 200 mg L−1 of the dye Rhodamine B (RhB), the most difficult colorant to degrade among the used by the agate industry. The best conditions were further applied to treat the same agate water/ethyl alcohol solution containing a mixture of 200 mg L−1 of Rhodamine B (RhB), Crystal Violet (CV), Brilliant Green (BG), and Blood Red (BR). All the experiments were performed in a 2 L reactor equipped with ultraviolet (UV) lamps, at a wavelength of 365 nm, with powdered TiO2 or ZnO as the catalyst. The results indicated that the optimal decolorization conditions were attained with 2.5 g L−1 of the catalyst at pH 10 and an irradiation time of 80 min. The process resulted in complete degradation of CV, BG and 80% - 90% degradation of RhB and BR. The catalyst ZnO presented a performance somewhat better than TiO2. It is possible to conclude that the process of heterogeneous photocatalysis is effective for decolorization of water streams from the agate industry.","PeriodicalId":67978,"journal":{"name":"地质材料(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47642136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}