首页 > 最新文献

ACM Commun. Comput. Algebra最新文献

英文 中文
Computing isomorphisms and embeddings of finite fields 有限域的同构计算与嵌入
Pub Date : 2017-05-03 DOI: 10.1090/mcom/3363
Ludovic Brieulle, L. Feo, Javad Doliskani, J. Flori, É. Schost
Let q be a prime power and let Fq be a field with q elements. Let f and g be irreducible polynomials in Fq[X], with deg f dividing deg g. Define k = Fq[X]/f and K = Fq[X]/g, then there is an embedding φ : k [EQUATION] K, unique up to Fq-automorphisms of k. Our goal is to describe algorithms to efficiently represent and evaluate one such embedding.
设q是一个素数幂,设Fq是一个有q个元素的域。设f和g是Fq[X]中的不可约多项式,且度数f除以度数g。定义k = Fq[X]/f和k = Fq[X]/g,则存在一个嵌入φ: k[方程]k,其唯一性直至k的Fq自同构。我们的目标是描述有效表示和评估一个这样的嵌入的算法。
{"title":"Computing isomorphisms and embeddings of finite fields","authors":"Ludovic Brieulle, L. Feo, Javad Doliskani, J. Flori, É. Schost","doi":"10.1090/mcom/3363","DOIUrl":"https://doi.org/10.1090/mcom/3363","url":null,"abstract":"Let <i>q</i> be a prime power and let F<sub><i>q</i></sub> be a field with <i>q</i> elements. Let <i>f</i> and <i>g</i> be irreducible polynomials in F<sub><i>q</i></sub>[<i>X</i>], with deg <i>f</i> dividing deg <i>g.</i> Define <i>k</i> = F<sub><i>q</i></sub>[<i>X</i>]/<i>f</i> and <i>K</i> = F<sub><i>q</i></sub>[<i>X</i>]/<i>g</i>, then there is an embedding <i>φ</i> : <i>k</i> [EQUATION] <i>K</i>, unique up to F<sub><i>q</i></sub>-automorphisms of <i>k.</i> Our goal is to describe algorithms to efficiently represent and evaluate one such embedding.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"12 1","pages":"117-119"},"PeriodicalIF":0.0,"publicationDate":"2017-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87829909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
The bohemian eigenvalue project 波西米亚特征值项目
Pub Date : 2017-02-22 DOI: 10.1145/3055282.3055289
Robert M Corless, Steven E. Thornton
Bohemian eigenvalues are the eigenvalues of matrices with entries of bounded height, typically drawn from a discrete set. We will call this set F with cardinality #F. The name "Bohemian" is intended as a mnemonic and is derived from "bounded height integer matrices." These objects are surprisingly interesting to study, with many unsolved problems related to them, and with many applications. See the works of Tao and Vu [10] for universality results for larger dimension in the generic structured case, for instance. This project concentrates on explicit construction of high resolution pictures of the eigenvalues for modest dimensions and sizes of the entries; for instance, Figure 1a is a picture of the eigenvalues of all 5 × 5 matrices with entries in {−1, 0, 1} colored by density and plotted on the complex plane.
波希米亚特征值是具有有界高度元素的矩阵的特征值,通常是从一个离散集合中绘制的。我们称这个集合为基数为#F的集合F。“波西米亚”这个名字是为了助记,它来源于“有界高度整数矩阵”。研究这些对象非常有趣,有许多未解决的问题与它们相关,并且有许多应用。例如,在一般结构情况下,更大维度的普适性结果见Tao和Vu[10]的著作。该项目专注于为中等尺寸和大小的条目显式构建特征值的高分辨率图像;例如,图1a是所有元素为{−1,0,1}的5 × 5矩阵的特征值的图,用密度着色,绘制在复平面上。
{"title":"The bohemian eigenvalue project","authors":"Robert M Corless, Steven E. Thornton","doi":"10.1145/3055282.3055289","DOIUrl":"https://doi.org/10.1145/3055282.3055289","url":null,"abstract":"Bohemian eigenvalues are the eigenvalues of matrices with entries of bounded height, typically drawn from a discrete set. We will call this set F with cardinality #F. The name \"Bohemian\" is intended as a mnemonic and is derived from \"bounded height integer matrices.\" These objects are surprisingly interesting to study, with many unsolved problems related to them, and with many applications. See the works of Tao and Vu [10] for universality results for larger dimension in the generic structured case, for instance. This project concentrates on explicit construction of high resolution pictures of the eigenvalues for modest dimensions and sizes of the entries; for instance, Figure 1a is a picture of the eigenvalues of all 5 × 5 matrices with entries in {−1, 0, 1} colored by density and plotted on the complex plane.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"1 1","pages":"158-160"},"PeriodicalIF":0.0,"publicationDate":"2017-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89733411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Denominator bounds for higher order systems of linear recurrence equations 高阶线性递归方程组的分母界
Pub Date : 2017-02-22 DOI: 10.1145/3055282.3055298
J. Middeke, Carsten Schneider
Let (K, σ) be a difference field. We define the set of constants by const K = {cK | σ(c) = c}. A ΠΣ*-extension of K is a field of rational functions K(t) over K together with an extension of σ to K(t) given by either σ(t) = at (Π case) or σ(t) = t + b (Σ* case) for some non-zero a or bK such that const K(t) = const K holds. See, for example, [8, 9] for more details on ΠΣ*-extensions.
设(K, σ)是一个差分场。我们用const K = {c∈K | σ(c) = c}来定义常数集。K的ΠΣ*-扩展是有理函数K(t) / K的域以及σ到K(t)的扩展,由σ(t) = at (Π情况)或σ(t) = t + b (Σ*情况)给出,对于某些非零A或b∈K使得const K(t) = const K成立。例如,请参阅[8,9],了解ΠΣ*-extensions的更多详细信息。
{"title":"Denominator bounds for higher order systems of linear recurrence equations","authors":"J. Middeke, Carsten Schneider","doi":"10.1145/3055282.3055298","DOIUrl":"https://doi.org/10.1145/3055282.3055298","url":null,"abstract":"Let (<i>K</i>, <i>σ</i>) be a difference field. We define the set of constants by const <i>K</i> = {<i>c</i> ∈ <i>K</i> | <i>σ</i>(<i>c</i>) = <i>c</i>}. A ΠΣ*-<i>extension</i> of <i>K</i> is a field of rational functions <i>K</i>(<i>t</i>) over <i>K</i> together with an extension of <i>σ</i> to <i>K</i>(<i>t</i>) given by either <i>σ</i>(<i>t</i>) = <i>at</i> (Π case) or <i>σ</i>(<i>t</i>) = <i>t</i> + <i>b</i> (Σ* case) for some non-zero <i>a</i> or <i>b</i> ∈ <i>K</i> such that const <i>K</i>(<i>t</i>) = const <i>K</i> holds. See, for example, [8, 9] for more details on ΠΣ*-extensions.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"48 1","pages":"185-187"},"PeriodicalIF":0.0,"publicationDate":"2017-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90644895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real limit points of quasi-componenets of regular chains 正则链拟元的实极限点
Pub Date : 2017-02-22 DOI: 10.1145/3055282.3055286
P. Alvandi, M. M. Maza
The work reported here is motivated by problems arising in solving polynomial systems over the real numbers.
这里报告的工作是由解决实数上的多项式系统所产生的问题所激发的。
{"title":"Real limit points of quasi-componenets of regular chains","authors":"P. Alvandi, M. M. Maza","doi":"10.1145/3055282.3055286","DOIUrl":"https://doi.org/10.1145/3055282.3055286","url":null,"abstract":"The work reported here is motivated by problems arising in solving polynomial systems over the real numbers.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"1 1","pages":"148-150"},"PeriodicalIF":0.0,"publicationDate":"2017-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76851470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new idea on the interval-symbol method with correct zero rewriting for reducing exact computations 为减少精确计算量,提出了一种带正确零重写的区间符号法
Pub Date : 2017-02-22 DOI: 10.1145/3055282.3055295
Akiyuki Katayama, Kiyoshi Shirayanagi
The ISCZ method (Interval-Symbol method with Correct Zero rewriting) was proposed in [2] based on Shirayanagi-Sweedler stabilization theory ([3]), to reduce the amount of exact computations as much as possible to obtain the exact results. The authors of [2] applied this method to Buchberger's algorithm which computes a Gröbner basis, but the effectiveness was not achieved except for a few examples. This is not only because the complex structure of Buchberger's algorithm causes symbols to significantly grow but also because we naively implemented the ISCZ method without any particular devices. In this poster, we propose a new idea for efficiency of the ISCZ method and show its effect by applying it to calculation of Frobenius canonical form of square matrices. Jordan canonical form is also well-known, but it requires an extension of the field containing the roots of its characteristic polynomial. On the other hand, Frobenius canonical form can be computed by using only basic arithmetic operations, but nevertheless has almost the same information as Jordan canonical form.
在Shirayanagi-Sweedler镇定理论([3])的基础上,[2]提出了ISCZ方法(Interval-Symbol method with Correct Zero rewrite),以尽可能减少精确计算量以获得精确结果。[2]的作者将该方法应用于计算Gröbner基的Buchberger算法,但除了少数例子外,并没有达到有效性。这不仅是因为Buchberger算法的复杂结构导致符号显着增长,而且还因为我们在没有任何特定设备的情况下天真地实现了ISCZ方法。在这张海报中,我们提出了ISCZ方法效率的新思路,并通过将其应用于方阵的Frobenius标准形式的计算来展示其效果。Jordan标准形式也是众所周知的,但它需要一个包含其特征多项式根的域的扩展。另一方面,Frobenius标准形式可以通过基本的算术运算来计算,但与Jordan标准形式具有几乎相同的信息。
{"title":"A new idea on the interval-symbol method with correct zero rewriting for reducing exact computations","authors":"Akiyuki Katayama, Kiyoshi Shirayanagi","doi":"10.1145/3055282.3055295","DOIUrl":"https://doi.org/10.1145/3055282.3055295","url":null,"abstract":"The ISCZ method (Interval-Symbol method with Correct Zero rewriting) was proposed in [2] based on Shirayanagi-Sweedler stabilization theory ([3]), to reduce the amount of exact computations as much as possible to obtain the exact results. The authors of [2] applied this method to Buchberger's algorithm which computes a Gröbner basis, but the effectiveness was not achieved except for a few examples. This is not only because the complex structure of Buchberger's algorithm causes symbols to significantly grow but also because we naively implemented the ISCZ method without any particular devices. In this poster, we propose a new idea for efficiency of the ISCZ method and show its effect by applying it to calculation of Frobenius canonical form of square matrices. Jordan canonical form is also well-known, but it requires an extension of the field containing the roots of its characteristic polynomial. On the other hand, Frobenius canonical form can be computed by using only basic arithmetic operations, but nevertheless has almost the same information as Jordan canonical form.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"5 1","pages":"176-178"},"PeriodicalIF":0.0,"publicationDate":"2017-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77456909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Representation of hypergeometric products in difference rings 差环上超几何积的表示
Pub Date : 2017-02-22 DOI: 10.1145/3055282.3055290
E. Ocansey, Carsten Schneider
In his pioneering work [1, 2], Michael Karr introduced ΠΣ-fields which provide a rather general framework for symbolic summation. He worked out the first algorithmic steps to represent indefinite nested sums and products as transcendental extensions over a computable ground field K called the field of constants. Furthermore, he presented an algorithm that solves the parameterized telescoping problem, and as special cases the telescoping and creative telescoping problems [3] within a given ΠΣ-field.
Michael Karr在他的开创性工作[1,2]中引入了ΠΣ-fields,它为符号求和提供了一个相当一般的框架。他提出了第一个算法步骤,将无限嵌套和和和表示为可计算的地面域K的超越扩展,称为常数域。此外,他还提出了一种算法来解决参数化伸缩问题,并作为特殊情况解决给定ΠΣ-field内的伸缩和创造性伸缩问题[3]。
{"title":"Representation of hypergeometric products in difference rings","authors":"E. Ocansey, Carsten Schneider","doi":"10.1145/3055282.3055290","DOIUrl":"https://doi.org/10.1145/3055282.3055290","url":null,"abstract":"In his pioneering work [1, 2], Michael Karr introduced ΠΣ-fields which provide a rather general framework for symbolic summation. He worked out the first algorithmic steps to represent indefinite nested sums and products as transcendental extensions over a computable ground field K called the field of constants. Furthermore, he presented an algorithm that solves the parameterized telescoping problem, and as special cases the telescoping and creative telescoping problems [3] within a given ΠΣ-field.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"83 1","pages":"161-163"},"PeriodicalIF":0.0,"publicationDate":"2017-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83975544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fibonacci-mandelbrot polynomials and matrices 斐波那契-曼德勃洛特多项式和矩阵
Pub Date : 2017-02-22 DOI: 10.1145/3055282.3055288
Eunice Y. S. Chan, Robert M Corless
We explore a family of polynomials similar to the Mandelbrot polynomials called the Fibonacci-Mandelbrot polynomials defined by q0(z) = 0, q1(z) = 1, and qn(z) = zqn−1qn−2 + 1. We compute the roots of the Fibonacci-Mandelbrot polynomials using two methods. One method uses a recursively constructed matrix, where elements are 0, 1, or −1, whose eigenvalues are the roots of qn(z). The other method uses a special-purpose homotopy continuation method, where the solution of the differential equation, [EQUATION], in which the initial condition are 0, and the roots of qn−1 and qn−2, are also the roots of the Fibonacci-Mandelbrot polynomials.
我们探索了一个类似于Mandelbrot多项式的多项式族,称为fibonaci -Mandelbrot多项式,由q0(z) = 0, q1(z) = 1和qn(z) = zqn−1qn−2 + 1定义。我们用两种方法计算斐波那契-曼德布洛特多项式的根。一种方法使用递归构造的矩阵,其中元素为0、1或−1,其特征值是qn(z)的根。另一种方法采用专用同伦延拓方法,其中初始条件为0的微分方程[equation]的解,以及qn−1和qn−2的根,也是fibonaci - mandelbrot多项式的根。
{"title":"Fibonacci-mandelbrot polynomials and matrices","authors":"Eunice Y. S. Chan, Robert M Corless","doi":"10.1145/3055282.3055288","DOIUrl":"https://doi.org/10.1145/3055282.3055288","url":null,"abstract":"We explore a family of polynomials similar to the Mandelbrot polynomials called the Fibonacci-Mandelbrot polynomials defined by <i>q</i><sub>0</sub>(<i>z</i>) = 0, <i>q</i><sub>1</sub>(<i>z</i>) = 1, and <i>q<sub>n</sub></i>(<i>z</i>) = <i>zq</i><sub><i>n</i>−1</sub><i>q</i><sub><i>n</i>−2</sub> + 1. We compute the roots of the Fibonacci-Mandelbrot polynomials using two methods. One method uses a recursively constructed matrix, where elements are 0, 1, or −1, whose eigenvalues are the roots of <i>q<sub>n</sub></i>(<i>z</i>). The other method uses a special-purpose homotopy continuation method, where the solution of the differential equation, [EQUATION], in which the initial condition are 0, and the roots of <i>q</i><sub><i>n</i>−1</sub> and <i>q</i><sub><i>n</i>−2</sub>, are also the roots of the Fibonacci-Mandelbrot polynomials.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"92 1","pages":"155-157"},"PeriodicalIF":0.0,"publicationDate":"2017-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78204785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Z2-equivariant standard bases for submodules associated with Z2-equivariant singularities 与z2等变奇点相关的子模的z2等变标准基
Pub Date : 2017-02-22 DOI: 10.1145/3055282.3055293
M. Gazor, Mahsa Kazemi
Let x = (x1,...,xn) ∈ R n and λ ∈ R. A smooth map f(x,λ) is called Z2-equivariant (Z2-invariant) if f(−x, λ) = −f(x,λ) (f(−x, λ) = f(x,λ)). Consider the local solutions of a Z2-equivariant map f(x,λ) = 0 around a solution, say f(x00), as the parameters smoothly vary. The solution set may experience a surprising behavior like observing changes in the number of solutions. Each of such problems/changes is called a singularity/bifurcation. Since our analysis is about local solutions, we call any two smooth map f(x,λ) and g(x,λ) as germ-equivalent when they are identical on a neighborhood of (x00) = (0,0). Each germ equivalent class is referred to a smooth germ. The space of all smooth Z2-equivariant germs is denoted by [EQUATION] and space of all smooth Z2-invariant germs is denoted by [EQUATION]x(Z2). The space [EQUATION] is a module over the ring of Z2-invariant germs [EQUATION]x(Z2); see [3, 2, 7] for more information and the origins of our notations.
让x = (x1,…,xn)∈R n和λ∈R .光滑映射f (x,λ)Z2-equivariant (Z2-invariant)如果(−x,λ)=−f (x,λ)(f(−x,λ)= f (x,λ))。考虑一个z2等变映射f(x,λ) = 0围绕一个解的局部解,比如f(x0,λ),当参数平滑变化时。解决方案集可能会遇到令人惊讶的行为,比如观察到解决方案数量的变化。每一个这样的问题/变化被称为一个奇点/分叉。由于我们的分析是关于局部解的,当任意两个光滑映射f(x,λ)和g(x,λ)在(x0,λ) =(0,0)的邻域上相同时,我们称它们为细菌等价。每个胚芽等效类称为光滑胚芽。所有光滑Z2-等变胚芽的空间记为[EQUATION],所有光滑Z2-不变胚芽的空间记为[EQUATION]x,λ(Z2)。空间[EQUATION]是Z2不变胚环上的模[EQUATION]x,λ(Z2);参见[3,2,7]了解更多信息和我们符号的起源。
{"title":"Z2-equivariant standard bases for submodules associated with Z2-equivariant singularities","authors":"M. Gazor, Mahsa Kazemi","doi":"10.1145/3055282.3055293","DOIUrl":"https://doi.org/10.1145/3055282.3055293","url":null,"abstract":"Let <i>x</i> = (<i>x</i><sub>1</sub>,...,<i>x</i><sub><i>n</i></sub>) ∈ R <sup><i>n</i></sup> and λ ∈ R. A smooth map <i>f</i>(<i>x</i>,λ) is called <i>Z</i><sub>2</sub>-equivariant (<i>Z</i><sub>2</sub>-invariant) if <i>f</i>(−<i>x</i>, λ) = −<i>f</i>(<i>x</i>,λ) (<i>f</i>(−<i>x</i>, λ) = <i>f</i>(<i>x</i>,λ)). Consider the local solutions of a <i>Z</i><sub>2</sub>-equivariant map <i>f</i>(<i>x</i>,λ) = 0 around a solution, say <i>f</i>(<i>x</i><sub>0</sub>,λ<sub>0</sub>), as the parameters smoothly vary. The solution set may experience a surprising behavior like observing changes in the number of solutions. Each of such problems/changes is called a singularity/bifurcation. Since our analysis is about local solutions, we call any two smooth map <i>f</i>(<i>x</i>,λ) and <i>g</i>(<i>x</i>,λ) as germ-equivalent when they are identical on a neighborhood of (<i>x</i><sub>0</sub>,λ<sub>0</sub>) = (0,0). Each germ equivalent class is referred to a smooth germ. The space of all smooth <i>Z</i><sub>2</sub>-equivariant germs is denoted by [EQUATION] and space of all smooth <i>Z</i><sub>2</sub>-invariant germs is denoted by [EQUATION]<sub><i>x</i>,λ</sub>(<i>Z</i><sub>2</sub>). The space [EQUATION] is a module over the ring of <i>Z</i><sub>2</sub>-invariant germs [EQUATION]<sub><i>x</i>,λ</sub>(<i>Z</i><sub>2</sub>); see [3, 2, 7] for more information and the origins of our notations.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"1 1","pages":"170-172"},"PeriodicalIF":0.0,"publicationDate":"2017-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88910624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Efficient detection of hessian matrix sparsity pattern hessian矩阵稀疏模式的有效检测
Pub Date : 2017-02-22 DOI: 10.1145/3055282.3055287
R. Carter, S. Hossain, M. Sultana
Evaluation of the Hessian matrix of a scalar function is a subproblem in many numerical optimization algorithms. For large-scale problems often the Hessian matrix is sparse and structured, and it is preferable to exploit such information when available. Using symmetry in the second derivative values of the components it is possible to detect the sparsity pattern of the Hessian via products of the Hessian matrix with specially chosen direction vectors. We use graph coloring methods and employ efficient sparse data structures to implement the sparsity pattern detection algorithms. Results from preliminary numerical testings are highly promising.
标量函数的Hessian矩阵的求值是许多数值优化算法中的一个子问题。对于大规模问题,通常Hessian矩阵是稀疏的和结构化的,并且最好在可用时利用这些信息。利用分量二阶导数值的对称性,可以通过Hessian矩阵与特定方向向量的乘积来检测Hessian的稀疏模式。我们使用图着色方法和高效的稀疏数据结构来实现稀疏模式检测算法。初步数值试验的结果非常有希望。
{"title":"Efficient detection of hessian matrix sparsity pattern","authors":"R. Carter, S. Hossain, M. Sultana","doi":"10.1145/3055282.3055287","DOIUrl":"https://doi.org/10.1145/3055282.3055287","url":null,"abstract":"Evaluation of the Hessian matrix of a scalar function is a subproblem in many numerical optimization algorithms. For large-scale problems often the Hessian matrix is sparse and structured, and it is preferable to exploit such information when available. Using symmetry in the second derivative values of the components it is possible to detect the sparsity pattern of the Hessian via products of the Hessian matrix with specially chosen direction vectors. We use graph coloring methods and employ efficient sparse data structures to implement the sparsity pattern detection algorithms. Results from preliminary numerical testings are highly promising.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"23 1","pages":"151-154"},"PeriodicalIF":0.0,"publicationDate":"2017-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86117958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Proof of a series solution for euler's trinomial equation 欧拉三叉方程级数解的证明
Pub Date : 2017-02-22 DOI: 10.1145/3055282.3055284
Fei Wang
In 1779, Leonhard Euler published a paper about Lambert's transcendental equation in the symmetric form xαxβ = (αβ)vxα+β. In the paper, he studied the series solution of this equation and other results based on an assumption which was not proved in the paper. Euler's paper gave the first series expanion for the so-called Lambert W function. In this work, we briefly review Euler's results and give a proof to modern standards of rigor of the series solution of Lambert's transcendental equation.
1779年,欧拉发表了一篇关于朗伯特超越方程的论文,其对称形式为xα−xβ = (α−β)vxα+β。在本文中,他基于一个假设研究了该方程的级数解和其他结果,而该假设在本文中没有得到证明。欧拉的论文给出了所谓的朗伯特W函数的第一个级数展开。在这项工作中,我们简要地回顾了欧拉的结果,并给出了兰伯特超越方程级数解的现代严格性标准的证明。
{"title":"Proof of a series solution for euler's trinomial equation","authors":"Fei Wang","doi":"10.1145/3055282.3055284","DOIUrl":"https://doi.org/10.1145/3055282.3055284","url":null,"abstract":"In 1779, Leonhard Euler published a paper about Lambert's transcendental equation in the symmetric form <i>x</i><sup><i>α</i></sup> − <i>x</i><sup><i>β</i></sup> = (<i>α</i> − <i>β</i>)<i>vx</i><sup><i>α</i>+<i>β</i></sup>. In the paper, he studied the series solution of this equation and other results based on an assumption which was not proved in the paper. Euler's paper gave the first series expanion for the so-called Lambert W function. In this work, we briefly review Euler's results and give a proof to modern standards of rigor of the series solution of Lambert's transcendental equation.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"1 1","pages":"136-144"},"PeriodicalIF":0.0,"publicationDate":"2017-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83930373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
ACM Commun. Comput. Algebra
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1