<p>My research group at the University of Pennsylvania School of Dental Medicine focuses on noninvasive and affordable delivery of recombinant proteins. Although biologics have been used in the clinic for more than eight decades, they are mostly unaffordable, thereby limiting their access to a large global population. The high cost is largely due to their production in cell culture systems (bacteria, yeast, CHO cells) requiring prohibitively expensive fermentation systems, purification of host cell proteins (>99%) to minimize allergic reactions, and instability of purified proteins requiring cold chain/transportation and invasive delivery through injections. Therefore, my lab pioneered the approach to develop recombinant proteins in edible plant cells that could be delivered orally via capsules or topically using chewing gums, eliminating the need for fermentation, purification, or cold chain. FDA approval of biologics bioencapsulated in plant cells has demonstrated a dramatic decrease in the cost of drugs (<5%) and a fraction of the regulatory cost for launching new drugs. Some of the recent advances are discussed in this editorial.</p><p>Biologics are unavailable or unaffordable for a large majority of the global population because of the way they are produced and delivered. The estimated average cost to develop a new biological product is ≈$2.6 billion.<sup>[</sup><span><sup>1</sup></span><sup>]</sup> Among FDA-approved biologics since 2015, >90% are injectable drugs, which are produced in prohibitively expensive fermentation systems, requiring purification and a cold chain for storage and transportation.<sup>[</sup><span><sup>2-4</sup></span><sup>]</sup> These challenges became quite evident when only 2.2% of COVID-19 vaccines were available for low-income countries, and 19 million doses of mRNA vaccines were discarded in Africa due to a lack of cold chain.<sup>[</sup><span><sup>5</sup></span><sup>]</sup> While oral or topical drugs are highly preferred by patients because of their affordability and convenience, only two oral and four topical biologic drugs were approved by the FDA since 2015,<sup>[</sup><span><sup>2, 3</sup></span><sup>]</sup> probably because of regulatory guidelines developed over eight decades that are built on cell culture-based production of biologics and injectable delivery systems.</p><p>Strikingly, the per capita prescription of drug spending in the U.S. is the highest in the world. The interquartile range of biological product prices ranged from $18861 to $288759 between 2008 and 2021.<sup>[</sup><span><sup>2-6</sup></span><sup>]</sup> However, the cost of Palforzia 360 capsules with peanut cells (annual dose) is <3% (≈$2500) of the median annual price of biologics ($84508).<sup>[</sup><span><sup>2, 3</sup></span><sup>]</sup> This median price excludes prohibitively expensive gene therapy drugs. Hemophilia A drug Roctavian costs $2.9 million per patient (WSJ June 29, 2023), and hemophilia B Hemgenix cost
我在宾夕法尼亚大学牙科医学院的研究小组专注于无创和负担得起的重组蛋白输送。尽管生物制剂在临床上已经使用了80多年,但它们大多是负担不起的,从而限制了它们在全球大量人口中的使用。高成本主要是由于它们在细胞培养系统(细菌、酵母、CHO细胞)中生产,需要昂贵的发酵系统,纯化宿主细胞蛋白(99%)以减少过敏反应,纯化蛋白不稳定,需要冷链/运输和通过注射侵入性递送。因此,我的实验室开创了在可食用植物细胞中开发重组蛋白的方法,这种蛋白质可以通过胶囊口服或局部使用口香糖,从而消除了发酵、纯化或冷链的需要。美国食品和药物管理局(FDA)批准了植物细胞生物包封生物制剂,这表明药物成本大幅降低(5%),而且新药上市的监管成本也只占一小部分。这篇社论讨论了最近的一些进展。由于生物制剂的生产和交付方式,全球绝大多数人口无法获得或负担不起生物制剂。据估计,开发一种新的生物制品的平均成本约为26亿美元自2015年以来,fda批准的生物制剂中,90%是注射药物,这些药物是在昂贵的发酵系统中生产的,需要提纯和冷链储存和运输。[2-4]低收入国家只有2.2%的COVID-19疫苗可获得,非洲由于缺乏冷链而丢弃了1900万剂mRNA疫苗,这些挑战变得非常明显虽然口服或外用药物因其可负担性和便利性而受到患者的高度青睐,但自2015年以来,FDA仅批准了两种口服和四种外用生物制剂,[2,3]可能是因为80多年来制定的监管指南建立在基于细胞培养的生物制剂生产和注射给药系统之上。引人注目的是,美国的人均处方药支出是世界上最高的。2008年至2021年间,生物制品价格的四分位数区间为18861美元至288759美元。[2-6]然而,含有花生细胞的Palforzia 360胶囊(年剂量)的成本是生物制剂年价格中位数(84508美元)的3%(≈2500美元)。[2,3]这个中位数价格不包括昂贵得令人望而却步的基因治疗药物。血友病A药物Roctavian的成本为每名患者290万美元(华尔街日报,2023年6月29日),血友病B药物Hemgenix的成本为每名患者350万美元因此,推进负担得起的生物制剂是卫生公平的最大挑战和机遇之一。胰岛素已在临床上使用了80年,但截断形式或注射递送的局限性尚未得到解决。外周循环注射胰岛素是低血糖和相关心脏自主神经病变的关键因素通过口服给药将胰岛素靶向到肝脏可降低低血糖频繁注射胰岛素会导致治疗不依从,导致不良的健康结果发达国家与费用相关的胰岛素配给对健康造成严重后果因此,迫切需要开发口服或局部给药的非侵入性方法。除了侵入性给药带来的可负担性和患者依从性挑战外,可注射蛋白还面临其他几个挑战。最常见的挑战之一是抗药物抗体,特别是在治疗血友病或溶酶体贮积病的重组蛋白注射中事实上,治疗血友病的基因疗法排除了先前存在抗体的患者。口服免疫疗法已经开发出来,并得到了FDA的批准,用于临床治疗食物过敏原,这为开发对注射蛋白药物的耐受性提供了新的机会。[2,12]生成式人工智能的进步,加速了药物发现和预测新分子、生物标志物和诊断,强调了对快速药物生产和递送方法的需求。在早期的研究中,我利用报告基因在叶绿体中建立了外源基因表达系统。[13,14]然而,很快我就意识到大学实验室的研究可以超越基础科学,于是我利用这种新方法设计出我想要的农艺学性状,并通过赋予植物抗除草剂、抗虫害或抗非生物胁迫的能力来改良植物。 高水平表达这些蛋白的能力(每个植物细胞中有数千个转基因拷贝)以及通过工程叶绿体基因组的母体遗传通过花粉控制转基因逃逸的能力引起了该领域主要期刊的注意[15-18],并导致了大量新闻媒体文章、期刊封面和社论。虽然在电子显微镜下看到叶绿体内的杀虫蛋白晶体超过叶片总蛋白的50%是令人兴奋的,但我意识到,如此高的表达水平是不必要的,因为即使含有1%的叶片总蛋白,商业转基因作物也能成功地部署。因此,我利用该平台技术在叶绿体中生产人类治疗性蛋白,以提高其可及性和可负担性。我很高兴地看到,这些产品中的一些现在已经获得了FDA的批准,可以在人体临床试验中进行评估。[2,4,19 -23]然而,这种多学科方法需要多个领域的跨学科知识,包括健康和疾病条件下的植物、人类和动物生物学、基因组、遗传学、微生物组、生理学、生物化学和免疫学方法,以解决传染病或代谢紊乱问题。深入了解遗传学和基因组学对于推动生物技术的发展至关重要。例如,我们早期对人类血液蛋白在叶绿体中的表达的研究并不成功,因为它们的基因组和蛋白质合成机制存在差异。因此,第一步是对几个叶绿体基因组进行测序,并了解高表达基因的密码子使用/层次结构。[23,24]利用数百个已测序的叶绿体基因组的知识,我们开发了一种将人类基因转化为高表达的叶绿体基因的算法,并证明了最大的人类血液蛋白在叶绿体中的表达和组装。[25,26]密码子优化的人胰岛素基因现在可以在叶绿体中表达高达70%的生菜叶蛋白,具有适当的折叠和功能。植物细胞表达的主要优点包括完全消除了昂贵的细胞培养/发酵系统、纯化、冷藏/运输和无菌注射。人类治疗性蛋白,在冷冻干燥的植物细胞中是稳定的,在室温下储存可以稳定多年,符合FDA对安全性、有效性和口服给药的监管要求。[2-4]同样,了解植物、动物和人类遗传学和基因组学的跨学科领域对于解决这些复杂的生物技术挑战至关重要。回顾过去,最有意义的时刻是深夜收到美国国立卫生研究院(National Institutes of Health)或USAMRID合作者的电子邮件,其中写道:“我们运送的所有免疫动物都在炭疽或鼠疫气溶胶挑战中幸存下来。”令人兴奋的是,我们在植物中开发的疫苗对病原体的攻击是有效的。得到同伴的认可也是有益的,尤其是当他们出乎意料地得到认可时。例如,当我被提名为美国科学促进会(AAAS)院士时,提名委员会主席对我甚至不是成员都很不高兴。在2007年美国科学促进会波士顿会议上获得这一认可之前,我不得不付费订阅《科学》杂志。同样,2004年我去罗马接受全球历史最悠久的国家科学院院士称号的邀请函也被发错了地址。我把信封扔了,以为是寄错邮票的垃圾邮件。后来我才意识到,我确实是这个学院250年历史上的第十四位美国院士,而本杰明·富兰克林是第一位美国院士。我现在是宾夕法尼亚大学的特聘教授,这所大学是由本·富兰克林创立的。然而,如今,新兴的人工智能工具,如Scholar GPS排名,提供了最不具偏见的学术量化指标。再一次让我感到惊讶的是,我在包括基因工程和生物制药在内的多个领域排名全球第一或前十。然而,我鼓励我的学生在获得认可时享受认可,但这不应该影响他们的研究抱负。评估所提出的假设和观察实验设计的结果是最大的持久奖励。根据我的职业生涯,我提供的一个关键指导是寻找多学科合作的机会,以促进自己的职业发展。这需要研究超出自己的专业领域或舒适区。临床医生和基础科学家之间的合作加强了对机制方面的理解和治疗方案的发展。让我举例说明这个具体的例子。从细菌、酵母菌、真菌、人类和动物的基因组中克隆基因来探索生物技术的应用,人们应该感到自在。 例如,口腔癌是由人乳头瘤病毒、厌氧菌(具核假单胞菌、牙龈假单胞菌)引发的,因此,人们需要了解不同的基因组。手术后,放射治疗后,当唾液细胞受损时,唾液的减少会增加酵母菌的定植。因此
{"title":"Advanced Dialogues: From Laboratory to Clinics: Plant Cell-Based Affordable Biologics","authors":"Henry Daniell","doi":"10.1002/ggn2.202500045","DOIUrl":"https://doi.org/10.1002/ggn2.202500045","url":null,"abstract":"<p>My research group at the University of Pennsylvania School of Dental Medicine focuses on noninvasive and affordable delivery of recombinant proteins. Although biologics have been used in the clinic for more than eight decades, they are mostly unaffordable, thereby limiting their access to a large global population. The high cost is largely due to their production in cell culture systems (bacteria, yeast, CHO cells) requiring prohibitively expensive fermentation systems, purification of host cell proteins (>99%) to minimize allergic reactions, and instability of purified proteins requiring cold chain/transportation and invasive delivery through injections. Therefore, my lab pioneered the approach to develop recombinant proteins in edible plant cells that could be delivered orally via capsules or topically using chewing gums, eliminating the need for fermentation, purification, or cold chain. FDA approval of biologics bioencapsulated in plant cells has demonstrated a dramatic decrease in the cost of drugs (<5%) and a fraction of the regulatory cost for launching new drugs. Some of the recent advances are discussed in this editorial.</p><p>Biologics are unavailable or unaffordable for a large majority of the global population because of the way they are produced and delivered. The estimated average cost to develop a new biological product is ≈$2.6 billion.<sup>[</sup><span><sup>1</sup></span><sup>]</sup> Among FDA-approved biologics since 2015, >90% are injectable drugs, which are produced in prohibitively expensive fermentation systems, requiring purification and a cold chain for storage and transportation.<sup>[</sup><span><sup>2-4</sup></span><sup>]</sup> These challenges became quite evident when only 2.2% of COVID-19 vaccines were available for low-income countries, and 19 million doses of mRNA vaccines were discarded in Africa due to a lack of cold chain.<sup>[</sup><span><sup>5</sup></span><sup>]</sup> While oral or topical drugs are highly preferred by patients because of their affordability and convenience, only two oral and four topical biologic drugs were approved by the FDA since 2015,<sup>[</sup><span><sup>2, 3</sup></span><sup>]</sup> probably because of regulatory guidelines developed over eight decades that are built on cell culture-based production of biologics and injectable delivery systems.</p><p>Strikingly, the per capita prescription of drug spending in the U.S. is the highest in the world. The interquartile range of biological product prices ranged from $18861 to $288759 between 2008 and 2021.<sup>[</sup><span><sup>2-6</sup></span><sup>]</sup> However, the cost of Palforzia 360 capsules with peanut cells (annual dose) is <3% (≈$2500) of the median annual price of biologics ($84508).<sup>[</sup><span><sup>2, 3</sup></span><sup>]</sup> This median price excludes prohibitively expensive gene therapy drugs. Hemophilia A drug Roctavian costs $2.9 million per patient (WSJ June 29, 2023), and hemophilia B Hemgenix cost","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"6 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/ggn2.202500045","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145196679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This cover art symbolizes RNA-protein interaction methodologies. The boy's fishing line represents RNA bait, while the hooked carp embodies RNA-binding proteins captured via dynamic interplay. In article number 2500011, Wenkai Yi and Jian Yan dissect cutting-edge techniques–from RNA-centric to protein-centric–that decode these molecular dialogues, emphasizing their roles in gene regulation and disease. The metaphor underscores how innovative tools “reel in” elusive targets, bridging mechanistic discovery with therapeutic potential.