首页 > 最新文献

Acta Neuropathologica最新文献

英文 中文
Brain vasculature accumulates tau and is spatially related to tau tangle pathology in Alzheimer's disease. 脑血管积聚 Tau 蛋白,并与阿尔茨海默病的 Tau 蛋白缠结病理在空间上相关。
IF 9.3 1区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-06-17 DOI: 10.1007/s00401-024-02751-9
Zachary Hoglund, Nancy Ruiz-Uribe, Eric Del Sastre, Benjamin Woost, Elizabeth Bader, Joshua Bailey, Bradley T Hyman, Theodore Zwang, Rachel E Bennett

Insoluble pathogenic proteins accumulate along blood vessels in conditions of cerebral amyloid angiopathy (CAA), exerting a toxic effect on vascular cells and impacting cerebral homeostasis. In this work, we provide new evidence from three-dimensional human brain histology that tau protein, the main component of neurofibrillary tangles, can similarly accumulate along brain vascular segments. We quantitatively assessed n = 6 Alzheimer's disease (AD), and n = 6 normal aging control brains and saw that tau-positive blood vessel segments were present in all AD cases. Tau-positive vessels are enriched for tau at levels higher than the surrounding tissue and appear to affect arterioles across cortical layers (I-V). Further, vessels isolated from these AD tissues were enriched for N-terminal tau and tau phosphorylated at T181 and T217. Importantly, tau-positive vessels are associated with local areas of increased tau neurofibrillary tangles. This suggests that accumulation of tau around blood vessels may reflect a local clearance failure. In sum, these data indicate that tau, like amyloid beta, accumulates along blood vessels and may exert a significant influence on vasculature in the setting of AD.

在脑淀粉样血管病(CAA)的情况下,不溶性致病蛋白会沿着血管积聚,对血管细胞产生毒性作用,影响大脑的稳态。在这项工作中,我们从三维人脑组织学中提供了新的证据,证明神经纤维缠结的主要成分 tau 蛋白同样会沿着脑血管节段积聚。我们对 n = 6 个阿尔茨海默病(AD)病例和 n = 6 个正常衰老对照组大脑进行了定量评估,发现所有 AD 病例中都存在 tau 蛋白阳性的血管片段。Tau阳性血管的tau含量高于周围组织,而且似乎影响到皮质各层(I-V)的动脉血管。此外,从这些 AD 组织中分离出的血管富含 N 端 tau 和 T181 和 T217 处磷酸化的 tau。重要的是,tau阳性血管与tau神经纤维缠结增加的局部区域相关。这表明,血管周围 tau 的积累可能反映了局部清除失败。总之,这些数据表明,tau和β淀粉样蛋白一样,会沿着血管聚集,并可能在AD的情况下对血管产生重大影响。
{"title":"Brain vasculature accumulates tau and is spatially related to tau tangle pathology in Alzheimer's disease.","authors":"Zachary Hoglund, Nancy Ruiz-Uribe, Eric Del Sastre, Benjamin Woost, Elizabeth Bader, Joshua Bailey, Bradley T Hyman, Theodore Zwang, Rachel E Bennett","doi":"10.1007/s00401-024-02751-9","DOIUrl":"10.1007/s00401-024-02751-9","url":null,"abstract":"<p><p>Insoluble pathogenic proteins accumulate along blood vessels in conditions of cerebral amyloid angiopathy (CAA), exerting a toxic effect on vascular cells and impacting cerebral homeostasis. In this work, we provide new evidence from three-dimensional human brain histology that tau protein, the main component of neurofibrillary tangles, can similarly accumulate along brain vascular segments. We quantitatively assessed n = 6 Alzheimer's disease (AD), and n = 6 normal aging control brains and saw that tau-positive blood vessel segments were present in all AD cases. Tau-positive vessels are enriched for tau at levels higher than the surrounding tissue and appear to affect arterioles across cortical layers (I-V). Further, vessels isolated from these AD tissues were enriched for N-terminal tau and tau phosphorylated at T181 and T217. Importantly, tau-positive vessels are associated with local areas of increased tau neurofibrillary tangles. This suggests that accumulation of tau around blood vessels may reflect a local clearance failure. In sum, these data indicate that tau, like amyloid beta, accumulates along blood vessels and may exert a significant influence on vasculature in the setting of AD.</p>","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11182845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141330046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seeding activity of human superoxide dismutase 1 aggregates in familial and sporadic amyotrophic lateral sclerosis postmortem neural tissues by real-time quaking-induced conversion. 通过实时震颤诱导转换,在家族性和散发性肌萎缩性脊髓侧索硬化症死后神经组织中发现人超氧化物歧化酶 1 聚合体的播种活性。
IF 9.3 1区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-06-17 DOI: 10.1007/s00401-024-02752-8
Justin K Mielke, Mikael Klingeborn, Eric P Schultz, Erin L Markham, Emily D Reese, Parvez Alam, Ian R Mackenzie, Cindy V Ly, Byron Caughey, Neil R Cashman, Moses J Leavens

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease with average lifespan of 2-5 years after diagnosis. The identification of novel prognostic and pharmacodynamic biomarkers are needed to facilitate therapeutic development. Metalloprotein human superoxide dismutase 1 (SOD1) is known to accumulate and form aggregates in patient neural tissue with familial ALS linked to mutations in their SOD1 gene. Aggregates of SOD1 have also been detected in other forms of ALS, including the sporadic form and the most common familial form linked to abnormal hexanucleotide repeat expansions in the Chromosome 9 open reading frame 72 (C9ORF72) gene. Here, we report the development of a real-time quaking-induced conversion (RT-QuIC) seed amplification assay using a recombinant human SOD1 substrate to measure SOD1 seeding activity in postmortem spinal cord and motor cortex tissue from persons with different ALS etiologies. Our SOD1 RT-QuIC assay detected SOD1 seeds in motor cortex and spinal cord dilutions down to 10-5. Importantly, we detected SOD1 seeding activity in specimens from both sporadic and familial ALS cases, with the latter having mutations in either their SOD1 or C9ORF72 genes. Analyses of RT-QuIC parameters indicated similar lag phases in spinal cords of sporadic and familial ALS patients, but higher ThT fluorescence maxima by SOD1 familial ALS specimens and sporadic ALS thoracic cord specimens. For a subset of sporadic ALS patients, motor cortex and spinal cords were examined, with seeding activity in both anatomical regions. Our results suggest SOD1 seeds are in ALS patient neural tissues not linked to SOD1 mutation, suggesting that SOD1 seeding activity may be a promising biomarker, particularly in sporadic ALS cases for whom genetic testing is uninformative.

肌萎缩性脊髓侧索硬化症(ALS)是一种进展迅速的神经退行性疾病,确诊后平均寿命为 2-5 年。需要鉴定新型预后和药效生物标志物,以促进治疗方法的开发。已知金属蛋白人类超氧化物歧化酶 1(SOD1)会在与 SOD1 基因突变有关的家族性 ALS 患者神经组织中积聚并形成聚集体。在其他形式的 ALS 中也检测到了 SOD1 的聚集,包括散发性 ALS 和最常见的家族性 ALS,后者与第 9 号染色体开放阅读框 72(C9ORF72)基因中的异常六核苷酸重复扩增有关。在此,我们报告了一种实时震荡诱导转换(RT-QuIC)种子扩增试验的开发情况,该试验使用重组人 SOD1 底物来测量不同 ALS 病因患者死后脊髓和运动皮层组织中的 SOD1 种子活性。我们的 SOD1 RT-QuIC 检测法在运动皮质和脊髓中检测到了稀释度低至 10-5 的 SOD1 种子。重要的是,我们在散发性和家族性 ALS 病例的标本中都检测到了 SOD1 种子活性,后者的 SOD1 或 C9ORF72 基因都发生了突变。对 RT-QuIC 参数的分析表明,散发性和家族性 ALS 患者脊髓的滞后期相似,但 SOD1 家族性 ALS 标本和散发性 ALS 胸脊髓标本的 ThT 荧光最大值更高。对一部分散发性 ALS 患者的运动皮层和脊髓进行了检查,发现这两个解剖区域都有播种活动。我们的研究结果表明,SOD1种子存在于与SOD1突变无关的ALS患者神经组织中,这表明SOD1种子活性可能是一种有前景的生物标志物,尤其是在基因检测无法提供信息的散发性ALS病例中。
{"title":"Seeding activity of human superoxide dismutase 1 aggregates in familial and sporadic amyotrophic lateral sclerosis postmortem neural tissues by real-time quaking-induced conversion.","authors":"Justin K Mielke, Mikael Klingeborn, Eric P Schultz, Erin L Markham, Emily D Reese, Parvez Alam, Ian R Mackenzie, Cindy V Ly, Byron Caughey, Neil R Cashman, Moses J Leavens","doi":"10.1007/s00401-024-02752-8","DOIUrl":"10.1007/s00401-024-02752-8","url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease with average lifespan of 2-5 years after diagnosis. The identification of novel prognostic and pharmacodynamic biomarkers are needed to facilitate therapeutic development. Metalloprotein human superoxide dismutase 1 (SOD1) is known to accumulate and form aggregates in patient neural tissue with familial ALS linked to mutations in their SOD1 gene. Aggregates of SOD1 have also been detected in other forms of ALS, including the sporadic form and the most common familial form linked to abnormal hexanucleotide repeat expansions in the Chromosome 9 open reading frame 72 (C9ORF72) gene. Here, we report the development of a real-time quaking-induced conversion (RT-QuIC) seed amplification assay using a recombinant human SOD1 substrate to measure SOD1 seeding activity in postmortem spinal cord and motor cortex tissue from persons with different ALS etiologies. Our SOD1 RT-QuIC assay detected SOD1 seeds in motor cortex and spinal cord dilutions down to 10<sup>-5</sup>. Importantly, we detected SOD1 seeding activity in specimens from both sporadic and familial ALS cases, with the latter having mutations in either their SOD1 or C9ORF72 genes. Analyses of RT-QuIC parameters indicated similar lag phases in spinal cords of sporadic and familial ALS patients, but higher ThT fluorescence maxima by SOD1 familial ALS specimens and sporadic ALS thoracic cord specimens. For a subset of sporadic ALS patients, motor cortex and spinal cords were examined, with seeding activity in both anatomical regions. Our results suggest SOD1 seeds are in ALS patient neural tissues not linked to SOD1 mutation, suggesting that SOD1 seeding activity may be a promising biomarker, particularly in sporadic ALS cases for whom genetic testing is uninformative.</p>","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11182821/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141330047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Disruption of MAM integrity in mutant FUS oligodendroglial progenitors from hiPSCs. 更正:hiPSCs突变FUS少突胶质细胞祖细胞中MAM完整性的破坏。
IF 9.3 1区 医学 Q1 Medicine Pub Date : 2024-06-13 DOI: 10.1007/s00401-024-02748-4
Yingli Zhu, Thibaut Burg, Katrien Neyrinck, Tim Vervliet, Fatemeharefeh Nami, Ellen Vervoort, Karan Ahuja, Maria Livia Sassano, Yoke Chin Chai, Arun Kumar Tharkeshwar, Jonathan De Smedt, Haibo Hu, Geert Bultynck, Patrizia Agostinis, Johannes V Swinnen, Ludo Van Den Bosch, Rodrigo Furtado Madeiro da Costa, Catherine Verfaillie
{"title":"Correction to: Disruption of MAM integrity in mutant FUS oligodendroglial progenitors from hiPSCs.","authors":"Yingli Zhu, Thibaut Burg, Katrien Neyrinck, Tim Vervliet, Fatemeharefeh Nami, Ellen Vervoort, Karan Ahuja, Maria Livia Sassano, Yoke Chin Chai, Arun Kumar Tharkeshwar, Jonathan De Smedt, Haibo Hu, Geert Bultynck, Patrizia Agostinis, Johannes V Swinnen, Ludo Van Den Bosch, Rodrigo Furtado Madeiro da Costa, Catherine Verfaillie","doi":"10.1007/s00401-024-02748-4","DOIUrl":"10.1007/s00401-024-02748-4","url":null,"abstract":"","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176091/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early and selective localization of tau filaments to glutamatergic subcellular domains within the human anterodorsal thalamus. 人类丘脑前部谷氨酸能亚细胞域中 tau 细丝的早期选择性定位
IF 9.3 1区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-06-11 DOI: 10.1007/s00401-024-02749-3
Barbara Sárkány, Csaba Dávid, Tibor Hortobágyi, Péter Gombás, Peter Somogyi, László Acsády, Tim J Viney

Widespread cortical accumulation of misfolded pathological tau proteins (ptau) in the form of paired helical filaments is a major hallmark of Alzheimer's disease. Subcellular localization of ptau at various stages of disease progression is likely to be informative of the cellular mechanisms involving its spread. Here, we found that the density of ptau within several distinct rostral thalamic nuclei in post-mortem human tissue (n = 25 cases) increased with the disease stage, with the anterodorsal nucleus (ADn) consistently being the most affected. In the ADn, ptau-positive elements were present already in the pre-cortical (Braak 0) stage. Tau pathology preferentially affected the calretinin-expressing subpopulation of glutamatergic neurons in the ADn. At the subcellular level, we detected ptau immunoreactivity in ADn cell bodies, dendrites, and in a specialized type of presynaptic terminal that expresses vesicular glutamate transporter 2 (vGLUT2) and likely originates from the mammillary body. The ptau-containing terminals displayed signs of degeneration, including endosomal/lysosomal organelles. In contrast, corticothalamic axon terminals lacked ptau. The data demonstrate the involvement of a specific cell population in ADn at the onset of the disease. The presence of ptau in subcortical glutamatergic presynaptic terminals supports hypotheses about the transsynaptic spread of tau selectively affecting specialized axonal pathways.

以成对螺旋丝形式存在的错误折叠的病理性 tau 蛋白(ptau)在大脑皮层的广泛堆积是阿尔茨海默病的一个主要特征。在疾病进展的不同阶段,ptau 的亚细胞定位很可能是其扩散的细胞机制的信息来源。在这里,我们发现在死后人体组织(n = 25 例)中,丘脑几个不同喙核内的 ptau 密度随疾病阶段而增加,其中前背核(ADn)始终是受影响最大的。在ADn中,ptau阳性成分在皮层前(Braak 0)阶段就已经存在。Tau病理学优先影响ADn中表达钙调蛋白的谷氨酸能神经元亚群。在亚细胞水平,我们在ADn细胞体、树突和一种特殊类型的突触前末梢中检测到了ptau免疫反应,这种突触前末梢表达囊泡型谷氨酸转运体2(vGLUT2),很可能源自乳突体。含ptau的突触末端显示出变性迹象,包括内膜/溶酶体细胞器。相比之下,皮质丘脑轴突末梢缺乏ptau。这些数据证明了ADn发病初期有特定的细胞群参与其中。在皮层下谷氨酸能突触前末端存在ptau支持了关于tau选择性地影响专门轴突通路的突触前扩散的假设。
{"title":"Early and selective localization of tau filaments to glutamatergic subcellular domains within the human anterodorsal thalamus.","authors":"Barbara Sárkány, Csaba Dávid, Tibor Hortobágyi, Péter Gombás, Peter Somogyi, László Acsády, Tim J Viney","doi":"10.1007/s00401-024-02749-3","DOIUrl":"10.1007/s00401-024-02749-3","url":null,"abstract":"<p><p>Widespread cortical accumulation of misfolded pathological tau proteins (ptau) in the form of paired helical filaments is a major hallmark of Alzheimer's disease. Subcellular localization of ptau at various stages of disease progression is likely to be informative of the cellular mechanisms involving its spread. Here, we found that the density of ptau within several distinct rostral thalamic nuclei in post-mortem human tissue (n = 25 cases) increased with the disease stage, with the anterodorsal nucleus (ADn) consistently being the most affected. In the ADn, ptau-positive elements were present already in the pre-cortical (Braak 0) stage. Tau pathology preferentially affected the calretinin-expressing subpopulation of glutamatergic neurons in the ADn. At the subcellular level, we detected ptau immunoreactivity in ADn cell bodies, dendrites, and in a specialized type of presynaptic terminal that expresses vesicular glutamate transporter 2 (vGLUT2) and likely originates from the mammillary body. The ptau-containing terminals displayed signs of degeneration, including endosomal/lysosomal organelles. In contrast, corticothalamic axon terminals lacked ptau. The data demonstrate the involvement of a specific cell population in ADn at the onset of the disease. The presence of ptau in subcortical glutamatergic presynaptic terminals supports hypotheses about the transsynaptic spread of tau selectively affecting specialized axonal pathways.</p>","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166832/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141299716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Associations of CSF BACE1 with amyloid pathology, neurodegeneration, and cognition in Alzheimer's disease. CSF BACE1 与阿尔茨海默病的淀粉样病理、神经变性和认知能力的关系。
IF 9.3 1区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-06-10 DOI: 10.1007/s00401-024-02750-w
Feng Gao, Mengguo Zhang, Qiong Wang, Ming Ni, Chang Liu, Kexue Deng, Qiang Xie, Shicung Wang, Jiong Shi, Yong Shen

Β-site amyloid precursor protein (APP) cleaving enzyme (BACE1) is a crucial protease in the production of amyloid-β (Aβ) in Alzheimer's disease (AD) patients. However, the side effects observed in clinical trials of BACE1 inhibitors, including reduction in brain volume and cognitive worsening, suggest that the exact role of BACE1 in AD pathology is not fully understood. To further investigate this, we examined cerebrospinal fluid (CSF) levels of BACE1 and its cleaved product sAPPβ that reflects BACE1 activity in the China Aging and Neurodegenerative Disorder Initiative cohort. We found significant correlations between CSF BACE1 or sAPPβ levels and CSF Aβ40, Aβ42, and Aβ42/Aβ40 ratio, but not with amyloid deposition detected by 18F-Florbetapir PET. Additionally, CSF BACE1 and sAPPβ levels were positively associated with cortical thickness in multiple brain regions, and higher levels of sAPPβ were linked to increased cortical glucose metabolism in frontal and supramarginal areas. Interestingly, individuals with higher baseline levels of CSF BACE1 exhibited slower rates of brain volume reduction and cognitive worsening over time. This suggests that increased levels and activity of BACE1 may not be the determining factor for amyloid deposition, but instead, may be associated with increased neuronal activity and potentially providing protection against neurodegeneration in AD.

Β位点淀粉样前体蛋白(APP)裂解酶(BACE1)是阿尔茨海默病(AD)患者体内产生淀粉样-β(Aβ)的关键蛋白酶。然而,在 BACE1 抑制剂的临床试验中观察到的副作用(包括脑容量减少和认知能力恶化)表明,BACE1 在阿尔茨海默病病理学中的确切作用尚未完全明了。为了进一步研究这个问题,我们在中国老龄化与神经退行性疾病研究项目队列中检测了脑脊液(CSF)中 BACE1 及其裂解产物 sAPPβ(反映 BACE1 活性)的水平。我们发现 CSF BACE1 或 sAPPβ 水平与 CSF Aβ40、Aβ42 和 Aβ42/Aβ40 比值之间存在明显相关性,但与 18F-Florbetapir PET 检测到的淀粉样沉积无关。此外,CSF BACE1和sAPPβ水平与多个脑区的皮质厚度呈正相关,较高的sAPPβ水平与额叶和边际上区皮质葡萄糖代谢增加有关。有趣的是,CSF BACE1 基线水平较高的个体随着时间的推移,脑容量减少和认知能力恶化的速度较慢。这表明,BACE1水平和活性的增加可能并不是淀粉样蛋白沉积的决定性因素,相反,它可能与神经元活性的增加有关,并可能为防止AD的神经变性提供保护。
{"title":"Associations of CSF BACE1 with amyloid pathology, neurodegeneration, and cognition in Alzheimer's disease.","authors":"Feng Gao, Mengguo Zhang, Qiong Wang, Ming Ni, Chang Liu, Kexue Deng, Qiang Xie, Shicung Wang, Jiong Shi, Yong Shen","doi":"10.1007/s00401-024-02750-w","DOIUrl":"10.1007/s00401-024-02750-w","url":null,"abstract":"<p><p>Β-site amyloid precursor protein (APP) cleaving enzyme (BACE1) is a crucial protease in the production of amyloid-β (Aβ) in Alzheimer's disease (AD) patients. However, the side effects observed in clinical trials of BACE1 inhibitors, including reduction in brain volume and cognitive worsening, suggest that the exact role of BACE1 in AD pathology is not fully understood. To further investigate this, we examined cerebrospinal fluid (CSF) levels of BACE1 and its cleaved product sAPPβ that reflects BACE1 activity in the China Aging and Neurodegenerative Disorder Initiative cohort. We found significant correlations between CSF BACE1 or sAPPβ levels and CSF Aβ40, Aβ42, and Aβ42/Aβ40 ratio, but not with amyloid deposition detected by 18F-Florbetapir PET. Additionally, CSF BACE1 and sAPPβ levels were positively associated with cortical thickness in multiple brain regions, and higher levels of sAPPβ were linked to increased cortical glucose metabolism in frontal and supramarginal areas. Interestingly, individuals with higher baseline levels of CSF BACE1 exhibited slower rates of brain volume reduction and cognitive worsening over time. This suggests that increased levels and activity of BACE1 may not be the determining factor for amyloid deposition, but instead, may be associated with increased neuronal activity and potentially providing protection against neurodegeneration in AD.</p>","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The necroptosis cell death pathway drives neurodegeneration in Alzheimer's disease. 坏死细胞死亡途径驱动阿尔茨海默病的神经变性。
IF 9.3 1区 医学 Q1 Medicine Pub Date : 2024-06-09 DOI: 10.1007/s00401-024-02747-5
Sriram Balusu, Bart De Strooper

Although apoptosis, pyroptosis, and ferroptosis have been implicated in AD, none fully explains the extensive neuronal loss observed in AD brains. Recent evidence shows that necroptosis is abundant in AD, that necroptosis is closely linked to the appearance of Tau pathology, and that necroptosis markers accumulate in granulovacuolar neurodegeneration vesicles (GVD). We review here the neuron-specific activation of the granulovacuolar mediated neuronal-necroptosis pathway, the potential AD-relevant triggers upstream of this pathway, and the interaction of the necrosome with the endo-lysosomal pathway, possibly providing links to Tau pathology. In addition, we underscore the therapeutic potential of inhibiting necroptosis in neurodegenerative diseases such as AD, as this presents a novel avenue for drug development targeting neuronal loss to preserve cognitive abilities. Such an approach seems particularly relevant when combined with amyloid-lowering drugs.

虽然凋亡、热凋亡和铁凋亡都与 AD 有关,但它们都不能完全解释在 AD 大脑中观察到的大量神经元丢失。最近的证据表明,坏死在AD中大量存在,坏死与Tau病理学的出现密切相关,而且坏死标记物在颗粒细胞神经变性囊泡中积聚。我们在此回顾了粒细胞介导的神经元-坏死通路的神经元特异性激活、该通路上游的潜在AD相关诱因、坏死体与内溶酶体通路的相互作用,这些可能与Tau病理学有关。此外,我们还强调了抑制坏死蛋白沉积对神经退行性疾病(如阿氏痴呆症)的治疗潜力,因为这为针对神经元缺失以保护认知能力的药物开发提供了一条新途径。当这种方法与降低淀粉样蛋白的药物相结合时,似乎尤为重要。
{"title":"The necroptosis cell death pathway drives neurodegeneration in Alzheimer's disease.","authors":"Sriram Balusu, Bart De Strooper","doi":"10.1007/s00401-024-02747-5","DOIUrl":"10.1007/s00401-024-02747-5","url":null,"abstract":"<p><p>Although apoptosis, pyroptosis, and ferroptosis have been implicated in AD, none fully explains the extensive neuronal loss observed in AD brains. Recent evidence shows that necroptosis is abundant in AD, that necroptosis is closely linked to the appearance of Tau pathology, and that necroptosis markers accumulate in granulovacuolar neurodegeneration vesicles (GVD). We review here the neuron-specific activation of the granulovacuolar mediated neuronal-necroptosis pathway, the potential AD-relevant triggers upstream of this pathway, and the interaction of the necrosome with the endo-lysosomal pathway, possibly providing links to Tau pathology. In addition, we underscore the therapeutic potential of inhibiting necroptosis in neurodegenerative diseases such as AD, as this presents a novel avenue for drug development targeting neuronal loss to preserve cognitive abilities. Such an approach seems particularly relevant when combined with amyloid-lowering drugs.</p>","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162975/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinically unfavorable transcriptome subtypes of non-WNT/non-SHH medulloblastomas are associated with a predominance in proliferating and progenitor-like cell subpopulations. 非WNT/非SHH髓母细胞瘤的临床不利转录组亚型与增殖细胞和祖细胞亚群占优势有关。
IF 9.3 1区 医学 Q1 Medicine Pub Date : 2024-06-07 DOI: 10.1007/s00401-024-02746-6
Konstantin Okonechnikov, Daniel Schrimpf, Jan Koster, Philipp Sievers, Till Milde, Felix Sahm, David T W Jones, Andreas von Deimling, Stefan M Pfister, Marcel Kool, Andrey Korshunov

The non-WNT/non-SHH (Grp3/Grp4) medulloblastomas (MBs) include eight second-generation subgroups (SGS; I-VIII) each with distinct molecular and clinical characteristics. Recently, we also identified two prognostically relevant transcriptome subtypes within each SGS MB, which are associated with unique gene expression signatures and signaling pathways. These prognostic subsets may be in connection to the intra-tumoral cell landscape that underlies SGS MB clinical-molecular diversity. Here, we performed a deconvolution analysis of the Grp3/Grp4 MB bulk RNA profiles using the previously identified single-cell RNA-seq reference dataset and focusing on variability in the cellular composition of SGS MB. RNA deconvolution analysis of the Grp3/Grp4 MB disclosed the subgroup-specific neoplastic cell subpopulations. Neuronally differentiated axodendritic GP3-C1 and glutamatergic GP4-C1 subpopulations were distributed within Grp3- and Grp4-associated SGS MB, respectively. Progenitor GP3-B2 subpopulation was prominent in aggressive SGS II MB, whereas photoreceptor/visual perception GP3/4-C2 cell content was typical for SGS III/IV MB. The current study also revealed significant variability in the proportions of cell subpopulations between clinically relevant SGS MB transcriptome subtypes, where unfavorable cohorts were enriched with cell cycle and progenitor-like cell subpopulations and, vice versa, favorable subtypes were composed of neuronally differentiated cell fractions predominantly. A higher than median proportion of proliferating and progenitor cell subpopulations conferred the shortest survival of the Grp3 and Grp 4 MB, and similar survival associations were identified for all SGS MB except SGS IV MB. In summary, the recently identified clinically relevant Grp3/Grp4 MB transcriptome subtypes are composed of different cell populations. Future studies should aim to validate the prognostic and therapeutic role of the identified Grp3/Grp4 MB inter-tumoral cellular heterogeneity. The application of the single-cell techniques on each SGS MB separately could help to clarify the clinical significance of subgroup-specific variability in tumor cell content and its relation with prognostic transcriptome signatures identified before.

非WNT/非SHH(Grp3/Grp4)髓母细胞瘤(MBs)包括八个第二代亚组(SGS;I-VIII),每个亚组都具有不同的分子和临床特征。最近,我们还在每个 SGS MB 中发现了两个与预后相关的转录组亚型,它们与独特的基因表达特征和信号通路相关。这些预后亚型可能与SGS MB临床分子多样性的瘤内细胞景观有关。在此,我们利用之前确定的单细胞 RNA-seq 参考数据集,对 Grp3/Grp4 MB 大量 RNA 图谱进行了去卷积分析,重点研究 SGS MB 细胞组成的变异性。Grp3/Grp4 MB的RNA解卷积分析揭示了亚组特异性肿瘤细胞亚群。神经元分化的轴突状 GP3-C1 和谷氨酸能 GP4-C1 亚群分别分布在 Grp3 和 Grp4 相关的 SGS MB 中。在侵袭性 SGS II MB 中,祖细胞 GP3-B2 亚群非常突出,而在 SGS III/IV MB 中,光感受器/视觉感知 GP3/4-C2 细胞是典型细胞。目前的研究还揭示了与临床相关的 SGS MB 转录组亚型之间细胞亚群比例的显著差异,其中不利亚型富含细胞周期和祖细胞样亚群,反之,有利亚型则主要由神经元分化细胞组成。增殖细胞亚群和祖细胞亚群的比例高于中位数,使 Grp3 和 Grp 4 MB 的存活期最短,除 SGS IV MB 外,所有 SGS MB 都有类似的存活期关联。总之,最近发现的与临床相关的Grp3/Grp4 MB转录组亚型由不同的细胞群组成。未来的研究应旨在验证已发现的 Grp3/Grp4 MB 肿瘤细胞间异质性的预后和治疗作用。对每种 SGS MB 单独应用单细胞技术有助于明确肿瘤细胞含量亚组特异性变异的临床意义及其与之前发现的预后转录组特征的关系。
{"title":"Clinically unfavorable transcriptome subtypes of non-WNT/non-SHH medulloblastomas are associated with a predominance in proliferating and progenitor-like cell subpopulations.","authors":"Konstantin Okonechnikov, Daniel Schrimpf, Jan Koster, Philipp Sievers, Till Milde, Felix Sahm, David T W Jones, Andreas von Deimling, Stefan M Pfister, Marcel Kool, Andrey Korshunov","doi":"10.1007/s00401-024-02746-6","DOIUrl":"10.1007/s00401-024-02746-6","url":null,"abstract":"<p><p>The non-WNT/non-SHH (Grp3/Grp4) medulloblastomas (MBs) include eight second-generation subgroups (SGS; I-VIII) each with distinct molecular and clinical characteristics. Recently, we also identified two prognostically relevant transcriptome subtypes within each SGS MB, which are associated with unique gene expression signatures and signaling pathways. These prognostic subsets may be in connection to the intra-tumoral cell landscape that underlies SGS MB clinical-molecular diversity. Here, we performed a deconvolution analysis of the Grp3/Grp4 MB bulk RNA profiles using the previously identified single-cell RNA-seq reference dataset and focusing on variability in the cellular composition of SGS MB. RNA deconvolution analysis of the Grp3/Grp4 MB disclosed the subgroup-specific neoplastic cell subpopulations. Neuronally differentiated axodendritic GP3-C1 and glutamatergic GP4-C1 subpopulations were distributed within Grp3- and Grp4-associated SGS MB, respectively. Progenitor GP3-B2 subpopulation was prominent in aggressive SGS II MB, whereas photoreceptor/visual perception GP3/4-C2 cell content was typical for SGS III/IV MB. The current study also revealed significant variability in the proportions of cell subpopulations between clinically relevant SGS MB transcriptome subtypes, where unfavorable cohorts were enriched with cell cycle and progenitor-like cell subpopulations and, vice versa, favorable subtypes were composed of neuronally differentiated cell fractions predominantly. A higher than median proportion of proliferating and progenitor cell subpopulations conferred the shortest survival of the Grp3 and Grp 4 MB, and similar survival associations were identified for all SGS MB except SGS IV MB. In summary, the recently identified clinically relevant Grp3/Grp4 MB transcriptome subtypes are composed of different cell populations. Future studies should aim to validate the prognostic and therapeutic role of the identified Grp3/Grp4 MB inter-tumoral cellular heterogeneity. The application of the single-cell techniques on each SGS MB separately could help to clarify the clinical significance of subgroup-specific variability in tumor cell content and its relation with prognostic transcriptome signatures identified before.</p>","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alteration of gene expression and protein solubility of the PI 5-phosphatase SHIP2 are correlated with Alzheimer's disease pathology progression. PI 5-磷酸酶 SHIP2 基因表达和蛋白溶解度的改变与阿尔茨海默病的病理进展相关。
IF 9.3 1区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-06-04 DOI: 10.1007/s00401-024-02745-7
Kunie Ando, Fahri Küçükali, Emilie Doeraene, Siranjeevi Nagaraj, Eugenia Maria Antonelli, May Thazin Htut, Zehra Yilmaz, Andreea-Claudia Kosa, Lidia Lopez-Guitierrez, Carolina Quintanilla-Sánchez, Emmanuel Aydin, Ana Raquel Ramos, Salwa Mansour, Sabrina Turbant, Stéphane Schurmans, Kristel Sleegers, Christophe Erneux, Jean-Pierre Brion, Karelle Leroy

A recent large genome-wide association study has identified EGFR (encoding the epidermal growth factor EGFR) as a new genetic risk factor for late-onset AD. SHIP2, encoded by INPPL1, is taking part in the signalling and interactome of several growth factor receptors, such as the EGFR. While INPPL1 has been identified as one of the most significant genes whose RNA expression correlates with cognitive decline, the potential alteration of SHIP2 expression and localization during the progression of AD remains largely unknown. Here we report that gene expression of both EGFR and INPPL1 was upregulated in AD brains. SHIP2 immunoreactivity was predominantly detected in plaque-associated astrocytes and dystrophic neurites and its increase was correlated with amyloid load in the brain of human AD and of 5xFAD transgenic mouse model of AD. While mRNA of INPPL1 was increased in AD, SHIP2 protein undergoes a significant solubility change being depleted from the soluble fraction of AD brain homogenates and co-enriched with EGFR in the insoluble fraction. Using FRET-based flow cytometry biosensor assay for tau-tau interaction, overexpression of SHIP2 significantly increased the FRET signal while siRNA-mediated downexpression of SHIP2 significantly decreased FRET signal. Genetic association analyses suggest that some variants in INPPL1 locus are associated with the level of CSF pTau. Our data support the hypothesis that SHIP2 is an intermediate key player of EGFR and AD pathology linking amyloid and tau pathologies in human AD.

最近的一项大型全基因组关联研究发现,表皮生长因子受体(EGFR)(编码表皮生长因子 EGFR)是晚发性注意力缺失症的一个新的遗传风险因素。由 INPPL1 编码的 SHIP2 参与了多种生长因子受体(如表皮生长因子受体)的信号传递和相互作用。虽然 INPPL1 已被确定为 RNA 表达与认知能力下降相关的最重要基因之一,但 SHIP2 的表达和定位在 AD 进展过程中的潜在变化在很大程度上仍不为人所知。在这里,我们报告了表皮生长因子受体和 INPPL1 在 AD 大脑中的基因表达上调。在人类 AD 和 5xFAD 转基因小鼠 AD 模型中,SHIP2 的免疫反应主要在斑块相关的星形胶质细胞和萎缩性神经元中检测到,其增加与淀粉样蛋白负荷相关。虽然INPPL1的mRNA在AD中增加,但SHIP2蛋白的溶解度发生了显著变化,从AD脑匀浆的可溶部分中消失,并与表皮生长因子受体共同富集在不溶部分中。利用基于FRET的流式细胞仪生物传感器检测tau-tau相互作用,SHIP2的过表达显著增加了FRET信号,而siRNA介导的SHIP2的下表达则显著降低了FRET信号。遗传关联分析表明,INPPL1位点的一些变异与CSF pTau水平有关。我们的数据支持这一假设:SHIP2 是表皮生长因子受体和 AD 病理学的中间关键角色,它将人类 AD 中的淀粉样蛋白和 tau 病理学联系在一起。
{"title":"Alteration of gene expression and protein solubility of the PI 5-phosphatase SHIP2 are correlated with Alzheimer's disease pathology progression.","authors":"Kunie Ando, Fahri Küçükali, Emilie Doeraene, Siranjeevi Nagaraj, Eugenia Maria Antonelli, May Thazin Htut, Zehra Yilmaz, Andreea-Claudia Kosa, Lidia Lopez-Guitierrez, Carolina Quintanilla-Sánchez, Emmanuel Aydin, Ana Raquel Ramos, Salwa Mansour, Sabrina Turbant, Stéphane Schurmans, Kristel Sleegers, Christophe Erneux, Jean-Pierre Brion, Karelle Leroy","doi":"10.1007/s00401-024-02745-7","DOIUrl":"10.1007/s00401-024-02745-7","url":null,"abstract":"<p><p>A recent large genome-wide association study has identified EGFR (encoding the epidermal growth factor EGFR) as a new genetic risk factor for late-onset AD. SHIP2, encoded by INPPL1, is taking part in the signalling and interactome of several growth factor receptors, such as the EGFR. While INPPL1 has been identified as one of the most significant genes whose RNA expression correlates with cognitive decline, the potential alteration of SHIP2 expression and localization during the progression of AD remains largely unknown. Here we report that gene expression of both EGFR and INPPL1 was upregulated in AD brains. SHIP2 immunoreactivity was predominantly detected in plaque-associated astrocytes and dystrophic neurites and its increase was correlated with amyloid load in the brain of human AD and of 5xFAD transgenic mouse model of AD. While mRNA of INPPL1 was increased in AD, SHIP2 protein undergoes a significant solubility change being depleted from the soluble fraction of AD brain homogenates and co-enriched with EGFR in the insoluble fraction. Using FRET-based flow cytometry biosensor assay for tau-tau interaction, overexpression of SHIP2 significantly increased the FRET signal while siRNA-mediated downexpression of SHIP2 significantly decreased FRET signal. Genetic association analyses suggest that some variants in INPPL1 locus are associated with the level of CSF pTau. Our data support the hypothesis that SHIP2 is an intermediate key player of EGFR and AD pathology linking amyloid and tau pathologies in human AD.</p>","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11150309/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141236295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alternatively spliced ELAVL3 cryptic exon 4a causes ELAVL3 downregulation in ALS TDP-43 proteinopathy. 在 ALS TDP-43 蛋白病中,ELAVL3 隐含外显子 4a 的替代剪接导致 ELAVL3 下调。
IF 9.3 1区 医学 Q1 Medicine Pub Date : 2024-05-30 DOI: 10.1007/s00401-024-02732-y
Isabel Costantino, Alex Meng, John Ravits
{"title":"Alternatively spliced ELAVL3 cryptic exon 4a causes ELAVL3 downregulation in ALS TDP-43 proteinopathy.","authors":"Isabel Costantino, Alex Meng, John Ravits","doi":"10.1007/s00401-024-02732-y","DOIUrl":"10.1007/s00401-024-02732-y","url":null,"abstract":"","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139733/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuropathological findings in Down syndrome, Alzheimer's disease and control patients with and without SARS-COV-2: preliminary findings. 唐氏综合征、阿尔茨海默氏病和对照组患者中患有或未患有 SARS-COV-2 的神经病理学发现:初步研究结果。
IF 9.3 1区 医学 Q1 Medicine Pub Date : 2024-05-27 DOI: 10.1007/s00401-024-02743-9
Ann-Charlotte E Granholm, Elisabet Englund, Anah Gilmore, Elizabeth Head, William H Yong, Sylvia E Perez, Samuel J Guzman, Eric D Hamlett, Elliott J Mufson

The SARS-CoV-2 virus that led to COVID-19 is associated with significant and long-lasting neurologic symptoms in many patients, with an increased mortality risk for people with Alzheimer's disease (AD) and/or Down syndrome (DS). However, few studies have evaluated the neuropathological and inflammatory sequelae in postmortem brain tissue obtained from AD and people with DS with severe SARS-CoV-2 infections. We examined tau, beta-amyloid (Aβ), inflammatory markers and SARS-CoV-2 nucleoprotein in DS, AD, and healthy non-demented controls with COVID-19 and compared with non-infected brain tissue from each disease group (total n = 24). A nested ANOVA was used to determine regional effects of the COVID-19 infection on arborization of astrocytes (Sholl analysis) and percent-stained area of Iba-1 and TMEM 119. SARS-CoV-2 antibodies labeled neurons and glial cells in the frontal cortex of all subjects with COVID-19, and in the hippocampus of two of the three DS COVID-19 cases. SARS-CoV-2-related alterations were observed in peri-vascular astrocytes and microglial cells in the gray matter of the frontal cortex, hippocampus, and para-hippocampal gyrus. Bright field microscopy revealed scattered intracellular and diffuse extracellular Aβ deposits in the hippocampus of controls with confirmed SARS-CoV-2 infections. Overall, the present preliminary findings suggest that SARS-CoV-2 infections induce abnormal inflammatory responses in Down syndrome.

导致 COVID-19 的 SARS-CoV-2 病毒会给许多患者带来严重而持久的神经系统症状,并增加阿尔茨海默病(AD)和/或唐氏综合症(DS)患者的死亡风险。然而,很少有研究对严重感染 SARS-CoV-2 的 AD 和 DS 患者死后脑组织的神经病理学和炎症后遗症进行评估。我们用 COVID-19 检测了 DS、AD 和健康非痴呆对照组的 tau、β-淀粉样蛋白 (Aβ)、炎症标志物和 SARS-CoV-2 核蛋白,并与各疾病组的未感染脑组织进行了比较(共 n = 24)。采用嵌套方差分析确定 COVID-19 感染对星形胶质细胞轴化(Sholl 分析)以及 Iba-1 和 TMEM 119 染色面积百分比的区域影响。SARS-CoV-2抗体标记了所有COVID-19受试者额叶皮层的神经元和神经胶质细胞,以及三例DS COVID-19病例中两例的海马。在额叶皮质、海马和海马旁回灰质的血管周围星形胶质细胞和小胶质细胞中观察到与 SARS-CoV-2 相关的改变。明视野显微镜检查发现,在确诊感染了 SARS-CoV-2 的对照组海马中,存在散在的细胞内和弥漫的细胞外 Aβ 沉积。总之,目前的初步研究结果表明,SARS-CoV-2 感染会诱发唐氏综合征的异常炎症反应。
{"title":"Neuropathological findings in Down syndrome, Alzheimer's disease and control patients with and without SARS-COV-2: preliminary findings.","authors":"Ann-Charlotte E Granholm, Elisabet Englund, Anah Gilmore, Elizabeth Head, William H Yong, Sylvia E Perez, Samuel J Guzman, Eric D Hamlett, Elliott J Mufson","doi":"10.1007/s00401-024-02743-9","DOIUrl":"10.1007/s00401-024-02743-9","url":null,"abstract":"<p><p>The SARS-CoV-2 virus that led to COVID-19 is associated with significant and long-lasting neurologic symptoms in many patients, with an increased mortality risk for people with Alzheimer's disease (AD) and/or Down syndrome (DS). However, few studies have evaluated the neuropathological and inflammatory sequelae in postmortem brain tissue obtained from AD and people with DS with severe SARS-CoV-2 infections. We examined tau, beta-amyloid (Aβ), inflammatory markers and SARS-CoV-2 nucleoprotein in DS, AD, and healthy non-demented controls with COVID-19 and compared with non-infected brain tissue from each disease group (total n = 24). A nested ANOVA was used to determine regional effects of the COVID-19 infection on arborization of astrocytes (Sholl analysis) and percent-stained area of Iba-1 and TMEM 119. SARS-CoV-2 antibodies labeled neurons and glial cells in the frontal cortex of all subjects with COVID-19, and in the hippocampus of two of the three DS COVID-19 cases. SARS-CoV-2-related alterations were observed in peri-vascular astrocytes and microglial cells in the gray matter of the frontal cortex, hippocampus, and para-hippocampal gyrus. Bright field microscopy revealed scattered intracellular and diffuse extracellular Aβ deposits in the hippocampus of controls with confirmed SARS-CoV-2 infections. Overall, the present preliminary findings suggest that SARS-CoV-2 infections induce abnormal inflammatory responses in Down syndrome.</p>","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11130011/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141155090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Acta Neuropathologica
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1