This study quantified the regional damages resulting from temperature and sea level changes using the Regional Integrated of Climate and Economy (RICE) model, as well as the effects of enabling and disabling the climate impact module on future emission pathways. Results highlight varied damages depending on regional economic development and locations. Specifically, China and Africa could suffer the most serious comprehensive damages caused by temperature change and sea level rise, followed by India, other developing Asian countries (OthAsia), and other high-income countries (OHI). The comprehensive damage fractions for China and Africa are projected to be 15.1% and 12.5% of gross domestic product (GDP) in 2195, with corresponding cumulative damages of 124.0 trillion and 87.3 trillion United States dollars (USD) from 2005 to 2195, respectively. Meanwhile, the comprehensive damage fractions in Japan, Eurasia, and Russia are smaller and projected to be lower than 5.6% of GDP in 2195, with cumulative damages of 6.8 trillion, 4.2 trillion, and 3.3 trillion USD, respectively. Additionally, coastal regions like Africa, the European Union (EU), and OHI show comparable damages for sea level rise and temperature change. In China, however, sea level-induced damages are projected to exceed those from temperature changes. Moreover, this study indicates that switching the damage modules on or off affects the regional and global emission trajectories, but the magnitude is relatively small. By 2195, global emissions under the experiments with all of the damage modules switched off, only the sea level damage module switched on, and only the temperature damage module switched on, were 3.5%, 2.3% and 1.2% higher than those with all of the damage modules switched on, respectively.
{"title":"Regional Climate Damage Quantification and Its Impacts on Future Emission Pathways Using the RICE Model","authors":"Shili Yang, Wenjie Dong, Jieming Chou, Yong Zhang, Weixing Zhao","doi":"10.1007/s00376-024-3193-z","DOIUrl":"https://doi.org/10.1007/s00376-024-3193-z","url":null,"abstract":"<p>This study quantified the regional damages resulting from temperature and sea level changes using the Regional Integrated of Climate and Economy (RICE) model, as well as the effects of enabling and disabling the climate impact module on future emission pathways. Results highlight varied damages depending on regional economic development and locations. Specifically, China and Africa could suffer the most serious comprehensive damages caused by temperature change and sea level rise, followed by India, other developing Asian countries (OthAsia), and other high-income countries (OHI). The comprehensive damage fractions for China and Africa are projected to be 15.1% and 12.5% of gross domestic product (GDP) in 2195, with corresponding cumulative damages of 124.0 trillion and 87.3 trillion United States dollars (USD) from 2005 to 2195, respectively. Meanwhile, the comprehensive damage fractions in Japan, Eurasia, and Russia are smaller and projected to be lower than 5.6% of GDP in 2195, with cumulative damages of 6.8 trillion, 4.2 trillion, and 3.3 trillion USD, respectively. Additionally, coastal regions like Africa, the European Union (EU), and OHI show comparable damages for sea level rise and temperature change. In China, however, sea level-induced damages are projected to exceed those from temperature changes. Moreover, this study indicates that switching the damage modules on or off affects the regional and global emission trajectories, but the magnitude is relatively small. By 2195, global emissions under the experiments with all of the damage modules switched off, only the sea level damage module switched on, and only the temperature damage module switched on, were 3.5%, 2.3% and 1.2% higher than those with all of the damage modules switched on, respectively.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"31 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141720896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.1007/s00376-024-3297-5
Ming Zhang, Ruiqiang Ding, Quanjia Zhong, Jianping Li, Deyu Lu
In order to quantify the influence of external forcings on the predictability limit using observational data, the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent (CNLLE) method. The effectiveness of this algorithm is validated and compared with the nonlinear local Lyapunov exponent (NLLE) and signal-to-noise ratio methods using a coupled Lorenz model. The results show that the CNLLE method is able to capture the slow error growth constrained by external forcings, therefore, it can quantify the predictability limit induced by the external forcings. On this basis, a preliminary attempt was made to apply this method to measure the influence of ENSO on the predictability limit for both atmospheric and oceanic variable fields. The spatial distribution of the predictability limit induced by ENSO is similar to that arising from the initial conditions calculated by the NLLE method. This similarity supports ENSO as the major predictable signal for weather and climate prediction. In addition, a ratio of predictability limit (RPL) calculated by the CNLLE method to that calculated by the NLLE method was proposed. The RPL larger than 1 indicates that the external forcings can significantly benefit the long-term predictability limit. For instance, ENSO can effectively extend the predictability limit arising from the initial conditions of sea surface temperature over the tropical Indian Ocean by approximately four months, as well as the predictability limit of sea level pressure over the eastern and western Pacific Ocean. Moreover, the impact of ENSO on the geopotential height predictability limit is primarily confined to the troposphere.
{"title":"Application of the Conditional Nonlinear Local Lyapunov Exponent to Second-Kind Predictability","authors":"Ming Zhang, Ruiqiang Ding, Quanjia Zhong, Jianping Li, Deyu Lu","doi":"10.1007/s00376-024-3297-5","DOIUrl":"https://doi.org/10.1007/s00376-024-3297-5","url":null,"abstract":"<p>In order to quantify the influence of external forcings on the predictability limit using observational data, the author introduced an algorithm of the conditional nonlinear local Lyapunov exponent (CNLLE) method. The effectiveness of this algorithm is validated and compared with the nonlinear local Lyapunov exponent (NLLE) and signal-to-noise ratio methods using a coupled Lorenz model. The results show that the CNLLE method is able to capture the slow error growth constrained by external forcings, therefore, it can quantify the predictability limit induced by the external forcings. On this basis, a preliminary attempt was made to apply this method to measure the influence of ENSO on the predictability limit for both atmospheric and oceanic variable fields. The spatial distribution of the predictability limit induced by ENSO is similar to that arising from the initial conditions calculated by the NLLE method. This similarity supports ENSO as the major predictable signal for weather and climate prediction. In addition, a ratio of predictability limit (RPL) calculated by the CNLLE method to that calculated by the NLLE method was proposed. The RPL larger than 1 indicates that the external forcings can significantly benefit the long-term predictability limit. For instance, ENSO can effectively extend the predictability limit arising from the initial conditions of sea surface temperature over the tropical Indian Ocean by approximately four months, as well as the predictability limit of sea level pressure over the eastern and western Pacific Ocean. Moreover, the impact of ENSO on the geopotential height predictability limit is primarily confined to the troposphere.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"4 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141720889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.1007/s00376-024-3194-y
Wenxiu Zhong, Qian Shi, Qinghua Yang, Jiping Liu, Song Yang
Arctic sea ice has undergone a significant decline in the Barents–Kara Sea (BKS) since the late 1990s. Previous studies have shown that the decrease in sea ice caused by increased poleward moisture transport is modulated by tropical sea temperature changes (mainly referring to La Niña events). The occurrence of multi-year La Niña (MYLA) events has increased significantly in recent decades, and their impact on Arctic sea ice needs to be further explored. In this study, we investigate the relationship between sea-ice variation and different atmospheric diagnostics during MYLA and other La Niña (OTLA) years. The decline in BKS sea ice during MYLA winters is significantly stronger than that during OTLA years. This is because MYLA events tend to be accompanied by a warm Arctic–cold continent pattern with a barotropic high pressure blocked over the Urals region. Consequently, more frequent northward atmospheric rivers intrude into the BKS, intensifying longwave radiation downward to the underlying surface and melting the BKS sea ice. However, in the early winter of OTLA years, a negative North Atlantic Oscillation presents in the high latitudes of the Northern Hemisphere, which obstructs the atmospheric rivers to the south of Iceland. We infer that such a different response of BKS sea-ice decline to different La Niña events is related to stratospheric processes. Considering the rapid climate changes in the past, more frequent MYLA events may account for the substantial Arctic sea-ice loss in recent decades.
{"title":"Wintertime Arctic Sea-Ice Decline Related to Multi-Year La Niña Events","authors":"Wenxiu Zhong, Qian Shi, Qinghua Yang, Jiping Liu, Song Yang","doi":"10.1007/s00376-024-3194-y","DOIUrl":"https://doi.org/10.1007/s00376-024-3194-y","url":null,"abstract":"<p>Arctic sea ice has undergone a significant decline in the Barents–Kara Sea (BKS) since the late 1990s. Previous studies have shown that the decrease in sea ice caused by increased poleward moisture transport is modulated by tropical sea temperature changes (mainly referring to La Niña events). The occurrence of multi-year La Niña (MYLA) events has increased significantly in recent decades, and their impact on Arctic sea ice needs to be further explored. In this study, we investigate the relationship between sea-ice variation and different atmospheric diagnostics during MYLA and other La Niña (OTLA) years. The decline in BKS sea ice during MYLA winters is significantly stronger than that during OTLA years. This is because MYLA events tend to be accompanied by a warm Arctic–cold continent pattern with a barotropic high pressure blocked over the Urals region. Consequently, more frequent northward atmospheric rivers intrude into the BKS, intensifying longwave radiation downward to the underlying surface and melting the BKS sea ice. However, in the early winter of OTLA years, a negative North Atlantic Oscillation presents in the high latitudes of the Northern Hemisphere, which obstructs the atmospheric rivers to the south of Iceland. We infer that such a different response of BKS sea-ice decline to different La Niña events is related to stratospheric processes. Considering the rapid climate changes in the past, more frequent MYLA events may account for the substantial Arctic sea-ice loss in recent decades.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"50 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141720890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raindrop size distribution (DSD) plays a crucial role in enhancing the accuracy of radar quantitative precipitation estimates in the Tibetan Plateau (TP). However, there is a notable scarcity of long-term, high-resolution observations in this region. To address this issue, long-term observations from a two-dimensional video disdrometer (2DVD) were leveraged to refine the radar and satellite-based algorithms for quantifying precipitation in the hinterland of the TP. It was observed that weak precipitation (R<1, mm h−1) accounts for 86% of the total precipitation time, while small raindrops (D<2 mm) comprise 99% of the total raindrop count. Furthermore, the average spectral width of the DSD increases with increasing rain rate. The DSD characteristics of convective and stratiform precipitation were discussed across five different rain rates, revealing that convective precipitation in Yangbajain (YBJ) exhibits characteristics similar to maritime-like precipitation. The constrained relationships between the slope Λ and shape μ, Dm and Nw of gamma DSDs were derived. Additionally, we established a correlation between the equivalent diameter and drop axis ratio and found that raindrops on the TP attain a nearly spherical shape. Consequently, the application of the rainfall retrieval algorithms of the dual-frequency precipitation radar in the TP is improved based on the statistical results of the DSD.
雨滴粒径分布(DSD)对提高青藏高原(TP)雷达定量降水估算的准确性起着至关重要的作用。然而,该地区的长期、高分辨率观测数据明显不足。为解决这一问题,利用二维视频测距仪(2DVD)的长期观测数据,改进了雷达和基于卫星的青藏高原腹地降水定量算法。研究发现,弱降水(R<1, mm h-1)占总降水时间的 86%,而小雨点(D<2 mm)占总雨点数的 99%。此外,随着降雨率的增加,DSD 的平均光谱宽度也在增加。讨论了对流性降水和层状降水在五种不同雨率下的DSD特征,发现扬巴津的对流性降水表现出类似于海洋性降水的特征。得出了伽马DSD的斜率Λ和形状μ、Dm和Nw之间的约束关系。此外,我们还建立了等效直径与降水轴比之间的相关性,并发现热带降水带上的雨滴几乎呈球形。因此,基于DSD的统计结果,双频降水雷达的雨量检索算法在TP中的应用得到了改进。
{"title":"Microphysical Characteristics of Rainfall Based on Long-Term Observations with a 2DVD in Yangbajain, Tibet","authors":"Ming Li, Yongheng Bi, Yonghai Shen, Yinan Wang, Ciren Nima, Tianlu Chen, Daren Lyu","doi":"10.1007/s00376-024-3299-3","DOIUrl":"https://doi.org/10.1007/s00376-024-3299-3","url":null,"abstract":"<p>Raindrop size distribution (DSD) plays a crucial role in enhancing the accuracy of radar quantitative precipitation estimates in the Tibetan Plateau (TP). However, there is a notable scarcity of long-term, high-resolution observations in this region. To address this issue, long-term observations from a two-dimensional video disdrometer (2DVD) were leveraged to refine the radar and satellite-based algorithms for quantifying precipitation in the hinterland of the TP. It was observed that weak precipitation (<i>R</i><1, mm h<sup>−1</sup>) accounts for 86% of the total precipitation time, while small raindrops (<i>D</i><2 mm) comprise 99% of the total raindrop count. Furthermore, the average spectral width of the DSD increases with increasing rain rate. The DSD characteristics of convective and stratiform precipitation were discussed across five different rain rates, revealing that convective precipitation in Yangbajain (YBJ) exhibits characteristics similar to maritime-like precipitation. The constrained relationships between the slope Λ and shape <i>μ</i>, <i>D</i><sub><i>m</i></sub> and <i>N</i><sub><i>w</i></sub> of gamma DSDs were derived. Additionally, we established a correlation between the equivalent diameter and drop axis ratio and found that raindrops on the TP attain a nearly spherical shape. Consequently, the application of the rainfall retrieval algorithms of the dual-frequency precipitation radar in the TP is improved based on the statistical results of the DSD.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"12 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141720892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.1007/s00376-024-4175-x
Jianhua Lu
While being successful in the detection and attribution of climate change, the optimal fingerprinting method (OFM) may have some limitations from a physics-and-dynamics-based viewpoint. Here, an analysis is made on the linearity, non-interaction, and stationary-variability assumptions adopted by OFM. It is suggested that furthering OFM needs a viewpoint beyond statistical science, and the method should be combined with theoretical tools in the dynamics and physics of the Earth system, so as to be applied for the detection and attribution of nonlinear climate change including tipping elements within the Earth system.
{"title":"Improving Optimal Fingerprinting Methods Requires a Viewpoint beyond Statistical Science","authors":"Jianhua Lu","doi":"10.1007/s00376-024-4175-x","DOIUrl":"https://doi.org/10.1007/s00376-024-4175-x","url":null,"abstract":"<p>While being successful in the detection and attribution of climate change, the optimal fingerprinting method (OFM) may have some limitations from a physics-and-dynamics-based viewpoint. Here, an analysis is made on the linearity, non-interaction, and stationary-variability assumptions adopted by OFM. It is suggested that furthering OFM needs a viewpoint beyond statistical science, and the method should be combined with theoretical tools in the dynamics and physics of the Earth system, so as to be applied for the detection and attribution of nonlinear climate change including tipping elements within the Earth system.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"41 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1007/s00376-024-4014-0
Zijing Ding, Ruiqi Huang, Zhen Ouyang
An unstably stratified flow entering into a stably stratified flow is referred to as penetrative convection, which is crucial to many physical processes and has been thought of as a key factor for extreme weather conditions. Past theoretical, numerical, and experimental studies on penetrative convection are reviewed, along with field studies providing insights into turbulence modeling. The physical factors that initiate penetrative convection, including internal heat sources, nonlinear constitutive relationships, centrifugal forces and other complicated factors are summarized. Cutting-edge methods for understanding transport mechanisms and statistical properties of penetrative turbulence are also documented, e.g., the variational approach and quasilinear approach, which derive scaling laws embedded in penetrative turbulence. Exploring these scaling laws in penetrative convection can improve our understanding of large-scale geophysical and astrophysical motions. To better the model of penetrative turbulence towards a practical situation, new directions, e.g., penetrative convection in spheres, and radiation-forced convection, are proposed.
{"title":"Scaling Laws Behind Penetrative Turbulence: History and Perspectives","authors":"Zijing Ding, Ruiqi Huang, Zhen Ouyang","doi":"10.1007/s00376-024-4014-0","DOIUrl":"https://doi.org/10.1007/s00376-024-4014-0","url":null,"abstract":"<p>An unstably stratified flow entering into a stably stratified flow is referred to as penetrative convection, which is crucial to many physical processes and has been thought of as a key factor for extreme weather conditions. Past theoretical, numerical, and experimental studies on penetrative convection are reviewed, along with field studies providing insights into turbulence modeling. The physical factors that initiate penetrative convection, including internal heat sources, nonlinear constitutive relationships, centrifugal forces and other complicated factors are summarized. Cutting-edge methods for understanding transport mechanisms and statistical properties of penetrative turbulence are also documented, e.g., the variational approach and quasilinear approach, which derive scaling laws embedded in penetrative turbulence. Exploring these scaling laws in penetrative convection can improve our understanding of large-scale geophysical and astrophysical motions. To better the model of penetrative turbulence towards a practical situation, new directions, e.g., penetrative convection in spheres, and radiation-forced convection, are proposed.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"20 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1007/s00376-024-3278-8
Yiwen Li, Hailong Liu, Pengfei Lin, Eric P. Chassignet, Zipeng Yu, Fanghua Wu
This study assesses the capability of a coarse-resolution ocean model to replicate the response of the Southern Ocean Meridional Overturning Circulation (MOC) to intensified westerlies, focusing on the role of the eddy transfer coefficient (κ). κ is a parameter commonly used to represent the velocities induced by unresolved eddies. Our findings reveal that a stratification-dependent κ, incorporating spatiotemporal variability, leads to the most robust eddy-induced MOC response, capturing 82% of the reference eddy-resolving simulation. Decomposing the eddy-induced velocity into its vertical variation (VV) and spatial structure (SS) components unveils that the enhanced eddy compensation response primarily stems from an augmented SS term, while the introduced VV term weakens the response. Furthermore, the temporal variability of the stratification-dependent κ emerges as a key factor in enhancing the eddy compensation response to intensified westerlies. The experiment with stratification-dependent κ exhibits a more potent eddy compensation response compared to the constant κ, attributed to the structure of κ and the vertical variation of the density slope. These results underscore the critical role of accurately representing κ in capturing the response of the Southern Ocean MOC and emphasize the significance of the isopycnal slope in modulating the eddy compensation mechanism.
本研究评估了粗分辨率海洋模式复制南大洋经向翻转环流(MOC)对西风增强的响应的能力,重点研究了涡旋传递系数(κ)的作用。我们的研究结果表明,与分层有关的κ包含了时空变异性,可导致最稳健的漩涡诱导 MOC 响应,可捕捉到 82% 的参考漩涡解析模拟结果。将涡流诱导的速度分解为垂直变化(VV)和空间结构(SS)两个部分可以发现,涡流补偿响应的增强主要源于 SS 项的增强,而 VV 项的引入则削弱了响应。此外,与分层有关的κ的时变性是增强涡补偿对增强的西风响应的关键因素。与恒定的κ相比,与分层有关的κ实验表现出更强的涡补偿响应,这归因于κ的结构和密度斜率的垂直变化。这些结果突出了准确表示κ在捕捉南大洋 MOC 响应中的关键作用,并强调了等比线斜率在调节涡补偿机制中的重要性。
{"title":"Quantifying the Role of the Eddy Transfer Coefficient in Simulating the Response of the Southern Ocean Meridional Overturning Circulation to Enhanced Westerlies in a Coarse-resolution Model","authors":"Yiwen Li, Hailong Liu, Pengfei Lin, Eric P. Chassignet, Zipeng Yu, Fanghua Wu","doi":"10.1007/s00376-024-3278-8","DOIUrl":"https://doi.org/10.1007/s00376-024-3278-8","url":null,"abstract":"<p>This study assesses the capability of a coarse-resolution ocean model to replicate the response of the Southern Ocean Meridional Overturning Circulation (MOC) to intensified westerlies, focusing on the role of the eddy transfer coefficient (<i>κ</i>). <i>κ</i> is a parameter commonly used to represent the velocities induced by unresolved eddies. Our findings reveal that a stratification-dependent <i>κ</i>, incorporating spatiotemporal variability, leads to the most robust eddy-induced MOC response, capturing 82% of the reference eddy-resolving simulation. Decomposing the eddy-induced velocity into its vertical variation (VV) and spatial structure (SS) components unveils that the enhanced eddy compensation response primarily stems from an augmented SS term, while the introduced VV term weakens the response. Furthermore, the temporal variability of the stratification-dependent <i>κ</i> emerges as a key factor in enhancing the eddy compensation response to intensified westerlies. The experiment with stratification-dependent <i>κ</i> exhibits a more potent eddy compensation response compared to the constant <i>κ</i>, attributed to the structure of <i>κ</i> and the vertical variation of the density slope. These results underscore the critical role of accurately representing <i>κ</i> in capturing the response of the Southern Ocean MOC and emphasize the significance of the isopycnal slope in modulating the eddy compensation mechanism.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"23 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1007/s00376-024-3234-7
Wenqian Jiang, Siqi Li, Yong Li, Meihui Wang, Bo Wang, Ji Liu, Jianlin Shen, Xunhua Zheng
Nitrous oxide (N2O) is a long-lived greenhouse gas that mainly originates from agricultural soils. More and more studies have explored the sources, influencing factors and effective mitigation measures of N2O in recent decades. However, the hierarchy of factors influencing N2O emissions from agricultural soils at the global scale remains unclear. In this study, we carry out correlation and structural equation modeling analysis on a global N2O emission dataset to explore the hierarchy of influencing factors affecting N2O emissions from the nitrogen (N) and non-N fertilized upland farming systems, in terms of climatic factors, soil properties, and agricultural practices. Our results show that the average N2O emission intensity in the N fertilized soils (17.83 g N ha−1 d−1) was significantly greater than that in the non-N fertilized soils (5.34 g N ha−1 d−1) (p< 0.001). Climate factors and agricultural practices are the most important influencing factors on N2O emission in non-N and N fertilized upland soils, respectively. For different climatic zones, without fertilizer, the primary influence factors on soil N2O emissions are soil physical properties in subtropical monsoon zone, whereas climatic factors are key in the temperate zones. With fertilizer, the primary influence factors for subtropical monsoon and temperate continental zones are soil physical properties, while agricultural measures are the main factors in the temperate monsoon zone. Deploying enhanced agricultural practices, such as reduced N fertilizer rate combined with the addition of nitrification and urease inhibitors can potentially mitigate N2O emissions by more than 60% in upland farming systems.
{"title":"Refining the Factors Affecting N2O Emissions from Upland Soils with and without Nitrogen Fertilizer Application at a Global Scale","authors":"Wenqian Jiang, Siqi Li, Yong Li, Meihui Wang, Bo Wang, Ji Liu, Jianlin Shen, Xunhua Zheng","doi":"10.1007/s00376-024-3234-7","DOIUrl":"https://doi.org/10.1007/s00376-024-3234-7","url":null,"abstract":"<p>Nitrous oxide (N<sub>2</sub>O) is a long-lived greenhouse gas that mainly originates from agricultural soils. More and more studies have explored the sources, influencing factors and effective mitigation measures of N<sub>2</sub>O in recent decades. However, the hierarchy of factors influencing N<sub>2</sub>O emissions from agricultural soils at the global scale remains unclear. In this study, we carry out correlation and structural equation modeling analysis on a global N<sub>2</sub>O emission dataset to explore the hierarchy of influencing factors affecting N<sub>2</sub>O emissions from the nitrogen (N) and non-N fertilized upland farming systems, in terms of climatic factors, soil properties, and agricultural practices. Our results show that the average N<sub>2</sub>O emission intensity in the N fertilized soils (17.83 g N ha<sup>−1</sup> d<sup>−1</sup>) was significantly greater than that in the non-N fertilized soils (5.34 g N ha<sup>−1</sup> d<sup>−1</sup>) (<i>p</i>< 0.001). Climate factors and agricultural practices are the most important influencing factors on N<sub>2</sub>O emission in non-N and N fertilized upland soils, respectively. For different climatic zones, without fertilizer, the primary influence factors on soil N<sub>2</sub>O emissions are soil physical properties in subtropical monsoon zone, whereas climatic factors are key in the temperate zones. With fertilizer, the primary influence factors for subtropical monsoon and temperate continental zones are soil physical properties, while agricultural measures are the main factors in the temperate monsoon zone. Deploying enhanced agricultural practices, such as reduced N fertilizer rate combined with the addition of nitrification and urease inhibitors can potentially mitigate N<sub>2</sub>O emissions by more than 60% in upland farming systems.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"205 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1007/s00376-024-3204-0
Yinshuo Dong, Haishan Chen, Xuan Dong, Wenjian Hua, Wenjun Zhang
The Yangtze River basin (YRB) experienced a record-breaking mei-yu season in June–July 2020. This unique long-lasting extreme event and its origin have attracted considerable attention. Previous studies have suggested that the Indian Ocean (IO) SST forcing and soil moisture anomaly over the Indochina Peninsula (ICP) were responsible for this unexpected event. However, the relative contributions of IO SST and ICP soil moisture to the 2020 mei-yu rainfall event, especially their linkage with atmospheric circulation changes, remain unclear. By using observations and numerical simulations, this study examines the synergistic impacts of IO SST and ICP soil moisture on the extreme mei-yu in 2020. Results show that the prolonged dry soil moisture led to a warmer surface over the ICP in May under strong IO SST backgrounds. The intensification of the warm condition further magnified the land thermal effects, which in turn facilitated the westward extension of the western North Pacific subtropical high (WNPSH) in June–July. The intensified WNPSH amplified the water vapor convergence and ascending motion over the YRB, thereby contributing to the 2020 mei-yu. In contrast, the land thermal anomalies diminish during normal IO SST backgrounds due to the limited persistence of soil moisture. The roles of IO SST and ICP soil moisture are verified and quantified using the Community Earth System Model. Their synergistic impacts yield a notable 32% increase in YRB precipitation. Our findings provide evidence for the combined influences of IO SST forcing and ICP soil moisture variability on the occurrence of the 2020 super mei-yu.
{"title":"Synergistic Impacts of Indian Ocean SST and Indo-China Peninsula Soil Moisture on the 2020 Record-breaking Mei-yu","authors":"Yinshuo Dong, Haishan Chen, Xuan Dong, Wenjian Hua, Wenjun Zhang","doi":"10.1007/s00376-024-3204-0","DOIUrl":"https://doi.org/10.1007/s00376-024-3204-0","url":null,"abstract":"<p>The Yangtze River basin (YRB) experienced a record-breaking mei-yu season in June–July 2020. This unique long-lasting extreme event and its origin have attracted considerable attention. Previous studies have suggested that the Indian Ocean (IO) SST forcing and soil moisture anomaly over the Indochina Peninsula (ICP) were responsible for this unexpected event. However, the relative contributions of IO SST and ICP soil moisture to the 2020 mei-yu rainfall event, especially their linkage with atmospheric circulation changes, remain unclear. By using observations and numerical simulations, this study examines the synergistic impacts of IO SST and ICP soil moisture on the extreme mei-yu in 2020. Results show that the prolonged dry soil moisture led to a warmer surface over the ICP in May under strong IO SST backgrounds. The intensification of the warm condition further magnified the land thermal effects, which in turn facilitated the westward extension of the western North Pacific subtropical high (WNPSH) in June–July. The intensified WNPSH amplified the water vapor convergence and ascending motion over the YRB, thereby contributing to the 2020 mei-yu. In contrast, the land thermal anomalies diminish during normal IO SST backgrounds due to the limited persistence of soil moisture. The roles of IO SST and ICP soil moisture are verified and quantified using the Community Earth System Model. Their synergistic impacts yield a notable 32% increase in YRB precipitation. Our findings provide evidence for the combined influences of IO SST forcing and ICP soil moisture variability on the occurrence of the 2020 super mei-yu.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"208 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Warming-induced carbon loss via ecosystem respiration (Re) is probably intensifying in the alpine grassland ecosystem of the Tibetan Plateau owing to more accelerated warming and the higher temperature sensitivity of Re (Q10). However-little is known about the patterns and controlling factors of Q10 on the plateau, impeding the comprehension of the intensity of terrestrial carbon–climate feedbacks for these sensitive and vulnerable ecosystems. Here, we synthesized and analyzed multiyear observations from 14 sites to systematically compare the spatiotemporal variations of Q10 values in diverse climate zones and ecosystems, and further explore the relationships between Q10 and environmental factors. Moreover-structural equation modeling was utilized to identify the direct and indirect factors predicting Q10 values during the annual-growing, and non-growing seasons. The results indicated that the estimated Q10 values were strongly dependent on temperature- generally, with the average Q10 during different time periods increasing with air temperature and soil temperature at different measurement depths (5 cm, 10 cm, 20 cm). The Q10 values differentiated among ecosystems and climatic zones, with warming-induced Q10 declines being stronger in colder regions than elsewhere based on spatial patterns. NDVI was the most cardinal factor in predicting annual Q10 values, significantly and positively correlated with Q10. Soil temperature (Ts) was identified as the other powerful predictor for Q10, and the negative Q10–Ts relationship demonstrates a larger terrestrial carbon loss potentiality in colder than in warmer regions in response to global warming. Note that the interpretations of the effect of soil moisture on Q10 were complicated, reflected in a significant positive relationship between Q10 and soil moisture during the growing season and a strong quadratic correlation between the two during the annual and non-growing season. These findings are conducive to improving our understanding of alpine grassland ecosystem carbon–climate feedbacks under warming climates.
{"title":"Spatiotemporal Variability and Environmental Controls of Temperature Sensitivity of Ecosystem Respiration across the Tibetan Plateau","authors":"Danrui Sheng, Xianhong Meng, Shaoying Wang, Zhaoguo Li, Lunyu Shang, Hao Chen, Lin Zhao, Mingshan Deng, Hanlin Niu, Pengfei Xu, Xiaohu Wen","doi":"10.1007/s00376-024-3167-1","DOIUrl":"https://doi.org/10.1007/s00376-024-3167-1","url":null,"abstract":"<p>Warming-induced carbon loss via ecosystem respiration (<i>R</i><sub><i>e</i></sub>) is probably intensifying in the alpine grassland ecosystem of the Tibetan Plateau owing to more accelerated warming and the higher temperature sensitivity of <i>R</i><sub><i>e</i></sub> (<i>Q</i><sub>10</sub>). However-little is known about the patterns and controlling factors of <i>Q</i><sub>10</sub> on the plateau, impeding the comprehension of the intensity of terrestrial carbon–climate feedbacks for these sensitive and vulnerable ecosystems. Here, we synthesized and analyzed multiyear observations from 14 sites to systematically compare the spatiotemporal variations of <i>Q</i><sub>10</sub> values in diverse climate zones and ecosystems, and further explore the relationships between <i>Q</i><sub>10</sub> and environmental factors. Moreover-structural equation modeling was utilized to identify the direct and indirect factors predicting <i>Q</i><sub>10</sub> values during the annual-growing, and non-growing seasons. The results indicated that the estimated <i>Q</i><sub>10</sub> values were strongly dependent on temperature- generally, with the average <i>Q</i><sub>10</sub> during different time periods increasing with air temperature and soil temperature at different measurement depths (5 cm, 10 cm, 20 cm). The <i>Q</i><sub>10</sub> values differentiated among ecosystems and climatic zones, with warming-induced <i>Q</i><sub>10</sub> declines being stronger in colder regions than elsewhere based on spatial patterns. NDVI was the most cardinal factor in predicting annual <i>Q</i><sub>10</sub> values, significantly and positively correlated with <i>Q</i><sub>10</sub>. Soil temperature (<i>T</i><sub><i>s</i></sub>) was identified as the other powerful predictor for <i>Q</i><sub>10</sub>, and the negative <i>Q</i><sub>10</sub>–<i>T</i><sub><i>s</i></sub> relationship demonstrates a larger terrestrial carbon loss potentiality in colder than in warmer regions in response to global warming. Note that the interpretations of the effect of soil moisture on <i>Q</i><sub>10</sub> were complicated, reflected in a significant positive relationship between <i>Q</i><sub>10</sub> and soil moisture during the growing season and a strong quadratic correlation between the two during the annual and non-growing season. These findings are conducive to improving our understanding of alpine grassland ecosystem carbon–climate feedbacks under warming climates.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"35 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}