Heme is an iron-containing porphyrin that plays an indispensable role in biological system, involved in oxygen transport, electron transfer, gas sensing, enzyme catalysis, etc. Beyond its physiological functions, heme also has wide-ranging applications in pharmaceuticals, food additives, and biotechnology. However, conventional production methods—such as chemical synthesis and extraction from animal blood are hindered by high costs, ethical concerns, environmental burdens, and safety risks. Recent progresses in metabolic engineering and synthetic biology have made it possible to produce free heme using microorganisms, offering a scalable, cost-effective, and sustainable alternative. This review provides a comprehensive overview of bio-based heme production, focusing on: 1) Structure, functions, and synonyms of different heme types; 2) Conserved and divergent heme biosynthetic pathways; 3) Heme biosynthesis regulation involving transcription factors, protein interactions, and small molecules; 4) Recent advances in microbial production of heme and porphyrin intermediates using metabolic engineering strategies; 5) Methods for heme detection, including spectroscopy, chromatography, enzyme-linked immunosorbent assays (ELISA) and whole-cell biosensors. Finally, current challenges and future opportunities, highlighting microbial heme production as a transformative and sustainable strategy to meet growing global demand are discussed.
{"title":"Recent Advances in Bio-Based Production of Free Heme Using Microbial Metabolic Engineering","authors":"Wenya Wang, Haitao Geng, Xuting Sun, Junsheng Huo, Jian Huang, Zhen Guo, Yuwenbin Li, Guimin Zhang","doi":"10.1002/adbi.202500434","DOIUrl":"10.1002/adbi.202500434","url":null,"abstract":"<p>Heme is an iron-containing porphyrin that plays an indispensable role in biological system, involved in oxygen transport, electron transfer, gas sensing, enzyme catalysis, etc. Beyond its physiological functions, heme also has wide-ranging applications in pharmaceuticals, food additives, and biotechnology. However, conventional production methods—such as chemical synthesis and extraction from animal blood are hindered by high costs, ethical concerns, environmental burdens, and safety risks. Recent progresses in metabolic engineering and synthetic biology have made it possible to produce free heme using microorganisms, offering a scalable, cost-effective, and sustainable alternative. This review provides a comprehensive overview of bio-based heme production, focusing on: 1) Structure, functions, and synonyms of different heme types; 2) Conserved and divergent heme biosynthetic pathways; 3) Heme biosynthesis regulation involving transcription factors, protein interactions, and small molecules; 4) Recent advances in microbial production of heme and porphyrin intermediates using metabolic engineering strategies; 5) Methods for heme detection, including spectroscopy, chromatography, enzyme-linked immunosorbent assays (ELISA) and whole-cell biosensors. Finally, current challenges and future opportunities, highlighting microbial heme production as a transformative and sustainable strategy to meet growing global demand are discussed.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"9 12","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145647028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-small cell lung cancer (NSCLC) relapse after therapy is linked to the high aggressiveness, chemoresistance and metastatic potential of tumor cells due, in part, to the presence of cancer stem cells (CSCs). Pro-differentiation approaches have shown promising results for leukemia and in some solid cancer models, offering a possibility to enhance current anti-cancer therapies. Here, the human NSCLC line A549 is exposed to a serum-containing medium supplemented with pro-differentiation factors (DM), and effects on the cells’ proliferation, migration and adhesion properties are assessed in vitro, alongside CSC marker expression analyzed after treatment in 2D or 3D culture conditions. A549 cells exposed to DM exhibited notable morphological changes, with significant increase in cellular footprint and vesicle accumulation. These phenotypic alterations coincided with significant inhibition of proliferation and migration, whereas adhesion properties increased, similar to alkaline phosphatase activity. DM treatment of A549 cells also caused a significant reduction in clonogenic ability by two thirds, as well as halving anchorage-independent colony formation and spheroid growth, alongside a reduced expression of stemness markers SOX2, NANOG, CD44 and ABCG2, and of ALDH activity and aquaporin function. These results indicate decreased pathogenic features of NSCLC cells after DM exposure, suggesting that pro-differentiation treatment may represent a valuable option for further preclinical testing.
{"title":"Differentiation Treatment Applied to Lung Cancer Model Reduces Pathogenic Traits in Vitro","authors":"Alice Grossi, Paola Fulghieri, Abdurakhmon Aduvaliev, Karen Soffiantini, Irene Oldrati, Margherita Cavallo, Marco Biggiogera, Giorgia Pellavio, Umberto Laforenza, Monica Savio, Virginie Sottile","doi":"10.1002/adbi.202500371","DOIUrl":"10.1002/adbi.202500371","url":null,"abstract":"<p>Non-small cell lung cancer (NSCLC) relapse after therapy is linked to the high aggressiveness, chemoresistance and metastatic potential of tumor cells due, in part, to the presence of cancer stem cells (CSCs). Pro-differentiation approaches have shown promising results for leukemia and in some solid cancer models, offering a possibility to enhance current anti-cancer therapies. Here, the human NSCLC line A549 is exposed to a serum-containing medium supplemented with pro-differentiation factors (DM), and effects on the cells’ proliferation, migration and adhesion properties are assessed in vitro, alongside CSC marker expression analyzed after treatment in 2D or 3D culture conditions. A549 cells exposed to DM exhibited notable morphological changes, with significant increase in cellular footprint and vesicle accumulation. These phenotypic alterations coincided with significant inhibition of proliferation and migration, whereas adhesion properties increased, similar to alkaline phosphatase activity. DM treatment of A549 cells also caused a significant reduction in clonogenic ability by two thirds, as well as halving anchorage-independent colony formation and spheroid growth, alongside a reduced expression of stemness markers SOX2, NANOG, CD44 and ABCG2, and of ALDH activity and aquaporin function. These results indicate decreased pathogenic features of NSCLC cells after DM exposure, suggesting that pro-differentiation treatment may represent a valuable option for further preclinical testing.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"10 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12798697/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145627627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liu Yang, Nan Deng, Fan Zhang, Wenxiu Duan, Kanghong Zhu, Hao Chu, Zizhan Gao, Ling Hu, Zijian Wu, Jie Wang
Ischemic heart disease, a leading global cause of mortality, highlights the need for novel therapies. Electroacupuncture (EA) shows cardioprotective potential, yet the central neural mechanisms, particularly the role of the midbrain periaqueductal gray (PAG), remain unclear. This study investigated how EA at Shen men (HT7) improves cardiac function post-myocardial infarction (MI) via Ventrolateral Periaqueductal Gray Matter (vlPAG) glutamatergic(Glu) neurons. Neuronal activity monitored via c-Fos immunofluorescence and fiber photometry is detected. Chemogenetic tools selectively inhibited or activated vlPAG glutamatergic neurons. Cardiac function is assessed by echocardiography and histopathology, while inflammation is analyzed via Western blot and Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction. Improvement of cardiac function: electroacupuncture significantly elevated cardiac function in MI mice to improve the prognostic level of mice; verification of neural mechanism: electroacupuncture selectively activated vlPAG glutamatergic neurons, and the cardioprotective effect of electroacupuncture is suppressed by inhibition of the vlPAGGlu, whereas specific activation of this neuron can mimic the effect of electroacupuncture(EA). This study unveils a central “acupoint-brain-heart” axis, where EA at HT7 engages vlPAG to restore cardiac homeostasis. These findings bridge traditional acupuncture and modern neuroscience, proposing vlPAG glutamatergic pathways as novel targets for cardiovascular therapy.
{"title":"Electroacupuncture Improves Cardiac Function in Mice with Myocardial Infarction through Glu Neurons in Ventrolateral Periaqueductal Gray","authors":"Liu Yang, Nan Deng, Fan Zhang, Wenxiu Duan, Kanghong Zhu, Hao Chu, Zizhan Gao, Ling Hu, Zijian Wu, Jie Wang","doi":"10.1002/adbi.202500158","DOIUrl":"10.1002/adbi.202500158","url":null,"abstract":"<p>Ischemic heart disease, a leading global cause of mortality, highlights the need for novel therapies. Electroacupuncture (EA) shows cardioprotective potential, yet the central neural mechanisms, particularly the role of the midbrain periaqueductal gray (PAG), remain unclear. This study investigated how EA at <i>Shen men</i> (HT7) improves cardiac function post-myocardial infarction (MI) via Ventrolateral Periaqueductal Gray Matter (vlPAG) glutamatergic(Glu) neurons. Neuronal activity monitored via c-Fos immunofluorescence and fiber photometry is detected. Chemogenetic tools selectively inhibited or activated vlPAG glutamatergic neurons. Cardiac function is assessed by echocardiography and histopathology, while inflammation is analyzed via Western blot and Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction. Improvement of cardiac function: electroacupuncture significantly elevated cardiac function in MI mice to improve the prognostic level of mice; verification of neural mechanism: electroacupuncture selectively activated vlPAG glutamatergic neurons, and the cardioprotective effect of electroacupuncture is suppressed by inhibition of the vlPAG<sup>Glu</sup>, whereas specific activation of this neuron can mimic the effect of electroacupuncture(EA). This study unveils a central “acupoint-brain-heart” axis, where EA at HT7 engages vlPAG to restore cardiac homeostasis. These findings bridge traditional acupuncture and modern neuroscience, proposing vlPAG glutamatergic pathways as novel targets for cardiovascular therapy.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"9 12","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145595608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
George A. Lira, Fábio M. de Azevedo, Ingrid G. S. Lins, Janaína C. O. Crispim, Giovanna A. Lira, Rômulo S. Cavalcante, Ricardo Cobucci, Carolina O. Mendes-Aguiar, Rafaela Torres Dantas Da Silva, Vinícius E. da Silva, Ryan C. Q. Aquino, Raimundo F. Araújo Júnior
This study explores the interaction between immune and cancer cells in the tumor microenvironment (TME) of cervical carcinoma (CC), with emphasis on tumor-associated macrophages (M2-TAMs) and the STAT3-NF-κB signaling pathway. It investigates how Treg cell polymorphisms and TAM infiltration through these pathways influence overall survival (OS) in CC patients. This prospective study follows 100 CC patients from 2018 to 2023 using qRT-PCR and immunohistochemistry on tumor samples, and flow cytometry on blood samples to evaluate immunosuppressive cytokines and Treg cell polymorphisms. High stromal CD163+204+ TAM density, mediated by STAT3/NF-κB, correlates with biomarkers such as Ki-67, VEGFα, and FOXP3 (p < 0.001). XPO5 expression is associated with increased STAT3, SNAIL, and HPV 16/18 levels. FOXP3 T allele deletion and HLA-G polymorphism in the blood of patients correlate with higher STAT3 tumor expression and elevated IL-4 and IL-17 blood cytokines. The CXCL12-CXCR4 axis shows a strong association with STAT3, SNAIL in TME and blood cytokines, including IL-6 and IL-12. Elevated CXCL12, CXCR4, and SNAIL expression in TME significantly increases mortality risk. These findings underscore the role of M2TAM infiltration and immune modulation in tumor progression and clinical outcomes in CC.
{"title":"FOXP3 Polymorphism and Upregulation of the CXCL12-CXCR4-SNAIL Axis with High Infiltration of M2TAM by STAT3/NFKB Pathways Influence the Survival of Cervical Cancer Patients","authors":"George A. Lira, Fábio M. de Azevedo, Ingrid G. S. Lins, Janaína C. O. Crispim, Giovanna A. Lira, Rômulo S. Cavalcante, Ricardo Cobucci, Carolina O. Mendes-Aguiar, Rafaela Torres Dantas Da Silva, Vinícius E. da Silva, Ryan C. Q. Aquino, Raimundo F. Araújo Júnior","doi":"10.1002/adbi.202500354","DOIUrl":"10.1002/adbi.202500354","url":null,"abstract":"<p>This study explores the interaction between immune and cancer cells in the tumor microenvironment (TME) of cervical carcinoma (CC), with emphasis on tumor-associated macrophages (M2-TAMs) and the STAT3-NF-κB signaling pathway. It investigates how Treg cell polymorphisms and TAM infiltration through these pathways influence overall survival (OS) in CC patients. This prospective study follows 100 CC patients from 2018 to 2023 using qRT-PCR and immunohistochemistry on tumor samples, and flow cytometry on blood samples to evaluate immunosuppressive cytokines and Treg cell polymorphisms. High stromal CD163+204+ TAM density, mediated by STAT3/NF-κB, correlates with biomarkers such as Ki-67, VEGFα, and FOXP3 (<i>p</i> < 0.001). XPO5 expression is associated with increased STAT3, SNAIL, and HPV 16/18 levels. FOXP3 T allele deletion and HLA-G polymorphism in the blood of patients correlate with higher STAT3 tumor expression and elevated IL-4 and IL-17 blood cytokines. The CXCL12-CXCR4 axis shows a strong association with STAT3, SNAIL in TME and blood cytokines, including IL-6 and IL-12. Elevated CXCL12, CXCR4, and SNAIL expression in TME significantly increases mortality risk. These findings underscore the role of M2TAM infiltration and immune modulation in tumor progression and clinical outcomes in CC.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"9 12","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adbi.202500354","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145556075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bokyong Kim, So-Hui Kim, Jieun Kim, Eun-Young Eo, Hyung-Jun Kim, Jae Ho Lee, Choon-Taek Lee, Taeho Kong, Su Kyoung Seo, Seunghee Lee, Jeongbin Park, Young-Jae Cho
Acute Respiratory Distress Syndrome (ARDS) is a life-threatening condition characterized by severe inflammation and lung damage, leading to critical hypoxemia. Despite its high mortality rate, the only currently available treatment, Dexamethasone, is associated with significant side effects. This study aims to evaluate the efficacy of primed human umbilical cord blood-derived mesenchymal stem cells (hUCB-pMSCs) as a potential alternative treatment for ARDS. A novel lung microphysiological system (MPS) modeling the lung environment is developed and treated with lipopolysaccharide (LPS) to simulate ARDS. The effects of hUCB-pMSCs and dexamethasone are compared using state-of-the-art methods, including fluorescence-based imaging and single-cell RNA sequencing. The hUCB-pMSCs significantly activated angiogenesis-related pathways in endothelial cells and enhanced the formation of tip-like endothelial cells involved in new blood vessel formation. These findings are corroborated by fluorescence microscopy, demonstrating the robust potential of hUCB-pMSCs as a therapeutic approach. Overall, the results support the potential of hUCB-pMSCs as a promising alternative treatment for ARDS.
{"title":"Lung Microphysiological System Validates Novel Cell Therapy for Acute Respiratory Distress Syndrome","authors":"Bokyong Kim, So-Hui Kim, Jieun Kim, Eun-Young Eo, Hyung-Jun Kim, Jae Ho Lee, Choon-Taek Lee, Taeho Kong, Su Kyoung Seo, Seunghee Lee, Jeongbin Park, Young-Jae Cho","doi":"10.1002/adbi.202500225","DOIUrl":"10.1002/adbi.202500225","url":null,"abstract":"<p>Acute Respiratory Distress Syndrome (ARDS) is a life-threatening condition characterized by severe inflammation and lung damage, leading to critical hypoxemia. Despite its high mortality rate, the only currently available treatment, Dexamethasone, is associated with significant side effects. This study aims to evaluate the efficacy of primed human umbilical cord blood-derived mesenchymal stem cells (hUCB-pMSCs) as a potential alternative treatment for ARDS. A novel lung microphysiological system (MPS) modeling the lung environment is developed and treated with lipopolysaccharide (LPS) to simulate ARDS. The effects of hUCB-pMSCs and dexamethasone are compared using state-of-the-art methods, including fluorescence-based imaging and single-cell RNA sequencing. The hUCB-pMSCs significantly activated angiogenesis-related pathways in endothelial cells and enhanced the formation of tip-like endothelial cells involved in new blood vessel formation. These findings are corroborated by fluorescence microscopy, demonstrating the robust potential of hUCB-pMSCs as a therapeutic approach. Overall, the results support the potential of hUCB-pMSCs as a promising alternative treatment for ARDS.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"10 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12789962/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145556021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigates the role and mechanisms of Ras-related nuclear protein (RAN) in lung adenocarcinoma (LUAD). The expression of RAN in LUAD is studied using the The Cancer Genome Atlas (TCGA) database. Clinical samples are collected, and immunohistochemical (IHC) staining is performed to analyze the positive cell rate of RAN in normal and LUAD tissues. The study analyzes the effects of RAN overexpression in A549 and H1299 LUAD cell lines. Various methodologies are employed, including RT-PCR, Western blot, Cell Counting Kit-8 (CCK-8), 5-Ethynyl-2′-deoxyuridine (EdU) staining, wound healing, Transwell assays, immunofluorescence, and 3,3′-ctetraethylbenzimidazolylcarbocyanine iodide (JC-1) staining, to evaluate RAN’s influence on cell proliferation, migration, and autophagy with mitochondrial homeostasis dysregulation. The findings reveal that RAN is significantly overexpressed in LUAD and associated with poorer prognosis. IHC analysis shows that the positive cell rate of RAN is significantly higher in LUAD tissues than in normal tissues. RAN overexpression facilitates proliferation and migration while enhancing autophagic activity, mitochondrial dysregulation, and increasing ATG101 expression. Suppression of ATG101 effectively counteracts the enhanced proliferation induced by RAN overexpression, highlighting ATG101 as a key mediator of RAN’s effects. This study underscores the critical molecular dynamics of LUAD driven by RAN, suggesting that the RAN-ATG101 axis can serve as a novel therapeutic target.
{"title":"RAN Promotes Autophagy and Malignant Progression of Lung Adenocarcinoma through ATG101","authors":"Weiyun Bi, Hongtao Li, Xiaoyong Wu, Cailin Zhu","doi":"10.1002/adbi.202500262","DOIUrl":"10.1002/adbi.202500262","url":null,"abstract":"<p>This study investigates the role and mechanisms of Ras-related nuclear protein (<i>RAN</i>) in lung adenocarcinoma (LUAD). The expression of <i>RAN</i> in LUAD is studied using the The Cancer Genome Atlas (TCGA) database. Clinical samples are collected, and immunohistochemical (IHC) staining is performed to analyze the positive cell rate of <i>RAN</i> in normal and LUAD tissues. The study analyzes the effects of <i>RAN</i> overexpression in A549 and H1299 LUAD cell lines. Various methodologies are employed, including RT-PCR, Western blot, Cell Counting Kit-8 (CCK-8), 5-Ethynyl-2′-deoxyuridine (EdU) staining, wound healing, Transwell assays, immunofluorescence, and 3,3′-ctetraethylbenzimidazolylcarbocyanine iodide (JC-1) staining, to evaluate <i>RAN</i>’s influence on cell proliferation, migration, and autophagy with mitochondrial homeostasis dysregulation. The findings reveal that <i>RAN</i> is significantly overexpressed in LUAD and associated with poorer prognosis. IHC analysis shows that the positive cell rate of <i>RAN</i> is significantly higher in LUAD tissues than in normal tissues. <i>RAN</i> overexpression facilitates proliferation and migration while enhancing autophagic activity, mitochondrial dysregulation, and increasing <i>ATG101</i> expression. Suppression of <i>ATG101</i> effectively counteracts the enhanced proliferation induced by <i>RAN</i> overexpression, highlighting <i>ATG101</i> as a key mediator of <i>RAN</i>’s effects. This study underscores the critical molecular dynamics of LUAD driven by <i>RAN</i>, suggesting that the <i>RAN</i>-<i>ATG101</i> axis can serve as a novel therapeutic target.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"10 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145556031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joseph Carmelo Kalaw San Pascual, Thaned Kangsamaksin
Biologic medicines (or biologics) have revolutionized the treatment of cancer, autoimmune disorders, and genetic conditions. Their therapeutic success stems from complex structural properties that confer high target specificity and biological compatibility. However, their high cost and complex manufacturing limit patient access, with annual treatment expenses often reaching tens of thousands of dollars per patient. Biosimilars, developed to match reference biologics in quality, safety, and efficacy, provide a pathway to curb escalating costs. Having generated more than 36 billion USD in healthcare savings over the past decade, their wider adoption remains challenged by stringent regulatory pathways and the market exclusivity of reference products. These limitations have spurred the development of biobetters, which are engineered biologics with enhanced stability, potency, half-life, or reduced immunogenicity that maximize patient benefit. This review explores the distinctions, development strategies, and regulatory challenges of biologics, biosimilars, and biobetters. Biosimilarity establishment and biobetter design strategies are examined with emphasis on enzyme-based examples such as L-asparaginase and glucarpidase. Advanced delivery technologies have also been demonstrated to improve drug stability, bioavailability, and patient adherence. Finally, emerging innovations and future directions underscore the transformative potential of these biopharmaceuticals in addressing unmet medical needs and expanding global access.
{"title":"Biologics, Biosimilars, and Biobetters: Therapeutic Innovations Reshaping Modern Medicine","authors":"Joseph Carmelo Kalaw San Pascual, Thaned Kangsamaksin","doi":"10.1002/adbi.202500326","DOIUrl":"10.1002/adbi.202500326","url":null,"abstract":"<p>Biologic medicines (or biologics) have revolutionized the treatment of cancer, autoimmune disorders, and genetic conditions. Their therapeutic success stems from complex structural properties that confer high target specificity and biological compatibility. However, their high cost and complex manufacturing limit patient access, with annual treatment expenses often reaching tens of thousands of dollars per patient. Biosimilars, developed to match reference biologics in quality, safety, and efficacy, provide a pathway to curb escalating costs. Having generated more than 36 billion USD in healthcare savings over the past decade, their wider adoption remains challenged by stringent regulatory pathways and the market exclusivity of reference products. These limitations have spurred the development of biobetters, which are engineered biologics with enhanced stability, potency, half-life, or reduced immunogenicity that maximize patient benefit. This review explores the distinctions, development strategies, and regulatory challenges of biologics, biosimilars, and biobetters. Biosimilarity establishment and biobetter design strategies are examined with emphasis on enzyme-based examples such as L-asparaginase and glucarpidase. Advanced delivery technologies have also been demonstrated to improve drug stability, bioavailability, and patient adherence. Finally, emerging innovations and future directions underscore the transformative potential of these biopharmaceuticals in addressing unmet medical needs and expanding global access.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"9 12","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145533977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Donglai Hu, Jiayu Shi, Yao Peng, Ruxin Wang, Wenchen Du, Guicheng Xia
Diminished ovarian reserve (DOR), marked by reduced oocyte quantity and quality, remains therapeutically challenging. This study evaluates the protective effects of Qingxin Jianpi Decoction (QXJP) against cyclophosphamide (CTX)-induced DOR via integrated network pharmacology and experimental validation. Bioactive compounds in QXJP are screened (TCMSP: OB ≥30%, DL ≥0.18) and targets predicted (SwissTargetPrediction). Functional enrichment analysis is performed using DAVID. CTX-induced DOR rats receive QXJP (low/medium/high doses) or resveratrol. Ovarian histology, hormone levels (FSH, LH, E2, and AMH), apoptosis (Bax/Bcl-2, cleaved Caspase-3), ferroptosis markers (SLC7A11, ACSL4, MDA, and 4-HNE), and PI3K/AKT/Nrf2 pathway activity are quantified by Western blot or ELISA. Network pharmacology identifies 176 bioactive compounds targeting 297 DOR-associated genes, highlighting the PI3K-AKT pathway. QXJP restores estrous cyclicity, increases follicle counts, reduces fibrosis, and rebalances FSH, LH, E2, and AMH levels (all p < 0.01). It suppresses granulosa cell apoptosis (decreased Bax/Cleaved Caspase-3, increased Bcl-2), attenuated ferroptosis-related alterations (upregulated SLC7A11, downregulated MDA, 4-HNE, and ACSL4), and activates PI3K/AKT/Nrf2 signaling (increased p-PI3K/PI3K, p-AKT/AKT ratios; upregulates Nrf2, HO-1, and GPX4, p < 0.05). QXJP ameliorates CTX-induced DOR by attenuating ovarian apoptosis and ferroptosis via the PI3K/AKT/Nrf2 pathway. This multi-target mechanism underscores its potential as a herbal therapy for DOR.
{"title":"Qingxin Jianpi Decoction Alleviates Cyclophosphamide-Induced Diminished Ovarian Reserve Via Activation of the PI3K/AKT/Nrf2 Axis and Suppression of Ferroptosis","authors":"Donglai Hu, Jiayu Shi, Yao Peng, Ruxin Wang, Wenchen Du, Guicheng Xia","doi":"10.1002/adbi.202500448","DOIUrl":"10.1002/adbi.202500448","url":null,"abstract":"<p>Diminished ovarian reserve (DOR), marked by reduced oocyte quantity and quality, remains therapeutically challenging. This study evaluates the protective effects of Qingxin Jianpi Decoction (QXJP) against cyclophosphamide (CTX)-induced DOR via integrated network pharmacology and experimental validation. Bioactive compounds in QXJP are screened (TCMSP: OB ≥30%, DL ≥0.18) and targets predicted (SwissTargetPrediction). Functional enrichment analysis is performed using DAVID. CTX-induced DOR rats receive QXJP (low/medium/high doses) or resveratrol. Ovarian histology, hormone levels (FSH, LH, E2, and AMH), apoptosis (Bax/Bcl-2, cleaved Caspase-3), ferroptosis markers (SLC7A11, ACSL4, MDA, and 4-HNE), and PI3K/AKT/Nrf2 pathway activity are quantified by Western blot or ELISA. Network pharmacology identifies 176 bioactive compounds targeting 297 DOR-associated genes, highlighting the PI3K-AKT pathway. QXJP restores estrous cyclicity, increases follicle counts, reduces fibrosis, and rebalances FSH, LH, E2, and AMH levels (all <i>p</i> < 0.01). It suppresses granulosa cell apoptosis (decreased Bax/Cleaved Caspase-3, increased Bcl-2), attenuated ferroptosis-related alterations (upregulated SLC7A11, downregulated MDA, 4-HNE, and ACSL4), and activates PI3K/AKT/Nrf2 signaling (increased p-PI3K/PI3K, p-AKT/AKT ratios; upregulates Nrf2, HO-1, and GPX4, <i>p</i> < 0.05). QXJP ameliorates CTX-induced DOR by attenuating ovarian apoptosis and ferroptosis via the PI3K/AKT/Nrf2 pathway. This multi-target mechanism underscores its potential as a herbal therapy for DOR.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"9 12","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145533983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Hmox1 enzyme, which is the inducible enzyme among the Hmoxs, catalyzes the first and rate-limiting step in the heme degradation pathway, generating three byproducts, namely, carbon monoxide, free iron, and biliverdin. These byproducts can affect an array of biological processes; hence, Hmox1 modulates multiple metabolic processes. Along with the degradation of cytotoxic heme, Hmox1 provides protection against inflammation, apoptosis, and oxidative stress. It also ameliorates tissue injury, maintains iron homeostasis, and supports embryonic survival. Initially, different studies labeled it as an active cancer-assisting agent; however, multiple recent studies have shown that it also deters cancer progression. Hence, this review first looks into the traditional role of Hmox1 and various Hmox1 inducers. Second, there are multiple links between Hmox1 and different types of cancer, including how it acts as a promoter or plays an antitumor role in different or even the same cancers. On the basis of the available data, the work proposes a few speculations to explain this dual role of Hmox1 in cancer.
{"title":"The Paradox of Heme Oxygenase 1: From Cellular Defense to a Tug of War between Cancer Promotion and Prevention","authors":"Sidhant Jain, Meenakshi Rana, Nilza Angmo, Neha Vimal","doi":"10.1002/adbi.202500390","DOIUrl":"10.1002/adbi.202500390","url":null,"abstract":"<p>The Hmox1 enzyme, which is the inducible enzyme among the Hmoxs, catalyzes the first and rate-limiting step in the heme degradation pathway, generating three byproducts, namely, carbon monoxide, free iron, and biliverdin. These byproducts can affect an array of biological processes; hence, Hmox1 modulates multiple metabolic processes. Along with the degradation of cytotoxic heme, Hmox1 provides protection against inflammation, apoptosis, and oxidative stress. It also ameliorates tissue injury, maintains iron homeostasis, and supports embryonic survival. Initially, different studies labeled it as an active cancer-assisting agent; however, multiple recent studies have shown that it also deters cancer progression. Hence, this review first looks into the traditional role of Hmox1 and various Hmox1 inducers. Second, there are multiple links between Hmox1 and different types of cancer, including how it acts as a promoter or plays an antitumor role in different or even the same cancers. On the basis of the available data, the work proposes a few speculations to explain this dual role of Hmox1 in cancer.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"9 12","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145511501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kimberly Seaman, Bryan Guo, William W. Du, Burton Yang, Yu Sun, Lidan You
Bone metastasis causes severe complications for patients suffering from advanced-stage prostate cancer. Exercise is recommended to help maintain musculoskeletal health during treatment. As primary mechanosensors and regulators of bone homeostasis, osteocytes recently investigate for their roles in prostate cancer bone metastasis. Recently, in vivo studies show that exercise mitigates prostate tumor progression and preserves bone structure. In contrast, in vitro studies indicate direct prostate cancer–osteocyte interactions under mechanical loading conditions promote prostate cancer growth and migration but exclude other host cells present in the metastatic bone microenvironment. Thus, these in vitro findings are not consistent with recent in vivo results. In this study, the role of mechanically stimulated osteocytes during the initial stages of metastatis in osteoblast-rich areas is examined. When treated with conditioned media from flow-stimulated osteocytes, osteoblasts reduce PC-3 wound healing migration and invasion compared to static controls. Of interest, osteoblasts treated with flow-stimulated MLO-Y4 and primary osteocyte conditioned media suppress PC-3 cancer cell growth, alter cancer cell morphology, and preserve mineralized matrix in a microfluidic co-culture assay. Overall, the inhibitory role of mechanical loading of osteocytes on the early-stage metastasis of the endosteal surface during prostate cancer bone metastasis is demonstrated.
{"title":"Osteocytes under Mechanical Loading Regulate PC-3 Cancer Cell–Mineral Interactions during Early-Stage Metastasis to Bone","authors":"Kimberly Seaman, Bryan Guo, William W. Du, Burton Yang, Yu Sun, Lidan You","doi":"10.1002/adbi.202500379","DOIUrl":"10.1002/adbi.202500379","url":null,"abstract":"<p>Bone metastasis causes severe complications for patients suffering from advanced-stage prostate cancer. Exercise is recommended to help maintain musculoskeletal health during treatment. As primary mechanosensors and regulators of bone homeostasis, osteocytes recently investigate for their roles in prostate cancer bone metastasis. Recently, in vivo studies show that exercise mitigates prostate tumor progression and preserves bone structure. In contrast, in vitro studies indicate direct prostate cancer–osteocyte interactions under mechanical loading conditions promote prostate cancer growth and migration but exclude other host cells present in the metastatic bone microenvironment. Thus, these in vitro findings are not consistent with recent in vivo results. In this study, the role of mechanically stimulated osteocytes during the initial stages of metastatis in osteoblast-rich areas is examined. When treated with conditioned media from flow-stimulated osteocytes, osteoblasts reduce PC-3 wound healing migration and invasion compared to static controls. Of interest, osteoblasts treated with flow-stimulated MLO-Y4 and primary osteocyte conditioned media suppress PC-3 cancer cell growth, alter cancer cell morphology, and preserve mineralized matrix in a microfluidic co-culture assay. Overall, the inhibitory role of mechanical loading of osteocytes on the early-stage metastasis of the endosteal surface during prostate cancer bone metastasis is demonstrated.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"9 12","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adbi.202500379","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145494430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}