[This corrects the article DOI: 10.34133/bmef.0001.].
[This corrects the article DOI: 10.34133/bmef.0001.].
[This corrects the article DOI: 10.34133/2021/9834163.].
Objective and Impact Statement: We describe an electroenzymatic mediator (EM) sensor based on an electroenzymatic assembly peak separation strategy, which can efficiently realize the simultaneous detection of 3 typical cardiovascular disease (CVD) metabolites in 5 μl of plasma under one test. This work has substantial implications toward improving the efficiency of chronic CVD assessment. Introduction: Monitoring CVD of metabolites is strongly associated with disease risk. Independent and time-consuming detection in hospitals is unfavorable for chronic CVD management. Methods: The EM was flexibly designed by the cross-linking of electron mediators and enzymes, and 3 EM layers with different characteristics were assembled on one electrode. Electrons were transferred under tunable potential; 3 metabolites were quantitatively detected by 3 peak currents that correlated with metabolite concentrations. Results: In this study, the EM sensor showed high sensitivity for the simultaneous detection of 3 metabolites with a lower limit of 0.01 mM. The linear correlation between the sensor and clinical was greater than 0.980 for 242 patients, and the consistency of risk assessment was 94.6%. Conclusion: Metabolites could be expanded by the EM, and the sensor could be a promising candidate as a home healthcare tool for CVD risk assessment.
Objective: We aim to develop a polymer library consisting of phenylalanine-based poly(ester amide)s (Phe-PEAs) for cancer therapy and investigate the structure-property relationship of these polymers to understand their impact on the drug delivery efficiency of corresponding nanoparticles (NPs). Impact Statement: Our study provides insights into the structure-property relationship of polymers in NP-based drug delivery applications and offers a potential polymer library and NP platform for enhancing cancer therapy. Introduction: Polymer NP-based drug delivery systems have demonstrated substantial potential in cancer therapy by improving drug efficacy and minimizing systemic toxicity. However, successful design and optimization of these systems require a comprehensive understanding of the relationship between polymer structure and physicochemical properties, which directly influence the drug delivery efficiency of the corresponding NPs. Methods: A series of Phe-PEAs with tunable structures was synthesized by varying the length of the methylene group in the diol part of the polymers. Subsequently, Phe-PEAs were formulated into NPs for doxorubicin (DOX) delivery in prostate cancer therapy. Results: Small adjustments in polymer structure induced the changes in the hydrophobicity and thermal properties of the PEAs, consequently NP size, drug loading capacity, cellular uptake efficacy, and cytotoxicity. Additionally, DOX-loaded Phe-PEA NPs demonstrated enhanced tumor suppression and reduced side effects in prostate tumor-bearing mice. Conclusion: Phe-PEAs, with their finely tunable structures, show great promise as effective and customizable nanocarriers for cancer therapy.
The wide and frequent use of antibiotics in the treatment of bacterial infection can cause the occurrence of multidrug-resistant bacteria, which becomes a serious health threat. Therefore, it is necessary to develop antibiotic-independent treatment modalities. Chemodynamic therapy (CDT) is defined as the approach employing Fenton and/or Fenton-like reactions for generating hydroxyl radical (•OH) that can kill target cells. Recently, CDT has been successfully employed for antibacterial applications. Apart from the common Fe-mediated CDT strategy, antibacterial CDT strategies mediated by other metal elements such as copper, manganese, cobalt, molybdenum, platinum, tungsten, nickel, silver, ruthenium, and zinc have also been proposed. Furthermore, different types of materials like nanomaterials and hydrogels can be adopted for constructing CDT-involved antibacterial platforms. Besides, CDT can introduce some toxic metal elements and then achieve synergistic antibacterial effects together with reactive oxygen species. Finally, CDT can be combined with other therapies such as starvation therapy, phototherapy, and sonodynamic therapy for achieving improved antibacterial performance. This review first summarizes the advancements in antibacterial CDT and then discusses the present limitations and future research directions in this field, hoping to promote the development of more effective materials and strategies for achieving potentiated CDT.
Objective: The objective of this work is to study the effects of porosity on mechanical and piezoelectric properties of polyvinylidene fluoride (PVDF) films for biomedical applications. Impact Statement: By investigating the piezoelectric properties of PVDF and the porosity effect on its electromechanical performance, there is potential for further development of PVDF as a hemodynamic sensor that can lead to further technological advancements in the biomedical field, benefiting patients and physicians alike. Introduction: PVDF thin films have shown potential in the application of hemodynamic flow sensing and monitoring the effects on blood flow caused by prosthetic valve implantation via the transcatheter aortic valve replacement operation. The piezoelectric performance of PVDF films can be influenced by the porosity of the material. Methods: In this study, strain tracking was performed on thin film PVDF specimens with various levels of porosity and pore sizes to determine the mechanical properties of the specimens. The mechanical properties were used to model the PVDF material in COMSOL multiphysics software, in which compression test simulations were performed to determine the piezoelectric coefficient d33 of the PVDF. Results: A decline in the elastic modulus was found to be highly inversely correlated with porosity of the specimens and the simulation results show that elastic modulus had a much greater effect on the piezoelectric properties than Poisson's ratio. Conclusion: A combination of experimental and computational techniques was able to characterize and correlate the mechanical properties of PVDF films of varying porosities to their piezoelectric properties.
In the era of personalized oncology, there have been accelerated efforts to develop clinically relevant platforms to test drug sensitivities of individual cancers. An ideal assay will serve as a diagnostic companion to inform the oncologist of the various treatments that are sensitive and insensitive, thus improving outcome while minimizing unnecessary toxicities and costs. To date, no such platform exists for clinical use, but promising approaches are on the horizon that take advantage of improved techniques in creating human cancer models that encompass the entire tumor microenvironment, alongside technologies for assessing and analyzing tumor response. This review summarizes a number of current strategies that make use of intact human cancer tissues as organotypic cultures in drug sensitivity testing.