Pub Date : 2023-10-23DOI: 10.1016/j.cellin.2023.100128
Jinhua Han , Yanhua Mu , Jun Huang
Various post-translational modifications (PTMs) collaboratively fine-tune protein activities. SUMO-targeted ubiquitin E3 ligases (STUbLs) emerge as specialized enzymes that recognize SUMO-modified substrates through SUMO-interaction motifs and subsequently ubiquitinate them via the RING domain, thereby bridging the SUMO and ubiquitin signaling pathways. STUbLs participate in a wide array of molecular processes, including cell cycle regulation, DNA repair, replication, and mitosis, operating under both normal conditions and in response to challenges such as genotoxic stress. Their ability to catalyze various types of ubiquitin chains results in diverse proteolytic and non-proteolytic outcomes for target substrates. Importantly, STUbLs are strategically positioned in close proximity to SUMO proteases and deubiquitinases (DUBs), ensuring precise and dynamic control over their target proteins. In this review, we provide insights into the unique properties and indispensable roles of STUbLs, with a particular emphasis on their significance in preserving genome integrity in humans.
{"title":"Preserving genome integrity: The vital role of SUMO-targeted ubiquitin ligases","authors":"Jinhua Han , Yanhua Mu , Jun Huang","doi":"10.1016/j.cellin.2023.100128","DOIUrl":"https://doi.org/10.1016/j.cellin.2023.100128","url":null,"abstract":"<div><p>Various post-translational modifications (PTMs) collaboratively fine-tune protein activities. SUMO-targeted ubiquitin E3 ligases (STUbLs) emerge as specialized enzymes that recognize SUMO-modified substrates through SUMO-interaction motifs and subsequently ubiquitinate them via the RING domain, thereby bridging the SUMO and ubiquitin signaling pathways. STUbLs participate in a wide array of molecular processes, including cell cycle regulation, DNA repair, replication, and mitosis, operating under both normal conditions and in response to challenges such as genotoxic stress. Their ability to catalyze various types of ubiquitin chains results in diverse proteolytic and non-proteolytic outcomes for target substrates. Importantly, STUbLs are strategically positioned in close proximity to SUMO proteases and deubiquitinases (DUBs), ensuring precise and dynamic control over their target proteins. In this review, we provide insights into the unique properties and indispensable roles of STUbLs, with a particular emphasis on their significance in preserving genome integrity in humans.</p></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"2 6","pages":"Article 100128"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772892723000524/pdfft?md5=d22991270a5d42822b520c6af5ca62eb&pid=1-s2.0-S2772892723000524-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92047509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-11DOI: 10.1016/j.cellin.2023.100126
Jing Wu , Pan Gao , Yajing Shi , Caixiang Zhang , Xiaohan Tong , Huidi Fan , Xi Zhou , Ying Zhang , Hao Yin
CRISPR-Cas12a has been used for genome editing and molecular diagnosis. The well-studied Cas12a orthologs have a T-rich PAM and are usually categorized as non-thermally stable enzymes. Here, we identified a new Cas12a ortholog from Clostridium thermobutyricum, which survives at 60 °C. This Cas12a ortholog is named as CtCas12a and exhibits low sequence similarity to the known Cas12a family members. CtCas12a is active in a wide temperature range from 17 to 77 °C. Moreover, this ortholog has a relaxed PAM of YYV (YC or T, V = A or C or G). We optimized the conditions for trans-cleavage and enabled its detection of nucleic acids. CtCas12a executed genome editing in human cells and generated up to 26% indel formation in the EGFP locus. With the ability to be active at high temperatures as well as having a relaxed PAM sequence, CtCas12a holds potential to be further engineered for pathogen detection and editing a wide range of genomic sequences.
CRISPR-Cas12a已被用于基因组编辑和分子诊断。研究充分的Cas12a同源物具有富含t的PAM,通常被归类为非热稳定酶。在这里,我们从热丁酸梭菌中鉴定了一个新的Cas12a同源物,它可以在60°C下存活。该Cas12a同源基因被命名为CtCas12a,与已知的Cas12a家族成员序列相似性较低。CtCas12a在17 ~ 77℃的宽温度范围内具有活性。此外,该同源物具有YYV的松弛PAM (YC或T, V = a或C或G)。我们优化了反式切割的条件,使其能够检测核酸。CtCas12a在人类细胞中进行基因组编辑,并在EGFP位点产生高达26%的indel形成。由于CtCas12a在高温下具有活性,并且具有宽松的PAM序列,因此CtCas12a具有进一步设计用于病原体检测和编辑广泛基因组序列的潜力。
{"title":"Characterization of a thermostable Cas12a ortholog","authors":"Jing Wu , Pan Gao , Yajing Shi , Caixiang Zhang , Xiaohan Tong , Huidi Fan , Xi Zhou , Ying Zhang , Hao Yin","doi":"10.1016/j.cellin.2023.100126","DOIUrl":"https://doi.org/10.1016/j.cellin.2023.100126","url":null,"abstract":"<div><p>CRISPR-Cas12a has been used for genome editing and molecular diagnosis. The well-studied Cas12a orthologs have a T-rich PAM and are usually categorized as non-thermally stable enzymes. Here, we identified a new Cas12a ortholog from <em>Clostridium thermobutyricum</em>, which survives at 60 °C. This Cas12a ortholog is named as CtCas12a and exhibits low sequence similarity to the known Cas12a family members. CtCas12a is active in a wide temperature range from 17 to 77 °C. Moreover, this ortholog has a relaxed PAM of YYV (Y<img>C or T, V = A or C or G). We optimized the conditions for <em>trans</em>-cleavage and enabled its detection of nucleic acids. CtCas12a executed genome editing in human cells and generated up to 26% indel formation in the EGFP locus. With the ability to be active at high temperatures as well as having a relaxed PAM sequence, CtCas12a holds potential to be further engineered for pathogen detection and editing a wide range of genomic sequences.</p></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"2 6","pages":"Article 100126"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772892723000500/pdfft?md5=7000304e380e10671b49490e91b94225&pid=1-s2.0-S2772892723000500-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92047510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-11DOI: 10.1016/j.cellin.2023.100127
Lianhui Sun , Xing Wang , Lixiao Chen , Zheng Gao , Songhui Xu , Chen Hu , Guangjian Fan , Baoxin Wang , Tingting Feng , Wang Wang , Xinjiang Ying
Hypopharyngeal squamous cell carcinoma (HSCC) is a highly aggressive malignancy that constitutes approximately 95% of all hypopharyngeal carcinomas, and it carries a poor prognosis. The primary factor influencing the efficacy of anti-cancer drugs for this type of carcinoma is chemoresistance. Carnitine palmitoyltransferase 1A (CPT1A) has been associated with tumor progression in various cancers, including breast, gastric, lung, and prostate cancer. The inhibition or depletion of CPT1A can lead to apoptosis, curbing cancer cell proliferation and chemoresistance. However, the role of CPT1A in HSCC is not yet fully understood. In this study, we discovered that CPT1A is highly expressed in HSCC and is associated with an advanced T-stage and a poor 5-year survival rate among patients. Furthermore, the overexpression of CPT1A contributes to HSCC chemoresistance. Mechanistically, CPT1A can interact with the autophagy-related protein ATG16L1 and stimulate the succinylation of ATG16L1, which in turn drives autophagosome formation and autophagy. We also found that treatment with 3-methyladenine (3-MA) can reduce cisplatin resistance in HSCC cells that overexpress CPT1A. Our findings also showed that a CPT1A inhibitor significantly enhances cisplatin sensitivity both in vitro and in vivo. This study is the first to suggest that CPT1A has a regulatory role in autophagy and is linked to poor prognosis in HSCC patients. It presents novel insights into the roles of CPT1A in tumorigenesis and proposes that CPT1A could be a potential therapeutic target for HSCC treatment.
{"title":"CPT1A mediates chemoresistance in human hypopharyngeal squamous cell carcinoma via ATG16L1-dependent cellular autophagy","authors":"Lianhui Sun , Xing Wang , Lixiao Chen , Zheng Gao , Songhui Xu , Chen Hu , Guangjian Fan , Baoxin Wang , Tingting Feng , Wang Wang , Xinjiang Ying","doi":"10.1016/j.cellin.2023.100127","DOIUrl":"https://doi.org/10.1016/j.cellin.2023.100127","url":null,"abstract":"<div><p>Hypopharyngeal squamous cell carcinoma (HSCC) is a highly aggressive malignancy that constitutes approximately 95% of all hypopharyngeal carcinomas, and it carries a poor prognosis. The primary factor influencing the efficacy of anti-cancer drugs for this type of carcinoma is chemoresistance. Carnitine palmitoyltransferase 1A (CPT1A) has been associated with tumor progression in various cancers, including breast, gastric, lung, and prostate cancer. The inhibition or depletion of CPT1A can lead to apoptosis, curbing cancer cell proliferation and chemoresistance. However, the role of CPT1A in HSCC is not yet fully understood. In this study, we discovered that CPT1A is highly expressed in HSCC and is associated with an advanced T-stage and a poor 5-year survival rate among patients. Furthermore, the overexpression of CPT1A contributes to HSCC chemoresistance. Mechanistically, CPT1A can interact with the autophagy-related protein ATG16L1 and stimulate the succinylation of ATG16L1, which in turn drives autophagosome formation and autophagy. We also found that treatment with 3-methyladenine (3-MA) can reduce cisplatin resistance in HSCC cells that overexpress CPT1A. Our findings also showed that a CPT1A inhibitor significantly enhances cisplatin sensitivity both in vitro and in vivo. This study is the first to suggest that CPT1A has a regulatory role in autophagy and is linked to poor prognosis in HSCC patients. It presents novel insights into the roles of CPT1A in tumorigenesis and proposes that CPT1A could be a potential therapeutic target for HSCC treatment.</p></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"2 6","pages":"Article 100127"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67739972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1016/j.cellin.2023.100125
Erin B. Shanker , Jun Sun
Emerging evidence has demonstrated that perturbations of host-microbial interactions by pathogens can lead to an altered microenvironment that promotes tumorigenesis. A recent study provides new evidence and mechanisms on how repetitive exposure to non-Typhoidal Salmonella (NTS) increases the risk for colon cancer. This study integrated a serological and epidemiological approach with both in vivo and in vitro analyses, showed that the magnitude of exposure to NTS is associated with colonic tumorigenesis. In vivo exposure to repetitive low doses of NTS led to colonic tumors similar as a single high NTS dose in mice. Repetitive NTS infections significantly increase the proliferation of transformed cells in tissue cultures. The research results open new possibilities for the diagnosis, prevention, and treatment of colon cancer. The unanswered questions remain, including validation of the current findings in other cohorts, differences in lifestyle, and changes of gut microbiome after Salmonella infection. Salmonellae exposure can be limited by eating cooked meats and washing vegetables well. It is necessary to develop guidelines and criteria for screenings and follow-ups in people with exposure history to Salmonella and other cancer-associated pathogens.
{"title":"Salmonella infection acts as an environmental risk factor for human colon cancer","authors":"Erin B. Shanker , Jun Sun","doi":"10.1016/j.cellin.2023.100125","DOIUrl":"https://doi.org/10.1016/j.cellin.2023.100125","url":null,"abstract":"<div><p>Emerging evidence has demonstrated that perturbations of host-microbial interactions by pathogens can lead to an altered microenvironment that promotes tumorigenesis. A recent study provides new evidence and mechanisms on how repetitive exposure to non-Typhoidal <em>Salmonella</em> (NTS) increases the risk for colon cancer. This study integrated a serological and epidemiological approach with both <em>in vivo</em> and <em>in vitro</em> analyses, showed that the magnitude of exposure to NTS is associated with colonic tumorigenesis. <em>In vivo</em> exposure to repetitive low doses of NTS led to colonic tumors similar as a single high NTS dose in mice. Repetitive NTS infections significantly increase the proliferation of transformed cells in tissue cultures. The research results open new possibilities for the diagnosis, prevention, and treatment of colon cancer. The unanswered questions remain, including validation of the current findings in other cohorts, differences in lifestyle, and changes of gut microbiome after <em>Salmonella</em> infection. <em>Salmonellae</em> exposure can be limited by eating cooked meats and washing vegetables well. It is necessary to develop guidelines and criteria for screenings and follow-ups in people with exposure history to <em>Salmonella</em> and other cancer-associated pathogens.</p></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"2 5","pages":"Article 100125"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49774764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1016/j.cellin.2023.100115
Yisu Song , Zhengyang Lu , Wenzhi Shu , Ze Xiang , Zhengxin Wang , Xuyong Wei , Xiao Xu
Liver diseases are a major health issue, and prolonged liver injury always progresses. Advanced liver disorders impair liver regeneration. Millions of patients die yearly worldwide, even with the available treatments of liver transplantation and artificial liver support system. With its abundant cell resources and significant differentiative potential, stem cell therapy is a viable treatment for various disorders and offers hope to patients waiting for orthotopic liver transplantation. Considering such plight, stem cell therapeutic strategies deliver hope to the patients. Moreover, we conclude intrinsic and acquired perspectives based on stem cell sources. The properties and therapeutic uses of these stem cells' specific types or sources were then reviewed. Owing to the recent investigations of the above cells, a safe and effective therapy will emerge for advanced liver diseases soon.
{"title":"Arouse potential stemness: Intrinsic and acquired stem cell therapeutic strategies for advanced liver diseases","authors":"Yisu Song , Zhengyang Lu , Wenzhi Shu , Ze Xiang , Zhengxin Wang , Xuyong Wei , Xiao Xu","doi":"10.1016/j.cellin.2023.100115","DOIUrl":"10.1016/j.cellin.2023.100115","url":null,"abstract":"<div><p>Liver diseases are a major health issue, and prolonged liver injury always progresses. Advanced liver disorders impair liver regeneration. Millions of patients die yearly worldwide, even with the available treatments of liver transplantation and artificial liver support system. With its abundant cell resources and significant differentiative potential, stem cell therapy is a viable treatment for various disorders and offers hope to patients waiting for orthotopic liver transplantation. Considering such plight, stem cell therapeutic strategies deliver hope to the patients. Moreover, we conclude intrinsic and acquired perspectives based on stem cell sources. The properties and therapeutic uses of these stem cells' specific types or sources were then reviewed. Owing to the recent investigations of the above cells, a safe and effective therapy will emerge for advanced liver diseases soon.</p></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"2 5","pages":"Article 100115"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/34/0f/main.PMC10502372.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10299941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1016/j.cellin.2023.100123
Parul Singh , Syed Azmal Ali
Mammary gland growth and differentiation predominantly rely on stromal-epithelial cellular communication. Specifically, mammary adipocytes play a crucial role in ductal morphogenesis, as well as in the proliferation and differentiation of mammary epithelial cells. The process of lactation entails a reduction in the levels of white adipose tissue associated with the MG, allowing for the expansion of milk-producing epithelial cells. Subsequently, during involution and the regression of the milk-producing unit, adipocyte layers resurface, occupying the vacated space. This dynamic phenomenon underscores the remarkable plasticity and expansion of adipose tissue. Traditionally considered terminally differentiated, adipocytes have recently been found to exhibit plasticity in certain contexts. Unraveling the significance of this cell type within the MG could pave the way for novel approaches to reduce the risk of breast cancer and enhance lactation performance. Moreover, a comprehensive understanding of adipocyte trans- and de-differentiation processes holds promise for the development of innovative therapeutic interventions targeting cancer, fibrosis, obesity, type 2 diabetes, and other related diseases. Additionally, adipocytes may find utility in the realm of regenerative medicine. This review article provides a comprehensive examination of recent advancements in our understanding of MG remodelling, with a specific focus on the tissue-specific functions of adipocytes and their role in the development of cancer. By synthesizing current knowledge in this field, it aims to consolidate our understanding of adipocyte biology within the context of mammary gland biology, thereby fostering further research and discovery in this vital area.
{"title":"Mature white adipocyte plasticity during mammary gland remodelling and cancer","authors":"Parul Singh , Syed Azmal Ali","doi":"10.1016/j.cellin.2023.100123","DOIUrl":"10.1016/j.cellin.2023.100123","url":null,"abstract":"<div><p>Mammary gland growth and differentiation predominantly rely on stromal-epithelial cellular communication. Specifically, mammary adipocytes play a crucial role in ductal morphogenesis, as well as in the proliferation and differentiation of mammary epithelial cells. The process of lactation entails a reduction in the levels of white adipose tissue associated with the MG, allowing for the expansion of milk-producing epithelial cells. Subsequently, during involution and the regression of the milk-producing unit, adipocyte layers resurface, occupying the vacated space. This dynamic phenomenon underscores the remarkable plasticity and expansion of adipose tissue. Traditionally considered terminally differentiated, adipocytes have recently been found to exhibit plasticity in certain contexts. Unraveling the significance of this cell type within the MG could pave the way for novel approaches to reduce the risk of breast cancer and enhance lactation performance. Moreover, a comprehensive understanding of adipocyte <em>trans</em>- and de-differentiation processes holds promise for the development of innovative therapeutic interventions targeting cancer, fibrosis, obesity, type 2 diabetes, and other related diseases. Additionally, adipocytes may find utility in the realm of regenerative medicine. This review article provides a comprehensive examination of recent advancements in our understanding of MG remodelling, with a specific focus on the tissue-specific functions of adipocytes and their role in the development of cancer. By synthesizing current knowledge in this field, it aims to consolidate our understanding of adipocyte biology within the context of mammary gland biology, thereby fostering further research and discovery in this vital area.</p></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"2 5","pages":"Article 100123"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b9/6a/main.PMC10522874.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41163101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1016/j.cellin.2023.100124
Tingting Liu , Jiaqi Liu , Hongjie Chen , Xin Zhou , Wei Fu , Ying Cao , Jing Yang
Type 2 immunity in the lung protects against pathogenic infection and facilitates tissue repair, but its dysregulation may lead to severe human diseases. Notably, cannabis usage for medical or recreational purposes has increased globally. However, the potential impact of the cannabinoid signal on lung immunity is incompletely understood. Here, we report that cannabinoid receptor 2 (CB2) is highly expressed in group 2 innate lymphoid cells (ILC2s) of mouse and human lung tissues. Of importance, the CB2 signal enhances the IL-33-elicited immune response of ILC2s. In addition, the chemogenetic manipulation of inhibitory G proteins (Gi) downstream of CB2 produces a similarly promotive effect. Conversely, the genetic deletion of CB2 mitigates the IL-33-elicited type 2 immunity in the lung. Also, such ablation of the CB2 signal ameliorates papain-induced tissue inflammation. Together, these results have elucidated a critical aspect of the CB2 signal in lung immunity, implicating its potential involvement in pulmonary diseases.
{"title":"Cannabinoid receptor 2 signal promotes type 2 immunity in the lung","authors":"Tingting Liu , Jiaqi Liu , Hongjie Chen , Xin Zhou , Wei Fu , Ying Cao , Jing Yang","doi":"10.1016/j.cellin.2023.100124","DOIUrl":"10.1016/j.cellin.2023.100124","url":null,"abstract":"<div><p>Type 2 immunity in the lung protects against pathogenic infection and facilitates tissue repair, but its dysregulation may lead to severe human diseases. Notably, cannabis usage for medical or recreational purposes has increased globally. However, the potential impact of the cannabinoid signal on lung immunity is incompletely understood. Here, we report that cannabinoid receptor 2 (CB2) is highly expressed in group 2 innate lymphoid cells (ILC2s) of mouse and human lung tissues. Of importance, the CB2 signal enhances the IL-33-elicited immune response of ILC2s. In addition, the chemogenetic manipulation of inhibitory G proteins (Gi) downstream of CB2 produces a similarly promotive effect. Conversely, the genetic deletion of CB2 mitigates the IL-33-elicited type 2 immunity in the lung. Also, such ablation of the CB2 signal ameliorates papain-induced tissue inflammation. Together, these results have elucidated a critical aspect of the CB2 signal in lung immunity, implicating its potential involvement in pulmonary diseases.</p></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"2 5","pages":"Article 100124"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585230/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49694793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}