首页 > 最新文献

BoneKEy reports最新文献

英文 中文
The clinical contribution of cortical porosity to fragility fractures. 皮质多孔性对脆性骨折的临床影响。
Pub Date : 2016-10-26 eCollection Date: 2016-01-01 DOI: 10.1038/bonekey.2016.77
Åshild Bjørnerem

Cortical bone is not compact; rather it is penetrated by many Haversian and Volkmann canals for blood supply. The lining of these canals are the intracortical bone surfaces available for bone remodeling. Increasing intracortical bone remodeling increases cortical porosity. However, cortical bone loss occurs more slowly than trabecular loss due to the fact that less surface per unit of bone matrix volume is available for bone remodeling. Nevertheless, most of the bone loss over time is cortical because cortical bone constitutes 80% of the skeleton, and the relative proportion of trabecular bone diminishes with advancing age. Higher serum levels of bone turnover markers are associated with higher cortical porosity of the distal tibia and the proximal femur. Greater porosity of the distal radius is associated with higher odds for forearm fracture, and greater porosity of the proximal femur is associated with higher odds for non-vertebral fracture in postmenopausal women. Measurement of cortical porosity contributes to fracture risk independent of areal bone mineral density and Fracture Risk Assessment Tool. On the other hand, antiresorptive treatment reduces porosity at the distal radius and at the proximal femoral shaft. Thus, porosity is a substantial determinant of the bone fragility that underlies the risk of fractures and may be a target for fracture prevention.

皮质骨并不紧密,而是由许多供血的哈弗斯管和沃尔克曼管穿透。这些通道的内壁是可供骨重塑的皮质内骨表面。增加皮质内骨重塑可增加皮质孔隙率。然而,由于每单位骨基质体积可用于骨重塑的表面较少,因此皮质骨流失的速度比小梁骨流失的速度慢。然而,随着时间的推移,大部分骨质流失的是皮质骨,因为皮质骨占骨骼的 80%,而小梁骨的相对比例会随着年龄的增长而减少。血清中骨转换标志物水平较高与胫骨远端和股骨近端较高的皮质孔隙率有关。桡骨远端的孔隙率越大,前臂骨折的几率越高,股骨近端的孔隙率越大,绝经后女性非椎体骨折的几率越高。皮质孔隙率的测量对骨折风险的影响与平均骨矿物质密度和骨折风险评估工具无关。另一方面,抗骨吸收治疗会降低桡骨远端和股骨近端轴的孔隙率。因此,多孔性是决定骨折风险的骨脆性的重要因素,也可能是预防骨折的目标。
{"title":"The clinical contribution of cortical porosity to fragility fractures.","authors":"Åshild Bjørnerem","doi":"10.1038/bonekey.2016.77","DOIUrl":"10.1038/bonekey.2016.77","url":null,"abstract":"<p><p>Cortical bone is not compact; rather it is penetrated by many Haversian and Volkmann canals for blood supply. The lining of these canals are the intracortical bone surfaces available for bone remodeling. Increasing intracortical bone remodeling increases cortical porosity. However, cortical bone loss occurs more slowly than trabecular loss due to the fact that less surface per unit of bone matrix volume is available for bone remodeling. Nevertheless, most of the bone loss over time is cortical because cortical bone constitutes 80% of the skeleton, and the relative proportion of trabecular bone diminishes with advancing age. Higher serum levels of bone turnover markers are associated with higher cortical porosity of the distal tibia and the proximal femur. Greater porosity of the distal radius is associated with higher odds for forearm fracture, and greater porosity of the proximal femur is associated with higher odds for non-vertebral fracture in postmenopausal women. Measurement of cortical porosity contributes to fracture risk independent of areal bone mineral density and Fracture Risk Assessment Tool. On the other hand, antiresorptive treatment reduces porosity at the distal radius and at the proximal femoral shaft. Thus, porosity is a substantial determinant of the bone fragility that underlies the risk of fractures and may be a target for fracture prevention.</p>","PeriodicalId":72441,"journal":{"name":"BoneKEy reports","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081000/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58485242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ibandronate for the prevention of bone loss after allogeneic stem cell transplantation for hematologic malignancies: a randomized-controlled trial. 依班膦酸钠预防恶性血液病异体干细胞移植后骨质流失:一项随机对照试验。
Pub Date : 2016-10-19 DOI: 10.1038/bonekey.2016.72
Huifang Lu, R. Champlin, U. Popat, X. Pundole, C. Escalante, Xuemei Wang, W. Qiao, W. Murphy, R. Gagel
{"title":"Ibandronate for the prevention of bone loss after allogeneic stem cell transplantation for hematologic malignancies: a randomized-controlled trial.","authors":"Huifang Lu, R. Champlin, U. Popat, X. Pundole, C. Escalante, Xuemei Wang, W. Qiao, W. Murphy, R. Gagel","doi":"10.1038/bonekey.2016.72","DOIUrl":"https://doi.org/10.1038/bonekey.2016.72","url":null,"abstract":"","PeriodicalId":72441,"journal":{"name":"BoneKEy reports","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58485013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Tissue-engineered 3D cancer-in-bone modeling: silk and PUR protocols. 组织工程三维骨癌建模:丝绸和PUR协议。
Pub Date : 2016-10-19 DOI: 10.1038/BONEKEY.2016.75
U. Dadwal, C. Falank, H. Fairfield, Sarah Linehan, C. Rosen, D. Kaplan, J. Sterling, M. Reagan
{"title":"Tissue-engineered 3D cancer-in-bone modeling: silk and PUR protocols.","authors":"U. Dadwal, C. Falank, H. Fairfield, Sarah Linehan, C. Rosen, D. Kaplan, J. Sterling, M. Reagan","doi":"10.1038/BONEKEY.2016.75","DOIUrl":"https://doi.org/10.1038/BONEKEY.2016.75","url":null,"abstract":"","PeriodicalId":72441,"journal":{"name":"BoneKEy reports","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/BONEKEY.2016.75","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58485198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
How rare bone diseases have informed our knowledge of complex diseases. 罕见的骨病如何让我们了解复杂的疾病。
Pub Date : 2016-09-21 DOI: 10.1038/bonekey.2016.69
Mark L. Johnson
{"title":"How rare bone diseases have informed our knowledge of complex diseases.","authors":"Mark L. Johnson","doi":"10.1038/bonekey.2016.69","DOIUrl":"https://doi.org/10.1038/bonekey.2016.69","url":null,"abstract":"","PeriodicalId":72441,"journal":{"name":"BoneKEy reports","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58484978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Osteocyte isolation and culture methods. 骨细胞分离和培养方法。
Pub Date : 2016-09-14 DOI: 10.1038/bonekey.2016.65
Karan M. Shah, M. Stern, A. Stern, J. Pathak, N. Bravenboer, A. Bakker
{"title":"Osteocyte isolation and culture methods.","authors":"Karan M. Shah, M. Stern, A. Stern, J. Pathak, N. Bravenboer, A. Bakker","doi":"10.1038/bonekey.2016.65","DOIUrl":"https://doi.org/10.1038/bonekey.2016.65","url":null,"abstract":"","PeriodicalId":72441,"journal":{"name":"BoneKEy reports","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/bonekey.2016.65","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58484834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
Intramembranous bone regeneration and implant placement using mechanical femoral marrow ablation: rodent models. 机械股骨骨髓消融的膜内骨再生和植入物放置:啮齿动物模型。
Pub Date : 2016-09-07 DOI: 10.1038/bonekey.2016.61
Meghan M. Moran, K. Sena, M. McNulty, D. R. Sumner, A. Virdi
{"title":"Intramembranous bone regeneration and implant placement using mechanical femoral marrow ablation: rodent models.","authors":"Meghan M. Moran, K. Sena, M. McNulty, D. R. Sumner, A. Virdi","doi":"10.1038/bonekey.2016.61","DOIUrl":"https://doi.org/10.1038/bonekey.2016.61","url":null,"abstract":"","PeriodicalId":72441,"journal":{"name":"BoneKEy reports","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58484739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Osteoporosis drug effects on cortical and trabecular bone microstructure: a review of HR-pQCT analyses. 骨质疏松药物对骨皮质和骨小梁微观结构的影响:HR-pQCT分析综述。
Pub Date : 2016-08-31 DOI: 10.1038/bonekey.2016.59
E. Lespessailles, R. Hambli, S. Ferrari
{"title":"Osteoporosis drug effects on cortical and trabecular bone microstructure: a review of HR-pQCT analyses.","authors":"E. Lespessailles, R. Hambli, S. Ferrari","doi":"10.1038/bonekey.2016.59","DOIUrl":"https://doi.org/10.1038/bonekey.2016.59","url":null,"abstract":"","PeriodicalId":72441,"journal":{"name":"BoneKEy reports","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58484597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 33
Post-yield and failure properties of cortical bone. 皮质骨的屈服后和破坏特性。
Pub Date : 2016-08-24 eCollection Date: 2016-01-01 DOI: 10.1038/bonekey.2016.60
Uwe Wolfram, Jakob Schwiedrzik

Ageing and associated skeletal diseases pose a significant challenge for health care systems worldwide. Age-related fractures have a serious impact on personal, social and economic wellbeing. A significant proportion of physiological loading is carried by the cortical shell. Its role in the fracture resistance and strength of whole bones in the ageing skeleton is of utmost importance. Even though a large body of knowledge has been accumulated on this topic on the macroscale, the underlying micromechanical material behaviour and the scale transition of bone's mechanical properties are yet to be uncovered. Therefore, this review aims at providing an overview of the state-of-the-art of the post-yield and failure properties of cortical bone at the extracellular matrix and the tissue level.

老龄化和相关骨骼疾病对全球卫生保健系统构成重大挑战。与年龄有关的骨折对个人、社会和经济福祉都有严重影响。很大一部分生理负荷是由皮质壳承担的。在老化的骨骼中,它对整个骨骼的抗骨折性和强度的作用是至关重要的。尽管在宏观尺度上已经积累了大量关于这一主题的知识,但潜在的微观力学材料行为和骨力学性能的尺度转换尚未被揭示。因此,本综述旨在概述细胞外基质和组织水平上皮质骨的屈服后和失效特性的最新进展。
{"title":"Post-yield and failure properties of cortical bone.","authors":"Uwe Wolfram,&nbsp;Jakob Schwiedrzik","doi":"10.1038/bonekey.2016.60","DOIUrl":"https://doi.org/10.1038/bonekey.2016.60","url":null,"abstract":"<p><p>Ageing and associated skeletal diseases pose a significant challenge for health care systems worldwide. Age-related fractures have a serious impact on personal, social and economic wellbeing. A significant proportion of physiological loading is carried by the cortical shell. Its role in the fracture resistance and strength of whole bones in the ageing skeleton is of utmost importance. Even though a large body of knowledge has been accumulated on this topic on the macroscale, the underlying micromechanical material behaviour and the scale transition of bone's mechanical properties are yet to be uncovered. Therefore, this review aims at providing an overview of the state-of-the-art of the post-yield and failure properties of cortical bone at the extracellular matrix and the tissue level. </p>","PeriodicalId":72441,"journal":{"name":"BoneKEy reports","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/bonekey.2016.60","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34350876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 74
Skeletal implications and management of cystinosis: three case reports and literature review. 胱氨酸病对骨骼的影响及治疗:三例报告及文献回顾。
Pub Date : 2016-08-17 eCollection Date: 2016-01-01 DOI: 10.1038/bonekey.2016.55
Justine Bacchetta, Marcella Greco, Aurélia Bertholet-Thomas, François Nobili, Jozef Zustin, Pierre Cochat, Francesco Emma, Georges Boivin

Hypophosphatemic rickets and short stature are observed in nephropathic cystinosis, an orphan autosomal recessive lysosomal storage disease due to a deficiency of cystinosin (CTNS gene). Although bone impairment is not common, it nevertheless appears to be more and more discussed by experts, even though the exact underlying pathophysiology is unclear. Four hypotheses are currently discussed to explain such impairment: copper deficiency, bone consequences of severe hypophosphatemic rickets during infancy, cysteamine toxicity and abnormal thyroid metabolism. In murine models, the invalidation of the CTNS gene is associated neither with renal phosphate wasting nor with renal failure, but causes severe osteopenia and growth retardation, thus raising the hypothesis of a specific underlying bone defect in cystinosis. Moreover, the in vitro ability of mesenchymal stromal cells isolated from bone marrow to differentiate along the osteoblastic lineage is reduced in patients with cystinosis as compared with cells obtained from healthy controls, this cellular abnormality being reverted after cysteamine treatment. From our experience of three pediatric patients with cystinosis and severe bone deformations having undergone a thorough biochemical evaluation, as well as a bone biopsy, we conclude that even though copper deficiency, high-doses cysteamine regimens and abnormal thyroid metabolism may worsen the bone picture in cystinosis patients, the exact pathophysiology of such impairment remains to be defined. The role of chronic hypoparathyroidism due to chronic phosphate wasting could also be discussed. In the future, larger and prospective studies should focus on this topic because of the potential major impact on patients' quality of life.

肾病型胱氨酸病是一种由胱氨酸蛋白(CTNS基因)缺乏引起的孤儿常染色体隐性溶酶体贮积病,在肾病型胱氨酸病中可观察到低磷血症性佝偻病和身材矮小。尽管骨损伤并不常见,但专家们似乎越来越多地讨论它,尽管确切的潜在病理生理机制尚不清楚。目前讨论了四种假说来解释这种损害:铜缺乏、婴儿期严重低磷血症佝偻病对骨骼的影响、半胱胺毒性和甲状腺代谢异常。在小鼠模型中,CTNS基因的失效与肾磷消耗和肾功能衰竭无关,但会导致严重的骨质减少和生长迟缓,因此提出了胱氨酸病中特异性潜在骨缺陷的假设。此外,与健康对照相比,胱氨酸病患者骨髓中分离的间充质间质细胞沿成骨细胞谱系分化的体外能力降低,这种细胞异常在半胱胺治疗后恢复。根据我们对三名患有胱氨酸病和严重骨变形的儿童患者的经验,我们进行了彻底的生化评估和骨活检,我们得出结论,尽管铜缺乏、高剂量半胱胺治疗和甲状腺代谢异常可能会使胱氨酸病患者的骨骼状况恶化,但这种损害的确切病理生理机制仍有待明确。慢性磷酸盐消耗引起的慢性甲状旁腺功能减退的作用也可以讨论。由于对患者的生活质量有潜在的重大影响,在未来,更大规模的前瞻性研究应该关注这一主题。
{"title":"Skeletal implications and management of cystinosis: three case reports and literature review.","authors":"Justine Bacchetta,&nbsp;Marcella Greco,&nbsp;Aurélia Bertholet-Thomas,&nbsp;François Nobili,&nbsp;Jozef Zustin,&nbsp;Pierre Cochat,&nbsp;Francesco Emma,&nbsp;Georges Boivin","doi":"10.1038/bonekey.2016.55","DOIUrl":"https://doi.org/10.1038/bonekey.2016.55","url":null,"abstract":"<p><p>Hypophosphatemic rickets and short stature are observed in nephropathic cystinosis, an orphan autosomal recessive lysosomal storage disease due to a deficiency of cystinosin (CTNS gene). Although bone impairment is not common, it nevertheless appears to be more and more discussed by experts, even though the exact underlying pathophysiology is unclear. Four hypotheses are currently discussed to explain such impairment: copper deficiency, bone consequences of severe hypophosphatemic rickets during infancy, cysteamine toxicity and abnormal thyroid metabolism. In murine models, the invalidation of the CTNS gene is associated neither with renal phosphate wasting nor with renal failure, but causes severe osteopenia and growth retardation, thus raising the hypothesis of a specific underlying bone defect in cystinosis. Moreover, the in vitro ability of mesenchymal stromal cells isolated from bone marrow to differentiate along the osteoblastic lineage is reduced in patients with cystinosis as compared with cells obtained from healthy controls, this cellular abnormality being reverted after cysteamine treatment. From our experience of three pediatric patients with cystinosis and severe bone deformations having undergone a thorough biochemical evaluation, as well as a bone biopsy, we conclude that even though copper deficiency, high-doses cysteamine regimens and abnormal thyroid metabolism may worsen the bone picture in cystinosis patients, the exact pathophysiology of such impairment remains to be defined. The role of chronic hypoparathyroidism due to chronic phosphate wasting could also be discussed. In the future, larger and prospective studies should focus on this topic because of the potential major impact on patients' quality of life. </p>","PeriodicalId":72441,"journal":{"name":"BoneKEy reports","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988218/pdf/bonekey201655.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34350934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Protein/amino-acid modulation of bone cell function 骨细胞功能的蛋白质/氨基酸调节
Pub Date : 2016-08-10 DOI: 10.1038/bonekey.2016.58
R. Macdonell, M. Hamrick, C. Isales
{"title":"Protein/amino-acid modulation of bone cell function","authors":"R. Macdonell, M. Hamrick, C. Isales","doi":"10.1038/bonekey.2016.58","DOIUrl":"https://doi.org/10.1038/bonekey.2016.58","url":null,"abstract":"","PeriodicalId":72441,"journal":{"name":"BoneKEy reports","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/bonekey.2016.58","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58484507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
期刊
BoneKEy reports
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1