首页 > 最新文献

Materials Theory最新文献

英文 中文
Erratum to: a novel model of third phase inclusions on two phase boundaries 对两相边界上的第三相包裹体新模型的勘误
Pub Date : 2017-07-28 DOI: 10.1186/s41313-017-0007-z
Andrew A. Prudil, Michael J. Welland
{"title":"Erratum to: a novel model of third phase inclusions on two phase boundaries","authors":"Andrew A. Prudil, Michael J. Welland","doi":"10.1186/s41313-017-0007-z","DOIUrl":"https://doi.org/10.1186/s41313-017-0007-z","url":null,"abstract":"","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41313-017-0007-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5085287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Diffuse-interface polycrystal plasticity: expressing grain boundaries as geometrically necessary dislocations 扩散界面多晶塑性:将晶界表示为几何上必要的位错
Pub Date : 2017-07-11 DOI: 10.1186/s41313-017-0006-0
Nikhil Chandra Admal, Giacomo Po, Jaime Marian

The standard way of modeling plasticity in polycrystals is by using the crystal plasticity model for single crystals in each grain, and imposing suitable traction and slip boundary conditions across grain boundaries. In this fashion, the system is modeled as a collection of boundary-value problems with matching boundary conditions. In this paper, we develop a diffuse-interface crystal plasticity model for polycrystalline materials that results in a single boundary-value problem with a single crystal as the reference configuration. Using a multiplicative decomposition of the deformation gradient into lattice and plastic parts, i.e. F(X,t)=F L(X,t)F P(X,t), an initial stress-free polycrystal is constructed by imposing F L to be a piecewise constant rotation field R 0(X), and F P=R 0(X)T, thereby having F(X,0)=I, and zero elastic strain. This model serves as a precursor to higher order crystal plasticity models with grain boundary energy and evolution.

多晶塑性建模的标准方法是在每个晶粒中使用单晶的晶体塑性模型,并在晶界上施加适当的牵引和滑移边界条件。在这种方式下,系统被建模为具有匹配边界条件的边值问题的集合。在本文中,我们建立了一个多晶材料的扩散界面晶体塑性模型,该模型导致以单晶为参考构型的单一边值问题。将变形梯度乘分解为晶格和塑性部分,即F(X,t)=F L(X,t)F P(X,t),通过将F L施加为分段恒定旋转场r0 (X), F P= r0 (X) t,从而使F(X,0)=I,并且弹性应变为零,构建初始无应力多晶体。该模型可作为具有晶界能和晶界演化的高阶晶体塑性模型的先驱。
{"title":"Diffuse-interface polycrystal plasticity: expressing grain boundaries as geometrically necessary dislocations","authors":"Nikhil Chandra Admal,&nbsp;Giacomo Po,&nbsp;Jaime Marian","doi":"10.1186/s41313-017-0006-0","DOIUrl":"https://doi.org/10.1186/s41313-017-0006-0","url":null,"abstract":"<p>The standard way of modeling plasticity in polycrystals is by using the crystal plasticity model for single crystals in each grain, and imposing suitable traction and slip boundary conditions across grain boundaries. In this fashion, the system is modeled as a collection of boundary-value problems with matching boundary conditions. In this paper, we develop a diffuse-interface crystal plasticity model for polycrystalline materials that results in a single boundary-value problem with a single crystal as the reference configuration. Using a multiplicative decomposition of the deformation gradient into lattice and plastic parts, i.e. <b><i>F</i></b>(<b><i>X,t</i></b>)=<b><i>F</i></b>\u0000 <sup>L</sup>(<b><i>X,t</i></b>)<b><i>F</i></b>\u0000 <sup>P</sup>(<b><i>X,t</i></b>), an initial stress-free polycrystal is constructed by imposing <b><i>F</i></b>\u0000 <sup>L</sup> to be a piecewise constant rotation field <b><i>R</i></b>\u0000 <sup>0</sup>(<b><i>X</i></b>), and <b><i>F</i></b>\u0000 <sup>P</sup>=<b><i>R</i></b>\u0000 <sup>0</sup>(<b><i>X</i></b>)<sup>T</sup>, thereby having <b><i>F</i></b>(<b><i>X</i></b>,0)=<b><i>I</i></b>, and zero elastic strain. This model serves as a precursor to higher order crystal plasticity models with grain boundary energy and evolution.</p>","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41313-017-0006-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4456768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Stability and symmetry of ion-induced surface patterning 离子诱导表面图案的稳定性和对称性
Pub Date : 2017-06-21 DOI: 10.1186/s41313-017-0005-1
Christopher S. R. Matthes, Nasr M. Ghoniem, Daniel Walgraef

We present a continuum model of ion-induced surface patterning. The model incorporates the atomic processes of sputtering, re-deposition and surface diffusion, and is shown to display the generic features of the damped Kuramoto-Sivashinsky (KS) equation of non-linear dynamics. Linear and non-linear stability analyses of the evolution equation give estimates of the emerging pattern wavelength and spatial symmetry. The analytical theory is confirmed by numerical simulations of the evolution equation with the Fast Fourier Transform method, where we show the influence of the incident ion angle, flux, and substrate surface temperature. It is shown that large local geometry variations resulting in quadratic non-linearities in the evolution equation dominate pattern selection and stability at long time scales.

我们提出了一个离子诱导表面图案化的连续模型。该模型包含了原子溅射、再沉积和表面扩散过程,并显示了非线性动力学阻尼Kuramoto-Sivashinsky (KS)方程的一般特征。演化方程的线性和非线性稳定性分析给出了新出现的图案波长和空间对称性的估计。利用快速傅立叶变换方法对演化方程进行数值模拟,验证了解析理论的正确性,并给出了入射离子角、通量和衬底表面温度的影响。结果表明,大的局部几何变化导致进化方程的二次非线性,在长时间尺度上支配着模式选择和稳定性。
{"title":"Stability and symmetry of ion-induced surface patterning","authors":"Christopher S. R. Matthes,&nbsp;Nasr M. Ghoniem,&nbsp;Daniel Walgraef","doi":"10.1186/s41313-017-0005-1","DOIUrl":"https://doi.org/10.1186/s41313-017-0005-1","url":null,"abstract":"<p>We present a continuum model of ion-induced surface patterning. The model incorporates the atomic processes of sputtering, re-deposition and surface diffusion, and is shown to display the generic features of the damped Kuramoto-Sivashinsky (KS) equation of non-linear dynamics. Linear and non-linear stability analyses of the evolution equation give estimates of the emerging pattern wavelength and spatial symmetry. The analytical theory is confirmed by numerical simulations of the evolution equation with the Fast Fourier Transform method, where we show the influence of the incident ion angle, flux, and substrate surface temperature. It is shown that large local geometry variations resulting in quadratic non-linearities in the evolution equation dominate pattern selection and stability at long time scales.</p>","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41313-017-0005-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4827446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Fracture as a material sink 断裂作为材料下沉
Pub Date : 2017-05-25 DOI: 10.1186/s41313-017-0002-4
K. Y. Volokh

Cracks are created by massive breakage of molecular or atomic bonds. The latter, in its turn, leads to the highly localized loss of material, which is the reason why even closed cracks are visible by a naked eye. Thus, fracture can be interpreted as the local material sink. Mass conservation is violated locally in the area of material failure. We consider a theoretical formulation of the coupled mass and momenta balance equations for a description of fracture. Our focus is on brittle fracture and we propose a finite strain hyperelastic thermodynamic framework for the coupled mass-flow-elastic boundary value problem. The attractiveness of the proposed framework as compared to the traditional continuum damage theories is that no internal parameters (like damage variables, phase fields, etc.) are used while the regularization of the failure localization is provided by the physically sound law of mass balance.

裂缝是由分子或原子键的大量断裂造成的。后者,反过来,导致高度局部的材料损失,这就是为什么即使是闭合的裂缝也可以用肉眼看到的原因。因此,断裂可以解释为局部物质下沉。质量守恒在材料破坏区域局部被破坏。我们考虑了一个描述断裂的耦合质量和动量平衡方程的理论公式。我们的重点是脆性断裂,我们提出了一个有限应变超弹性热力学框架的耦合质量-流动-弹性边值问题。与传统的连续介质损伤理论相比,该框架的吸引力在于不使用内部参数(如损伤变量、相场等),而由物理合理的质量平衡定律提供了破坏局部化的正则化。
{"title":"Fracture as a material sink","authors":"K. Y. Volokh","doi":"10.1186/s41313-017-0002-4","DOIUrl":"https://doi.org/10.1186/s41313-017-0002-4","url":null,"abstract":"<p>Cracks are created by massive breakage of molecular or atomic bonds. The latter, in its turn, leads to the highly localized loss of material, which is the reason why even closed cracks are visible by a naked eye. Thus, fracture can be interpreted as the local material sink. Mass conservation is violated locally in the area of material failure. We consider a theoretical formulation of the coupled mass and momenta balance equations for a description of fracture. Our focus is on brittle fracture and we propose a finite strain hyperelastic thermodynamic framework for the coupled mass-flow-elastic boundary value problem. The attractiveness of the proposed framework as compared to the traditional continuum damage theories is that no internal parameters (like damage variables, phase fields, etc.) are used while the regularization of the failure localization is provided by the physically sound law of mass balance.</p>","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41313-017-0002-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4981864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Why Materials Theory? 为什么是材料理论?
Pub Date : 2017-05-25 DOI: 10.1186/s41313-017-0001-5
Anter El-Azab
{"title":"Why Materials Theory?","authors":"Anter El-Azab","doi":"10.1186/s41313-017-0001-5","DOIUrl":"https://doi.org/10.1186/s41313-017-0001-5","url":null,"abstract":"","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41313-017-0001-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4981898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A novel model of third phase inclusions on two phase boundaries 两相边界上第三相夹杂物的新模型
Pub Date : 2017-05-25 DOI: 10.1186/s41313-017-0003-3
Andrew A. Prudil, Michael J. Welland
{"title":"A novel model of third phase inclusions on two phase boundaries","authors":"Andrew A. Prudil,&nbsp;Michael J. Welland","doi":"10.1186/s41313-017-0003-3","DOIUrl":"https://doi.org/10.1186/s41313-017-0003-3","url":null,"abstract":"","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41313-017-0003-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4981863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Formulation of strongly non-local, non-isothermal dynamics for heterogeneous solids based on the GENERIC with application to phase-field modeling 基于GENERIC的非均质固体强非局部非等温动力学公式及其相场建模应用
Pub Date : 2017-05-25 DOI: 10.1186/s41313-017-0004-2
Markus Hütter, Bob Svendsen

The purpose of the current work is the formulation of models for conservative and non-conservative dynamics in solid systems with the help of the General Equation for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC: e.g., Grmela and ?ttinger, Phys. Rev. E 56(6), 6620 (1997); ?ttinger and Grmela, Phys. Rev. E 56(6), 6633 (1997)). In this context, the resulting models are inherently spatially strongly non-local (i.e., functional) and non-isothermal in character. They are applicable in particular to the modeling of phase transitions as well as mass and heat transport in multiphase, multicomponent solids. In the last part of the work, the strongly non-local model formulation is reduced to weakly non-local form with the help of generalized gradient approximation of the energy and entropy functionals. On this basis, the current model formulation is shown to be consistent with and reduce to a recent non-isothermal generalization (Gladkov et al., J. Non-Equilib. Thermodyn. 41(2), 131 (2016)) of the well-known phase-field models of Cahn and Hilliard (J. Chem. Phys. 28(2), 258 (1958)) for conservative dynamics and of Allen and Cahn (Acta Metall. 27(6), 1085 (1979)) for non-conservative dynamics. Finally, the current approach is applied to derive a non-isothermal generalization of a phase-field crystal model for binary alloys (see, e.g., Elder et al., Phys. Rev. B 75(6), 064107 (2007)).

当前工作的目的是借助非平衡可逆-不可逆耦合的一般方程(通用:例如,Grmela和?ttinger, Phys)建立固体系统中保守和非保守动力学的模型。Rev. E 56(6), 6620 (1997);?廷格和格梅拉,物理学家。Rev. E 56(6), 6633(1997))。在这种情况下,所得到的模型在空间上具有很强的非局部(即,功能性)和非等温特征。它们特别适用于多相、多组分固体中的相变以及质量和热传递的建模。在论文的最后部分,利用能量和熵泛函的广义梯度逼近,将强非局部模型简化为弱非局部形式。在此基础上,目前的模型公式被证明与最近的非等温概化一致并简化为(Gladkov et al., J. non- equilibrium。热动力学,41(2),131(2016))。物理学报,28(2),258(1958))和非保守动力学的Allen和Cahn(金属学报,27(6),1085(1979))。最后,目前的方法被应用于推导二元合金相场晶体模型的非等温推广(例如,见Elder等人,Phys。生物工程学报(英文版),2009(5):481 - 481。
{"title":"Formulation of strongly non-local, non-isothermal dynamics for heterogeneous solids based on the GENERIC with application to phase-field modeling","authors":"Markus Hütter,&nbsp;Bob Svendsen","doi":"10.1186/s41313-017-0004-2","DOIUrl":"https://doi.org/10.1186/s41313-017-0004-2","url":null,"abstract":"<p>The purpose of the current work is the formulation of models for conservative and non-conservative dynamics in solid systems with the help of the General Equation for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC: e.g., Grmela and ?ttinger, Phys. Rev. E 56(6), 6620 (1997); ?ttinger and Grmela, Phys. Rev. E 56(6), 6633 (1997)). In this context, the resulting models are inherently spatially strongly non-local (i.e., functional) and non-isothermal in character. They are applicable in particular to the modeling of phase transitions as well as mass and heat transport in multiphase, multicomponent solids. In the last part of the work, the strongly non-local model formulation is reduced to weakly non-local form with the help of generalized gradient approximation of the energy and entropy functionals. On this basis, the current model formulation is shown to be consistent with and reduce to a recent non-isothermal generalization (Gladkov et al., J. Non-Equilib. Thermodyn. 41(2), 131 (2016)) of the well-known phase-field models of Cahn and Hilliard (J. Chem. Phys. 28(2), 258 (1958)) for conservative dynamics and of Allen and Cahn (Acta Metall. 27(6), 1085 (1979)) for non-conservative dynamics. Finally, the current approach is applied to derive a non-isothermal generalization of a phase-field crystal model for binary alloys (see, e.g., Elder et al., Phys. Rev. B 75(6), 064107 (2007)).</p>","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41313-017-0004-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4977491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Materials Theory
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1