首页 > 最新文献

Advanced genetics (Hoboken, N.J.)最新文献

英文 中文
Advanced Dialogues: From Laboratory to Clinics: Plant Cell-Based Affordable Biologics 高级对话:从实验室到诊所:基于植物细胞的可负担生物制剂
Pub Date : 2025-08-09 DOI: 10.1002/ggn2.202500045
Henry Daniell
<p>My research group at the University of Pennsylvania School of Dental Medicine focuses on noninvasive and affordable delivery of recombinant proteins. Although biologics have been used in the clinic for more than eight decades, they are mostly unaffordable, thereby limiting their access to a large global population. The high cost is largely due to their production in cell culture systems (bacteria, yeast, CHO cells) requiring prohibitively expensive fermentation systems, purification of host cell proteins (>99%) to minimize allergic reactions, and instability of purified proteins requiring cold chain/transportation and invasive delivery through injections. Therefore, my lab pioneered the approach to develop recombinant proteins in edible plant cells that could be delivered orally via capsules or topically using chewing gums, eliminating the need for fermentation, purification, or cold chain. FDA approval of biologics bioencapsulated in plant cells has demonstrated a dramatic decrease in the cost of drugs (<5%) and a fraction of the regulatory cost for launching new drugs. Some of the recent advances are discussed in this editorial.</p><p>Biologics are unavailable or unaffordable for a large majority of the global population because of the way they are produced and delivered. The estimated average cost to develop a new biological product is ≈$2.6 billion.<sup>[</sup><span><sup>1</sup></span><sup>]</sup> Among FDA-approved biologics since 2015, >90% are injectable drugs, which are produced in prohibitively expensive fermentation systems, requiring purification and a cold chain for storage and transportation.<sup>[</sup><span><sup>2-4</sup></span><sup>]</sup> These challenges became quite evident when only 2.2% of COVID-19 vaccines were available for low-income countries, and 19 million doses of mRNA vaccines were discarded in Africa due to a lack of cold chain.<sup>[</sup><span><sup>5</sup></span><sup>]</sup> While oral or topical drugs are highly preferred by patients because of their affordability and convenience, only two oral and four topical biologic drugs were approved by the FDA since 2015,<sup>[</sup><span><sup>2, 3</sup></span><sup>]</sup> probably because of regulatory guidelines developed over eight decades that are built on cell culture-based production of biologics and injectable delivery systems.</p><p>Strikingly, the per capita prescription of drug spending in the U.S. is the highest in the world. The interquartile range of biological product prices ranged from $18861 to $288759 between 2008 and 2021.<sup>[</sup><span><sup>2-6</sup></span><sup>]</sup> However, the cost of Palforzia 360 capsules with peanut cells (annual dose) is <3% (≈$2500) of the median annual price of biologics ($84508).<sup>[</sup><span><sup>2, 3</sup></span><sup>]</sup> This median price excludes prohibitively expensive gene therapy drugs. Hemophilia A drug Roctavian costs $2.9 million per patient (WSJ June 29, 2023), and hemophilia B Hemgenix cost
我在宾夕法尼亚大学牙科医学院的研究小组专注于无创和负担得起的重组蛋白输送。尽管生物制剂在临床上已经使用了80多年,但它们大多是负担不起的,从而限制了它们在全球大量人口中的使用。高成本主要是由于它们在细胞培养系统(细菌、酵母、CHO细胞)中生产,需要昂贵的发酵系统,纯化宿主细胞蛋白(99%)以减少过敏反应,纯化蛋白不稳定,需要冷链/运输和通过注射侵入性递送。因此,我的实验室开创了在可食用植物细胞中开发重组蛋白的方法,这种蛋白质可以通过胶囊口服或局部使用口香糖,从而消除了发酵、纯化或冷链的需要。美国食品和药物管理局(FDA)批准了植物细胞生物包封生物制剂,这表明药物成本大幅降低(5%),而且新药上市的监管成本也只占一小部分。这篇社论讨论了最近的一些进展。由于生物制剂的生产和交付方式,全球绝大多数人口无法获得或负担不起生物制剂。据估计,开发一种新的生物制品的平均成本约为26亿美元自2015年以来,fda批准的生物制剂中,90%是注射药物,这些药物是在昂贵的发酵系统中生产的,需要提纯和冷链储存和运输。[2-4]低收入国家只有2.2%的COVID-19疫苗可获得,非洲由于缺乏冷链而丢弃了1900万剂mRNA疫苗,这些挑战变得非常明显虽然口服或外用药物因其可负担性和便利性而受到患者的高度青睐,但自2015年以来,FDA仅批准了两种口服和四种外用生物制剂,[2,3]可能是因为80多年来制定的监管指南建立在基于细胞培养的生物制剂生产和注射给药系统之上。引人注目的是,美国的人均处方药支出是世界上最高的。2008年至2021年间,生物制品价格的四分位数区间为18861美元至288759美元。[2-6]然而,含有花生细胞的Palforzia 360胶囊(年剂量)的成本是生物制剂年价格中位数(84508美元)的3%(≈2500美元)。[2,3]这个中位数价格不包括昂贵得令人望而却步的基因治疗药物。血友病A药物Roctavian的成本为每名患者290万美元(华尔街日报,2023年6月29日),血友病B药物Hemgenix的成本为每名患者350万美元因此,推进负担得起的生物制剂是卫生公平的最大挑战和机遇之一。胰岛素已在临床上使用了80年,但截断形式或注射递送的局限性尚未得到解决。外周循环注射胰岛素是低血糖和相关心脏自主神经病变的关键因素通过口服给药将胰岛素靶向到肝脏可降低低血糖频繁注射胰岛素会导致治疗不依从,导致不良的健康结果发达国家与费用相关的胰岛素配给对健康造成严重后果因此,迫切需要开发口服或局部给药的非侵入性方法。除了侵入性给药带来的可负担性和患者依从性挑战外,可注射蛋白还面临其他几个挑战。最常见的挑战之一是抗药物抗体,特别是在治疗血友病或溶酶体贮积病的重组蛋白注射中事实上,治疗血友病的基因疗法排除了先前存在抗体的患者。口服免疫疗法已经开发出来,并得到了FDA的批准,用于临床治疗食物过敏原,这为开发对注射蛋白药物的耐受性提供了新的机会。[2,12]生成式人工智能的进步,加速了药物发现和预测新分子、生物标志物和诊断,强调了对快速药物生产和递送方法的需求。在早期的研究中,我利用报告基因在叶绿体中建立了外源基因表达系统。[13,14]然而,很快我就意识到大学实验室的研究可以超越基础科学,于是我利用这种新方法设计出我想要的农艺学性状,并通过赋予植物抗除草剂、抗虫害或抗非生物胁迫的能力来改良植物。 高水平表达这些蛋白的能力(每个植物细胞中有数千个转基因拷贝)以及通过工程叶绿体基因组的母体遗传通过花粉控制转基因逃逸的能力引起了该领域主要期刊的注意[15-18],并导致了大量新闻媒体文章、期刊封面和社论。虽然在电子显微镜下看到叶绿体内的杀虫蛋白晶体超过叶片总蛋白的50%是令人兴奋的,但我意识到,如此高的表达水平是不必要的,因为即使含有1%的叶片总蛋白,商业转基因作物也能成功地部署。因此,我利用该平台技术在叶绿体中生产人类治疗性蛋白,以提高其可及性和可负担性。我很高兴地看到,这些产品中的一些现在已经获得了FDA的批准,可以在人体临床试验中进行评估。[2,4,19 -23]然而,这种多学科方法需要多个领域的跨学科知识,包括健康和疾病条件下的植物、人类和动物生物学、基因组、遗传学、微生物组、生理学、生物化学和免疫学方法,以解决传染病或代谢紊乱问题。深入了解遗传学和基因组学对于推动生物技术的发展至关重要。例如,我们早期对人类血液蛋白在叶绿体中的表达的研究并不成功,因为它们的基因组和蛋白质合成机制存在差异。因此,第一步是对几个叶绿体基因组进行测序,并了解高表达基因的密码子使用/层次结构。[23,24]利用数百个已测序的叶绿体基因组的知识,我们开发了一种将人类基因转化为高表达的叶绿体基因的算法,并证明了最大的人类血液蛋白在叶绿体中的表达和组装。[25,26]密码子优化的人胰岛素基因现在可以在叶绿体中表达高达70%的生菜叶蛋白,具有适当的折叠和功能。植物细胞表达的主要优点包括完全消除了昂贵的细胞培养/发酵系统、纯化、冷藏/运输和无菌注射。人类治疗性蛋白,在冷冻干燥的植物细胞中是稳定的,在室温下储存可以稳定多年,符合FDA对安全性、有效性和口服给药的监管要求。[2-4]同样,了解植物、动物和人类遗传学和基因组学的跨学科领域对于解决这些复杂的生物技术挑战至关重要。回顾过去,最有意义的时刻是深夜收到美国国立卫生研究院(National Institutes of Health)或USAMRID合作者的电子邮件,其中写道:“我们运送的所有免疫动物都在炭疽或鼠疫气溶胶挑战中幸存下来。”令人兴奋的是,我们在植物中开发的疫苗对病原体的攻击是有效的。得到同伴的认可也是有益的,尤其是当他们出乎意料地得到认可时。例如,当我被提名为美国科学促进会(AAAS)院士时,提名委员会主席对我甚至不是成员都很不高兴。在2007年美国科学促进会波士顿会议上获得这一认可之前,我不得不付费订阅《科学》杂志。同样,2004年我去罗马接受全球历史最悠久的国家科学院院士称号的邀请函也被发错了地址。我把信封扔了,以为是寄错邮票的垃圾邮件。后来我才意识到,我确实是这个学院250年历史上的第十四位美国院士,而本杰明·富兰克林是第一位美国院士。我现在是宾夕法尼亚大学的特聘教授,这所大学是由本·富兰克林创立的。然而,如今,新兴的人工智能工具,如Scholar GPS排名,提供了最不具偏见的学术量化指标。再一次让我感到惊讶的是,我在包括基因工程和生物制药在内的多个领域排名全球第一或前十。然而,我鼓励我的学生在获得认可时享受认可,但这不应该影响他们的研究抱负。评估所提出的假设和观察实验设计的结果是最大的持久奖励。根据我的职业生涯,我提供的一个关键指导是寻找多学科合作的机会,以促进自己的职业发展。这需要研究超出自己的专业领域或舒适区。临床医生和基础科学家之间的合作加强了对机制方面的理解和治疗方案的发展。让我举例说明这个具体的例子。从细菌、酵母菌、真菌、人类和动物的基因组中克隆基因来探索生物技术的应用,人们应该感到自在。 例如,口腔癌是由人乳头瘤病毒、厌氧菌(具核假单胞菌、牙龈假单胞菌)引发的,因此,人们需要了解不同的基因组。手术后,放射治疗后,当唾液细胞受损时,唾液的减少会增加酵母菌的定植。因此
{"title":"Advanced Dialogues: From Laboratory to Clinics: Plant Cell-Based Affordable Biologics","authors":"Henry Daniell","doi":"10.1002/ggn2.202500045","DOIUrl":"https://doi.org/10.1002/ggn2.202500045","url":null,"abstract":"&lt;p&gt;My research group at the University of Pennsylvania School of Dental Medicine focuses on noninvasive and affordable delivery of recombinant proteins. Although biologics have been used in the clinic for more than eight decades, they are mostly unaffordable, thereby limiting their access to a large global population. The high cost is largely due to their production in cell culture systems (bacteria, yeast, CHO cells) requiring prohibitively expensive fermentation systems, purification of host cell proteins (&gt;99%) to minimize allergic reactions, and instability of purified proteins requiring cold chain/transportation and invasive delivery through injections. Therefore, my lab pioneered the approach to develop recombinant proteins in edible plant cells that could be delivered orally via capsules or topically using chewing gums, eliminating the need for fermentation, purification, or cold chain. FDA approval of biologics bioencapsulated in plant cells has demonstrated a dramatic decrease in the cost of drugs (&lt;5%) and a fraction of the regulatory cost for launching new drugs. Some of the recent advances are discussed in this editorial.&lt;/p&gt;&lt;p&gt;Biologics are unavailable or unaffordable for a large majority of the global population because of the way they are produced and delivered. The estimated average cost to develop a new biological product is ≈$2.6 billion.&lt;sup&gt;[&lt;/sup&gt;&lt;span&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;/span&gt;&lt;sup&gt;]&lt;/sup&gt; Among FDA-approved biologics since 2015, &gt;90% are injectable drugs, which are produced in prohibitively expensive fermentation systems, requiring purification and a cold chain for storage and transportation.&lt;sup&gt;[&lt;/sup&gt;&lt;span&gt;&lt;sup&gt;2-4&lt;/sup&gt;&lt;/span&gt;&lt;sup&gt;]&lt;/sup&gt; These challenges became quite evident when only 2.2% of COVID-19 vaccines were available for low-income countries, and 19 million doses of mRNA vaccines were discarded in Africa due to a lack of cold chain.&lt;sup&gt;[&lt;/sup&gt;&lt;span&gt;&lt;sup&gt;5&lt;/sup&gt;&lt;/span&gt;&lt;sup&gt;]&lt;/sup&gt; While oral or topical drugs are highly preferred by patients because of their affordability and convenience, only two oral and four topical biologic drugs were approved by the FDA since 2015,&lt;sup&gt;[&lt;/sup&gt;&lt;span&gt;&lt;sup&gt;2, 3&lt;/sup&gt;&lt;/span&gt;&lt;sup&gt;]&lt;/sup&gt; probably because of regulatory guidelines developed over eight decades that are built on cell culture-based production of biologics and injectable delivery systems.&lt;/p&gt;&lt;p&gt;Strikingly, the per capita prescription of drug spending in the U.S. is the highest in the world. The interquartile range of biological product prices ranged from $18861 to $288759 between 2008 and 2021.&lt;sup&gt;[&lt;/sup&gt;&lt;span&gt;&lt;sup&gt;2-6&lt;/sup&gt;&lt;/span&gt;&lt;sup&gt;]&lt;/sup&gt; However, the cost of Palforzia 360 capsules with peanut cells (annual dose) is &lt;3% (≈$2500) of the median annual price of biologics ($84508).&lt;sup&gt;[&lt;/sup&gt;&lt;span&gt;&lt;sup&gt;2, 3&lt;/sup&gt;&lt;/span&gt;&lt;sup&gt;]&lt;/sup&gt; This median price excludes prohibitively expensive gene therapy drugs. Hemophilia A drug Roctavian costs $2.9 million per patient (WSJ June 29, 2023), and hemophilia B Hemgenix cost","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"6 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/ggn2.202500045","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145196679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Board: (Advanced Genetics 2/06) 编委会:(Advanced Genetics 2/06)
Pub Date : 2025-07-10 DOI: 10.1002/ggn2.70004
{"title":"Editorial Board: (Advanced Genetics 2/06)","authors":"","doi":"10.1002/ggn2.70004","DOIUrl":"10.1002/ggn2.70004","url":null,"abstract":"","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"6 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ggn2.70004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144598502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding RNA–Protein Interactions: Methodological Advances and Emerging Challenges (Advanced Genetics 2/06) 解码rna -蛋白质相互作用:方法上的进步和新出现的挑战(Advanced Genetics 2/06)
Pub Date : 2025-07-10 DOI: 10.1002/ggn2.70001
Wenkai Yi, Jian Yan

RNA–Protein Interactions

This cover art symbolizes RNA-protein interaction methodologies. The boy's fishing line represents RNA bait, while the hooked carp embodies RNA-binding proteins captured via dynamic interplay. In article number 2500011, Wenkai Yi and Jian Yan dissect cutting-edge techniques–from RNA-centric to protein-centric–that decode these molecular dialogues, emphasizing their roles in gene regulation and disease. The metaphor underscores how innovative tools “reel in” elusive targets, bridging mechanistic discovery with therapeutic potential.

rna -蛋白质相互作用这幅封面艺术象征着rna -蛋白质相互作用的方法。男孩的鱼线代表RNA诱饵,而被钩住的鲤鱼则代表通过动态相互作用捕获的RNA结合蛋白。在第2500011号文章中,易文凯和闫建剖析了解码这些分子对话的尖端技术——从以rna为中心到以蛋白质为中心,强调了它们在基因调控和疾病中的作用。这个比喻强调了创新工具如何“捕获”难以捉摸的目标,将机械发现与治疗潜力联系起来。
{"title":"Decoding RNA–Protein Interactions: Methodological Advances and Emerging Challenges (Advanced Genetics 2/06)","authors":"Wenkai Yi,&nbsp;Jian Yan","doi":"10.1002/ggn2.70001","DOIUrl":"10.1002/ggn2.70001","url":null,"abstract":"<p><b>RNA–Protein Interactions</b></p><p>This cover art symbolizes RNA-protein interaction methodologies. The boy's fishing line represents RNA bait, while the hooked carp embodies RNA-binding proteins captured via dynamic interplay. In article number 2500011, Wenkai Yi and Jian Yan dissect cutting-edge techniques–from RNA-centric to protein-centric–that decode these molecular dialogues, emphasizing their roles in gene regulation and disease. The metaphor underscores how innovative tools “reel in” elusive targets, bridging mechanistic discovery with therapeutic potential.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"6 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ggn2.70001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144598501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced Dialogues: From Genomes to Microbiomes—A Cross-Disciplinary Journey 高级对话:从基因组到微生物组-一个跨学科的旅程
Pub Date : 2025-06-28 DOI: 10.1002/ggn2.202500039
Jingyuan Fu
<p>My research group, Integrative Omics in Systems Medicine, is affiliated at the University Medical Center Groningen, the Netherlands. Our research aims to understand host-microbe interactions in complex traits and diseases, for which we integrate genetics, microbiome, and large-scale omics data to identify risk factors and their interactions underlying inter-individual variation in disease susceptibility.</p><p>The most pressing challenges lie in the undefined causality and molecular mechanisms underlying observed associations. In the post-GWAS and big data era, many genetic loci, microbial species, and other risk factors have been linked to various phenotypes. However, the translation of these findings into personalized medicine remains limited. I see promising opportunities in two areas. First, recent advances in artificial intelligence (AI) are facilitating genome annotation, risk prediction, and drug target discovery. Second, microfluidic organ-on-a-chip technologies, combined with the differentiation and culturing of human induced pluripotent stem cells (hiPSCs), enable the construction of individualized organ-on-a-chip systems for studying disease mechanisms and testing drugs, all while accounting for a person's unique genetic background.</p><p>My scientific journey has three important turning points. I received my bachelor's degree in biochemistry and switched to the field of bioinformatics for my master's. This was the first turning point that enabled me to establish my knowledge in both molecular biology and bioinformatics. The second turning point was when I successfully completed my Ph.D. project in systems genetics using a plant model organism in 2007. At the time, the first draft sequence of the human genome was just published, and genome-wide association studies (GWAS) began to emerge for genome-wide genetic screening. I saw an opportunity to extend my expertise from plant genomics to human genetics. This chance permitted me to cross the disciplinary border toward the field of medicine. The third turning point took place in 2013 when I further extended my research area from human genetics to the human gut microbiome. The first microbiome study was published in <i>Circulation Research</i> in 2015<sup>[</sup><span><sup>1</sup></span><sup>],</sup> which was highlighted in the <i>TIME</i> book “TIME 100 New Health Discoveries: How the latest breakthroughs affect your health and wellness”.<sup>[</sup><span><sup>2</sup></span><sup>]</sup> Then in 2016, our first metagenome-based study was published in <i>Science</i>, which was also highlighted on the cover.<sup>[</sup><span><sup>3</sup></span><sup>]</sup> These two studies marked the beginning of my scientific journey in the microbiome field. Recently, our studies revealed inter-individual differences in the gut microbiome and the underlying environmental and genetic factors<sup>[</sup><span><sup>4, 5</sup></span><sup>]</sup>, reported its temporal dynamics and stability,<sup>[</sup><sp
我的研究小组,系统医学综合组学,隶属于荷兰格罗宁根大学医学中心。我们的研究旨在了解宿主-微生物在复杂性状和疾病中的相互作用,为此我们整合了遗传学,微生物组学和大规模组学数据,以确定疾病易感性个体间差异的危险因素及其相互作用。最紧迫的挑战在于未定义的因果关系和观察到的关联背后的分子机制。在后gwas和大数据时代,许多基因位点、微生物物种和其他危险因素与各种表型相关。然而,将这些发现转化为个性化医疗仍然有限。我在两个领域看到了有希望的机会。首先,人工智能(AI)的最新进展正在促进基因组注释、风险预测和药物靶点发现。其次,微流控器官芯片技术与人类诱导多能干细胞(hipsc)的分化和培养相结合,能够构建个性化的器官芯片系统,用于研究疾病机制和测试药物,同时考虑到个人独特的遗传背景。我的科学之旅有三个重要的转折点。我获得了生物化学学士学位,然后转到生物信息学领域攻读硕士学位。这是第一个转折点,使我在分子生物学和生物信息学方面建立了自己的知识。第二个转折点是2007年,我成功地完成了系统遗传学博士项目,使用了一种植物模式生物。当时,人类基因组序列初稿刚刚公布,全基因组关联研究(genome-wide association studies, GWAS)开始出现,用于全基因组遗传筛选。我看到了一个机会,可以将我的专业知识从植物基因组学扩展到人类遗传学。这个机会使我能够跨越学科界限,进入医学领域。第三个转折点发生在2013年,我进一步将我的研究领域从人类遗传学扩展到人类肠道微生物组。第一项微生物组研究于2015年发表在《循环研究》杂志上,并在《时代》杂志的《时代100项新的健康发现:最新的突破如何影响你的健康》一书中得到了强调然后在2016年,我们的第一个基于宏基因组的研究发表在《科学》杂志上,这也是封面上的重点这两项研究标志着我在微生物学领域的科学之旅的开始。最近,我们的研究揭示了肠道微生物组的个体间差异及其潜在的环境和遗传因素[4,5],报道了其时间动态和稳定性[6,7],其菌株水平的遗传变异,以及其在代谢调节中与遗传和饮食的相互作用因此,回顾我的科学之旅,我多样化的研究背景证明了走出自己的舒适区,从事跨学科工作的重要性。很多人影响了我的人生。我特别感谢我的博士后导师Cisca wijmenga教授,他是一位有远见的科学家,他的领导能力和创造力对我的发展产生了深远的影响。她在格罗宁根大学医学中心发起了遗传学、微生物组和器官芯片技术的开创性研究。这些领域曾经被视为新兴或高风险领域,现在已成为生物医学研究的不可或缺的支柱,是精准医学和系统生物学重大举措的核心。在她的指导下,我不仅学会了从宏观和跨学科的角度思考,还学会了在基础科学和转化应用之间架起桥梁。她能够提前发现有前途的方向,这让我明白了科学勇气、战略眼光和协作领导力的价值。我经常问自己同样的问题,可能没有完美的答案。学术界的压力是相当大的,中国的情况甚至比荷兰更严重。我最近参加了荷兰奈斯派索公司首席执行官Kika Buhrmann的TEDx演讲。她说,工作是生活的一部分,与时间管理无关——毕竟,我们都有同样多的时间。相反,它是关于能量管理:如何管理你的活动,让它们给你能量,而不是消耗它。这也反映了我的做法。例如,对我来说,每天至少休息1-2小时,在一段时间的紧张工作后休息更长时间来充电是很重要的。我也有一个优先级列表——每天、每周、每月——以帮助跟踪进度并保持专注。最重要的是,我喜欢旅行,这有助于我找到平衡和灵感。今天的科学越来越多地是跨学科的。我对初入职场的研究人员和学生们的建议是:保持好奇,大胆,拥抱未知。 不要害怕走出你的舒适区,跳出框框去思考——这往往是最令人兴奋的发现发生的地方。我坚信团队科学。合作是极其重要的,跨学科的合作不仅能加速科学进步,还能丰富你自己的观点。我很高兴能够与格罗宁根微生物中心的一组研究人员合作,他们有着相似的使命,但具有互补的专业知识。例如,将遗传学与器官芯片技术相结合,可以在与人类相关的背景下对疾病机制进行功能验证。同样,人工智能驱动的模型正在改变我们预测遗传风险、解释非编码变异和发现药物靶点的方式。这种思想的交叉融合正在加速从数据丰富的科学向洞察力丰富的科学的转变。荷兰皇家艺术与科学院和荷兰皇家科学与人文学会的认可对我来说意义深远,这在很大程度上要归功于我的团队、同事和合作者。我还要感谢格罗宁根大学医学中心、格罗宁根大学和生命线生物银行的支持——没有他们,就不可能有今天的成就。我觉得在过去的20年里,随着遗传学和基因组学研究领域的发展,以遗传学为基础的期刊经历了快速的增长。然而,遗传学领域目前在从关联研究向转化研究过渡的过程中遇到了瓶颈。我认为“先进遗传学”应该着眼于“先进”这个词:搭建一个前沿创新突破的平台。为了更好地为研究人员和从业者服务,我认为杂志应该在几个方面继续发展。首先,它们可以通过支持预印本、数据共享和可复制的研究实践来促进更加开放和透明的科学。其次,他们可以积极鼓励反映现代研究复杂性的跨学科提交。第三,期刊可以在指导下一代科学家方面发挥更大的作用,邀请他们加入青年编辑委员会,并为他们提供机会,将他们对未来研究的看法带到该领域。本文由Wiley胡玉明编辑。作者声明不存在利益冲突。
{"title":"Advanced Dialogues: From Genomes to Microbiomes—A Cross-Disciplinary Journey","authors":"Jingyuan Fu","doi":"10.1002/ggn2.202500039","DOIUrl":"10.1002/ggn2.202500039","url":null,"abstract":"&lt;p&gt;My research group, Integrative Omics in Systems Medicine, is affiliated at the University Medical Center Groningen, the Netherlands. Our research aims to understand host-microbe interactions in complex traits and diseases, for which we integrate genetics, microbiome, and large-scale omics data to identify risk factors and their interactions underlying inter-individual variation in disease susceptibility.&lt;/p&gt;&lt;p&gt;The most pressing challenges lie in the undefined causality and molecular mechanisms underlying observed associations. In the post-GWAS and big data era, many genetic loci, microbial species, and other risk factors have been linked to various phenotypes. However, the translation of these findings into personalized medicine remains limited. I see promising opportunities in two areas. First, recent advances in artificial intelligence (AI) are facilitating genome annotation, risk prediction, and drug target discovery. Second, microfluidic organ-on-a-chip technologies, combined with the differentiation and culturing of human induced pluripotent stem cells (hiPSCs), enable the construction of individualized organ-on-a-chip systems for studying disease mechanisms and testing drugs, all while accounting for a person's unique genetic background.&lt;/p&gt;&lt;p&gt;My scientific journey has three important turning points. I received my bachelor's degree in biochemistry and switched to the field of bioinformatics for my master's. This was the first turning point that enabled me to establish my knowledge in both molecular biology and bioinformatics. The second turning point was when I successfully completed my Ph.D. project in systems genetics using a plant model organism in 2007. At the time, the first draft sequence of the human genome was just published, and genome-wide association studies (GWAS) began to emerge for genome-wide genetic screening. I saw an opportunity to extend my expertise from plant genomics to human genetics. This chance permitted me to cross the disciplinary border toward the field of medicine. The third turning point took place in 2013 when I further extended my research area from human genetics to the human gut microbiome. The first microbiome study was published in &lt;i&gt;Circulation Research&lt;/i&gt; in 2015&lt;sup&gt;[&lt;/sup&gt;&lt;span&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;/span&gt;&lt;sup&gt;],&lt;/sup&gt; which was highlighted in the &lt;i&gt;TIME&lt;/i&gt; book “TIME 100 New Health Discoveries: How the latest breakthroughs affect your health and wellness”.&lt;sup&gt;[&lt;/sup&gt;&lt;span&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/span&gt;&lt;sup&gt;]&lt;/sup&gt; Then in 2016, our first metagenome-based study was published in &lt;i&gt;Science&lt;/i&gt;, which was also highlighted on the cover.&lt;sup&gt;[&lt;/sup&gt;&lt;span&gt;&lt;sup&gt;3&lt;/sup&gt;&lt;/span&gt;&lt;sup&gt;]&lt;/sup&gt; These two studies marked the beginning of my scientific journey in the microbiome field. Recently, our studies revealed inter-individual differences in the gut microbiome and the underlying environmental and genetic factors&lt;sup&gt;[&lt;/sup&gt;&lt;span&gt;&lt;sup&gt;4, 5&lt;/sup&gt;&lt;/span&gt;&lt;sup&gt;]&lt;/sup&gt;, reported its temporal dynamics and stability,&lt;sup&gt;[&lt;/sup&gt;&lt;sp","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"6 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ggn2.202500039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144598784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoplatform-Enabled Genetic Interventions for Central Nervous System Disorders: Advances in Delivery Strategies and Therapeutic Potential 中枢神经系统疾病的纳米平台基因干预:递送策略和治疗潜力的进展
Pub Date : 2025-06-24 DOI: 10.1002/ggn2.202500010
Fuming Liang, Shizhen Cui, Jing Yang, Zhaohui He, Ling Zhu

Central nervous system (CNS) disorders are driven by complex genetic and epigenetic factors. While gene-based interventions (siRNA, mRNA, CRISPR systems, etc.) hold transformative potential, their clinical application is severely constrained by inefficient delivery, especially across the blood-brain barrier. Nanocarriers have emerged as transformative platforms that overcome these challenges by enabling efficient BBB penetration while ensuring precise biodistribution control and enhanced therapeutic payload protection. This review explores recent advances in nanoplatform-enabled genetic intervention that overcome the delivery challenges through innovative engineering approaches. We discuss the genetic and epigenetic mechanisms underlying major CNS pathologies, the current limitations of free nucleic acid therapeutics, the development of advanced nanoplatforms that achieve blood-brain barrier penetration and targeted delivery. We further also evaluate therapeutic prospects across disease models while addressing translational challenges in stability, targeting specificity, and manufacturing scalability. By integrating fundamental research with preclinical applications, this review provides both a theoretical framework and practical roadmap for developing next-generation nanotherapeutics for CNS genetic medicine.

中枢神经系统(CNS)疾病是由复杂的遗传和表观遗传因素驱动的。虽然基于基因的干预(siRNA, mRNA, CRISPR系统等)具有变革潜力,但它们的临床应用受到低效率递送的严重限制,特别是通过血脑屏障。纳米载体已经成为一种变革性的平台,通过实现有效的血脑屏障渗透,同时确保精确的生物分布控制和增强的治疗有效载荷保护,克服了这些挑战。这篇综述探讨了纳米平台基因干预的最新进展,通过创新的工程方法克服了递送挑战。我们讨论了主要中枢神经系统病理的遗传和表观遗传机制,游离核酸治疗的当前局限性,实现血脑屏障穿透和靶向递送的先进纳米平台的发展。我们还进一步评估了各种疾病模型的治疗前景,同时解决了稳定性、靶向特异性和制造可扩展性方面的转化挑战。通过将基础研究与临床前应用相结合,本文综述为开发下一代CNS遗传医学纳米疗法提供了理论框架和实践路线图。
{"title":"Nanoplatform-Enabled Genetic Interventions for Central Nervous System Disorders: Advances in Delivery Strategies and Therapeutic Potential","authors":"Fuming Liang,&nbsp;Shizhen Cui,&nbsp;Jing Yang,&nbsp;Zhaohui He,&nbsp;Ling Zhu","doi":"10.1002/ggn2.202500010","DOIUrl":"10.1002/ggn2.202500010","url":null,"abstract":"<p>Central nervous system (CNS) disorders are driven by complex genetic and epigenetic factors. While gene-based interventions (siRNA, mRNA, CRISPR systems, etc.) hold transformative potential, their clinical application is severely constrained by inefficient delivery, especially across the blood-brain barrier. Nanocarriers have emerged as transformative platforms that overcome these challenges by enabling efficient BBB penetration while ensuring precise biodistribution control and enhanced therapeutic payload protection. This review explores recent advances in nanoplatform-enabled genetic intervention that overcome the delivery challenges through innovative engineering approaches. We discuss the genetic and epigenetic mechanisms underlying major CNS pathologies, the current limitations of free nucleic acid therapeutics, the development of advanced nanoplatforms that achieve blood-brain barrier penetration and targeted delivery. We further also evaluate therapeutic prospects across disease models while addressing translational challenges in stability, targeting specificity, and manufacturing scalability. By integrating fundamental research with preclinical applications, this review provides both a theoretical framework and practical roadmap for developing next-generation nanotherapeutics for CNS genetic medicine.</p>","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"6 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ggn2.202500010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144598780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding RNA–Protein Interactions: Methodological Advances and Emerging Challenges 解码rna -蛋白质相互作用:方法进展和新出现的挑战
Pub Date : 2025-05-12 DOI: 10.1002/ggn2.202500011
Wenkai Yi, Jian Yan

RNA–protein interactions are fundamental to cellular processes such as gene regulation and RNA metabolism. Over the past decade, significant advancements in methodologies have transformed the ability to study these interactions with unprecedented resolution and specificity. This review systematically compares RNA- and protein-centric approaches, highlighting their strengths, limitations, and optimal applications. RNA-centric methods, including hybridization-based pulldowns, proximity labeling, and CRISPR-assisted techniques, enable the identification of proteins interacting with specific RNAs, even low-abundance or transient partners. Protein-centric strategies, such as immunoprecipitation-based CLIP-seq, and emerging proximity-tagging methods, map RNA interactomes of RNA-binding proteins with nucleotide precision. This study evaluates key innovations like LACE-seq and ARTR-seq, which minimize cell input requirements, and HyPro-MS, which bypasses genetic modifications. Guidelines for method selection are provided, emphasizing experimental goals, RNA abundance, interaction dynamics, and technical constraints. Critical challenges are also discussed, including capturing low-affinity interactions, resolving RNA structural complexities, and integrating multi-omics data. This review underscores the importance of method-tailoring to biological contexts, offering a roadmap for researchers to navigate the evolving landscape of RNA–protein interaction studies. By bridging technical advancements with practical recommendations, this study aims to accelerate discoveries in RNA biology, therapeutic development, and precision medicine.

RNA -蛋白相互作用是基因调控和RNA代谢等细胞过程的基础。在过去的十年中,方法的重大进步已经改变了以前所未有的分辨率和特异性研究这些相互作用的能力。这篇综述系统地比较了以RNA和蛋白质为中心的方法,突出了它们的优势、局限性和最佳应用。以rna为中心的方法,包括基于杂交的下拉、邻近标记和crispr辅助技术,能够识别与特定rna相互作用的蛋白质,甚至是低丰度或短暂的伴侣。以蛋白质为中心的策略,如基于免疫沉淀的CLIP-seq和新兴的接近性标记方法,以核苷酸精度绘制RNA结合蛋白的RNA相互作用组。这项研究评估了关键的创新,如LACE-seq和ARTR-seq,它们最大限度地减少了细胞输入需求,以及HyPro-MS,它绕过了基因修饰。提供了方法选择指南,强调实验目标、RNA丰度、相互作用动力学和技术限制。还讨论了关键挑战,包括捕获低亲和力相互作用,解决RNA结构复杂性和集成多组学数据。这篇综述强调了根据生物学背景调整方法的重要性,为研究人员导航rna -蛋白质相互作用研究的发展前景提供了路线图。通过将技术进步与实际建议联系起来,本研究旨在加速RNA生物学、治疗开发和精准医学的发现。
{"title":"Decoding RNA–Protein Interactions: Methodological Advances and Emerging Challenges","authors":"Wenkai Yi,&nbsp;Jian Yan","doi":"10.1002/ggn2.202500011","DOIUrl":"10.1002/ggn2.202500011","url":null,"abstract":"<p>RNA–protein interactions are fundamental to cellular processes such as gene regulation and RNA metabolism. Over the past decade, significant advancements in methodologies have transformed the ability to study these interactions with unprecedented resolution and specificity. This review systematically compares RNA- and protein-centric approaches, highlighting their strengths, limitations, and optimal applications. RNA-centric methods, including hybridization-based pulldowns, proximity labeling, and CRISPR-assisted techniques, enable the identification of proteins interacting with specific RNAs, even low-abundance or transient partners. Protein-centric strategies, such as immunoprecipitation-based CLIP-seq, and emerging proximity-tagging methods, map RNA interactomes of RNA-binding proteins with nucleotide precision. This study evaluates key innovations like LACE-seq and ARTR-seq, which minimize cell input requirements, and HyPro-MS, which bypasses genetic modifications. Guidelines for method selection are provided, emphasizing experimental goals, RNA abundance, interaction dynamics, and technical constraints. Critical challenges are also discussed, including capturing low-affinity interactions, resolving RNA structural complexities, and integrating multi-omics data. This review underscores the importance of method-tailoring to biological contexts, offering a roadmap for researchers to navigate the evolving landscape of RNA–protein interaction studies. By bridging technical advancements with practical recommendations, this study aims to accelerate discoveries in RNA biology, therapeutic development, and precision medicine.</p>","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"6 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ggn2.202500011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144598648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Impact of the Rs1044457 Polymorphism in the CMPK1 Gene on the Response Rate to Gemcitabine-Based Chemotherapy in Metastatic NSCLC Patients CMPK1基因Rs1044457多态性对转移性NSCLC患者吉西他滨化疗反应率的影响
Pub Date : 2025-04-04 DOI: 10.1002/ggn2.202400058
Ghassan Saod Saleh, Fouad Kadhim Gatea, Qasim Sharhan Al-Mayah, Hayder Lazim

This study aims to evaluate the role of a specific gene polymorphism, Cytidine/Uridine Monophosphate Kinase 1 (CMPK1) rs1044457, in predicting the response to gemcitabine-based chemotherapy in patients with NSCLC. A total of 98 NSCLC patients are enrolled in the study. Based on their response, patients are classified as either responders or non-responders. Specific primers are designed to amplify the rs1044457 variant and performed genotyping using restriction fragment length polymorphism (RFLP). The rs1044457 variant showed a statistically significant difference in frequency between responder and non-responder patients. The mutant genotype (TT) is more frequent in non-responder patients (18.75%) compared to responder patients (4%), with an odds ratio [OR] of 5.93 (95% confidence interval [CI] = 1.16–30.25, p = 0.032). Additionally, at the allelic level, the mutant allele (T) is more common in non-responder patients (36.46%) compared to responder patients (23%), with a statistically significant odds ratio of 1.92 (95% CI = 1.03–3.58, p = 0.040). The findings of this study suggest that the mutant allele (allele T) of the rs1044457 variant may serve as a risk factor for resistance to gemcitabine-based chemotherapy in patients with NSCLC.

本研究旨在评估特定基因多态性Cytidine/Uridine单磷酸激酶1 (CMPK1) rs1044457在预测非小细胞肺癌患者吉西他滨化疗反应中的作用。共有98名非小细胞肺癌患者参加了这项研究。根据他们的反应,将患者分为反应者和无反应者。设计特异性引物扩增rs1044457变异,并使用限制性片段长度多态性(RFLP)进行基因分型。rs1044457变异在有应答者和无应答者之间的频率有统计学差异。突变基因型(TT)在无应答患者(18.75%)中比应答患者(4%)更常见,优势比[OR]为5.93(95%可信区间[CI] = 1.16-30.25, p = 0.032)。此外,在等位基因水平上,突变等位基因(T)在无应答患者(36.46%)中比应答患者(23%)更常见,优势比为1.92 (95% CI = 1.03-3.58, p = 0.040),具有统计学意义。本研究结果提示,rs1044457变异的突变等位基因(等位基因T)可能是NSCLC患者对吉西他滨化疗耐药的危险因素。
{"title":"The Impact of the Rs1044457 Polymorphism in the CMPK1 Gene on the Response Rate to Gemcitabine-Based Chemotherapy in Metastatic NSCLC Patients","authors":"Ghassan Saod Saleh,&nbsp;Fouad Kadhim Gatea,&nbsp;Qasim Sharhan Al-Mayah,&nbsp;Hayder Lazim","doi":"10.1002/ggn2.202400058","DOIUrl":"10.1002/ggn2.202400058","url":null,"abstract":"<p>This study aims to evaluate the role of a specific gene polymorphism, Cytidine/Uridine Monophosphate Kinase 1 (CMPK1) rs1044457, in predicting the response to gemcitabine-based chemotherapy in patients with NSCLC. A total of 98 NSCLC patients are enrolled in the study. Based on their response, patients are classified as either responders or non-responders. Specific primers are designed to amplify the rs1044457 variant and performed genotyping using restriction fragment length polymorphism (RFLP). The rs1044457 variant showed a statistically significant difference in frequency between responder and non-responder patients. The mutant genotype (TT) is more frequent in non-responder patients (18.75%) compared to responder patients (4%), with an odds ratio [OR] of 5.93 (95% confidence interval [CI] = 1.16–30.25, p = 0.032). Additionally, at the allelic level, the mutant allele (T) is more common in non-responder patients (36.46%) compared to responder patients (23%), with a statistically significant odds ratio of 1.92 (95% CI = 1.03–3.58, p = 0.040). The findings of this study suggest that the mutant allele (allele T) of the rs1044457 variant may serve as a risk factor for resistance to gemcitabine-based chemotherapy in patients with NSCLC.</p>","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"6 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ggn2.202400058","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144598565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Board: (Advanced Genetics 1/06) 编辑委员会:(高级遗传学 1/06)
Pub Date : 2025-03-14 DOI: 10.1002/ggn2.202570012
{"title":"Editorial Board: (Advanced Genetics 1/06)","authors":"","doi":"10.1002/ggn2.202570012","DOIUrl":"10.1002/ggn2.202570012","url":null,"abstract":"","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ggn2.202570012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143629906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
(Advanced Genetics 1/06) (高级遗传学1/06)
Pub Date : 2025-03-14 DOI: 10.1002/ggn2.202570011
{"title":"(Advanced Genetics 1/06)","authors":"","doi":"10.1002/ggn2.202570011","DOIUrl":"10.1002/ggn2.202570011","url":null,"abstract":"","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ggn2.202570011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143629905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteome-Wide Mendelian Randomization Identifies Candidate Causal Proteins for Cardiovascular Diseases 蛋白质组范围内孟德尔随机化确定心血管疾病的候选致病蛋白
Pub Date : 2025-03-10 DOI: 10.1002/ggn2.202500003
Chen Li, Nicolas De Jay, Shan-Shan Zhang, Xin Fang, Supriya Sharma, Katrina A. Catalano, Venkatesh Sridharan, Zhaoqing Wang, Lei Zhao, Joseph D. Szustakowski, Ching-Pin Chang, Joseph C. Maranville, Emily R. Holzinger, Erika M. Kvikstad

Integration of human genomics and other omics across different ancestries provides novel, affordable, and systematic approach for target identification. We used Mendelian randomization approaches to unravel causal associations between 2,940 circulating proteins and 19 CVD. We found 218 proteins that impacted risk of one or more CVDs through forward MR (106 and 182 using cis-pQTLs only and cis- + trans-pQTLs, respectively), among which 107 were previously reported as associated with CVD or CVD-related traits. There were 102 proteins replicated (FDR < 5%, 53 with cis-pQTLs only and 88 with cis- + trans-pQTLs) using the FinnGen Olink data. BTN3A2 was highlighted as a novel candidate gene for ischemic stroke, suggesting a crosstalk between immune modulation and stroke pathogenesis. Single cell integration prioritized PAM for stable angina pectoris and ventricular arrhythmia and LPL for peripheral artery disease, whose transcriptional expressions were enriched in cardiomyocytes. Forward and reverse MR found largely non-overlapping proteins (only 2 overlapped: LGALS4 and MMP12), suggesting distinct proteomic causes and consequences of CVD. Our study provides human genetics-based evidence of novel candidate genes, a foundational step towards full-scale causal human biology-based drug discovery for CVD.

跨不同祖先的人类基因组学和其他组学的整合为目标识别提供了新颖、经济、系统的方法。我们使用孟德尔随机化方法来揭示2940种循环蛋白与19种心血管疾病之间的因果关系。我们发现218个蛋白通过正向MR影响一种或多种CVD的风险(106个和182个分别使用顺式pqtl和顺式+反式pqtl),其中107个先前报道与CVD或CVD相关性状相关。有102个蛋白被复制(FDR <;使用FinnGen Olink数据,53例仅为顺式pqtl, 88例为顺式+ trans- pqtl。BTN3A2被认为是缺血性脑卒中的一个新的候选基因,提示免疫调节与脑卒中发病机制之间存在相互作用。单细胞整合优先考虑稳定型心绞痛和室性心律失常的PAM和外周动脉疾病的LPL,其转录表达在心肌细胞中富集。正向和反向MR发现大部分不重叠的蛋白质(只有2个重叠:LGALS4和MMP12),提示CVD的不同蛋白质组原因和后果。我们的研究为新的候选基因提供了基于人类遗传学的证据,为全面的基于人类生物学的心血管疾病药物发现奠定了基础。
{"title":"Proteome-Wide Mendelian Randomization Identifies Candidate Causal Proteins for Cardiovascular Diseases","authors":"Chen Li,&nbsp;Nicolas De Jay,&nbsp;Shan-Shan Zhang,&nbsp;Xin Fang,&nbsp;Supriya Sharma,&nbsp;Katrina A. Catalano,&nbsp;Venkatesh Sridharan,&nbsp;Zhaoqing Wang,&nbsp;Lei Zhao,&nbsp;Joseph D. Szustakowski,&nbsp;Ching-Pin Chang,&nbsp;Joseph C. Maranville,&nbsp;Emily R. Holzinger,&nbsp;Erika M. Kvikstad","doi":"10.1002/ggn2.202500003","DOIUrl":"10.1002/ggn2.202500003","url":null,"abstract":"<p>Integration of human genomics and other omics across different ancestries provides novel, affordable, and systematic approach for target identification. We used Mendelian randomization approaches to unravel causal associations between 2,940 circulating proteins and 19 CVD. We found 218 proteins that impacted risk of one or more CVDs through forward MR (106 and 182 using cis-pQTLs only and cis- + trans-pQTLs, respectively), among which 107 were previously reported as associated with CVD or CVD-related traits. There were 102 proteins replicated (FDR &lt; 5%, 53 with cis-pQTLs only and 88 with cis- + trans-pQTLs) using the FinnGen Olink data. BTN3A2 was highlighted as a novel candidate gene for ischemic stroke, suggesting a crosstalk between immune modulation and stroke pathogenesis. Single cell integration prioritized PAM for stable angina pectoris and ventricular arrhythmia and LPL for peripheral artery disease, whose transcriptional expressions were enriched in cardiomyocytes. Forward and reverse MR found largely non-overlapping proteins (only 2 overlapped: LGALS4 and MMP12), suggesting distinct proteomic causes and consequences of CVD. Our study provides human genetics-based evidence of novel candidate genes, a foundational step towards full-scale causal human biology-based drug discovery for CVD.</p>","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"6 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ggn2.202500003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144598403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced genetics (Hoboken, N.J.)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1