Pub Date : 2014-07-03eCollection Date: 2014-07-01DOI: 10.4161/21592780.2014.943588
Terry L Sasser, Rutilio A Fratti
Membrane fusion is carried out by core machinery that is conserved throughout eukaryotes. This is comprised of Rab GTPases and their effectors, and SNARE proteins, which together are sufficient to drive the fusion of reconstituted proteoliposomes. However, an outer layer of factors that are specific to individual trafficking pathways in vivo regulates the spatial and temporal occurrence of fusion. The homotypic fusion of Saccharomyces cerevisiae vacuolar lysosomes utilizes a growing set of factors to regulate the fusion machinery that include members of the ATP binding cassette (ABC) transporter family. Yeast vacuoles have five class C ABC transporters that are known to transport a variety of toxins into the vacuole lumen as part of detoxifying the cell. We have found that ABCC transporters can also regulate vacuole fusion through novel mechanisms. For instance Ybt1 serves as negative regulator of fusion through its effects on vacuolar Ca2+ homeostasis. Additional studies showed that Ycf1 acts as a positive regulator by affecting the efficient recruitment of the SNARE Vam7. Finally, we discuss the potential interface between the translocation of lipids across the membrane bilayer, also known as lipid flipping, and the efficiency of fusion.
{"title":"Class C ABC transporters and <i>Saccharomyces cerevisiae</i> vacuole fusion.","authors":"Terry L Sasser, Rutilio A Fratti","doi":"10.4161/21592780.2014.943588","DOIUrl":"https://doi.org/10.4161/21592780.2014.943588","url":null,"abstract":"<p><p>Membrane fusion is carried out by core machinery that is conserved throughout eukaryotes. This is comprised of Rab GTPases and their effectors, and SNARE proteins, which together are sufficient to drive the fusion of reconstituted proteoliposomes. However, an outer layer of factors that are specific to individual trafficking pathways <i>in vivo</i> regulates the spatial and temporal occurrence of fusion. The homotypic fusion of <i>Saccharomyces cerevisiae</i> vacuolar lysosomes utilizes a growing set of factors to regulate the fusion machinery that include members of the ATP binding cassette (ABC) transporter family. Yeast vacuoles have five class C ABC transporters that are known to transport a variety of toxins into the vacuole lumen as part of detoxifying the cell. We have found that ABCC transporters can also regulate vacuole fusion through novel mechanisms. For instance Ybt1 serves as negative regulator of fusion through its effects on vacuolar Ca<sup>2+</sup> homeostasis. Additional studies showed that Ycf1 acts as a positive regulator by affecting the efficient recruitment of the SNARE Vam7. Finally, we discuss the potential interface between the translocation of lipids across the membrane bilayer, also known as lipid flipping, and the efficiency of fusion.</p>","PeriodicalId":72547,"journal":{"name":"Cellular logistics","volume":"4 3","pages":"e943588"},"PeriodicalIF":0.0,"publicationDate":"2014-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/21592780.2014.943588","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32993829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-07-03eCollection Date: 2014-07-01DOI: 10.4161/21592780.2014.954441
Eline van Meel, Judith Klumperman
The cation-independent mannose 6-phosphate (Man-6-P) receptor (CI-MPR) binds newly synthesized, Man-6-P-containing lysosomal acid hydrolases in the trans-Golgi network (TGN) for clathrin-mediated transport to endosomes. It has remained unresolved, however, whether acid hydrolase binding is required for exit of the CI-MPR from the TGN. To address this question we used a B cell line derived from a Mucolipidosis type II (MLII)/I-cell disease patient. In MLII patients, acid hydrolases do not acquire the Man-6-P recognition marker and as a consequence do not bind to the CI-MPR. This causes secretion of the majority of the acid hydrolases and a decreased lysosomal activity resulting in typical inclusion bodies. In agreement herewith, ultrastructural analysis of the MLII patient derived B cells showed numerous inclusion bodies with undigested material, which we defined as autolysosomes. By quantitative immuno-electron microscopy we then studied the distribution of the CI-MPR in these cells. We found that the level of co-localization of TGN-localized CI-MPR and clathrin was similar in MLII and control B cells. Moreover, the CI-MPR was readily found in endosomes of MLII cells and the TGN-to-early endosome ratio of CI-MPR labeling was unaltered. These data show that there is no block in TGN exit of the CI-MPR in the absence of Man-6-P-modified acid hydrolases. Notably, late endosomes and inclusion bodies in MLII B cells contained increased levels of the CI-MPR, which likely reflects the reduced degradative capacity of these compartments.
{"title":"TGN exit of the cation-independent mannose 6-phosphate receptor does not require acid hydrolase binding.","authors":"Eline van Meel, Judith Klumperman","doi":"10.4161/21592780.2014.954441","DOIUrl":"https://doi.org/10.4161/21592780.2014.954441","url":null,"abstract":"<p><p>The cation-independent mannose 6-phosphate (Man-6-P) receptor (CI-MPR) binds newly synthesized, Man-6-P-containing lysosomal acid hydrolases in the trans-Golgi network (TGN) for clathrin-mediated transport to endosomes. It has remained unresolved, however, whether acid hydrolase binding is required for exit of the CI-MPR from the TGN. To address this question we used a B cell line derived from a Mucolipidosis type II (MLII)/I-cell disease patient. In MLII patients, acid hydrolases do not acquire the Man-6-P recognition marker and as a consequence do not bind to the CI-MPR. This causes secretion of the majority of the acid hydrolases and a decreased lysosomal activity resulting in typical inclusion bodies. In agreement herewith, ultrastructural analysis of the MLII patient derived B cells showed numerous inclusion bodies with undigested material, which we defined as autolysosomes. By quantitative immuno-electron microscopy we then studied the distribution of the CI-MPR in these cells. We found that the level of co-localization of TGN-localized CI-MPR and clathrin was similar in MLII and control B cells. Moreover, the CI-MPR was readily found in endosomes of MLII cells and the TGN-to-early endosome ratio of CI-MPR labeling was unaltered. These data show that there is no block in TGN exit of the CI-MPR in the absence of Man-6-P-modified acid hydrolases. Notably, late endosomes and inclusion bodies in MLII B cells contained increased levels of the CI-MPR, which likely reflects the reduced degradative capacity of these compartments.</p>","PeriodicalId":72547,"journal":{"name":"Cellular logistics","volume":"4 3","pages":"e954441"},"PeriodicalIF":0.0,"publicationDate":"2014-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/21592780.2014.954441","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32994246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-07-03eCollection Date: 2014-07-01DOI: 10.4161/21592780.2014.954870
Zhanna Lipatova, Nava Segev
A prevailing question in the Ypt/Rab field is whether these conserved GTPases are specific to cellular compartments. The established role for Ypt1 and its human homolog Rab1 is in endoplasmic reticulum (ER)-to-Golgi transport. More recently these regulators were implicated also in autophagy. Two different TRAPP complexes, I and III, were identified as the guanine-nucleotide-exchange factors (GEFs) of Ypt1 in ER-to-Golgi transport and autophagy, respectively. Confusingly, Ypt1 and TRAPP III were also suggested to regulate endosome-to-Golgi transport, implying that they function at multiple cellular compartments, and bringing into question the nature of Ypt/Rab specificity. Recently, we showed that the role of TRAPP III and Ypt1 in autophagy occurs at the ER and that they do not regulate endosome-to-Golgi transport. Here, we discuss the significance of this conclusion to the idea that Ypt/Rabs are specific to cellular compartments. We postulate that Ypt1 regulates 2 alternative routes emanating from the ER toward the Golgi and the lysosome/vacuole. We further propose that the secretory and endocytic/lysosomal pathways intersect in 2 junctures, and 2 Ypts, Ypt1 and Ypt31, coordinate transport in the 2 intersections: Ypt1 links ER-to-Golgi and ER-to-autophagy transport, whereas Ypt31 links Golgi-to-plasma membrane (PM) transport with PM-to-Golgi recycling through endosomes.
{"title":"Ypt/Rab GTPases regulate two intersections of the secretory and the endosomal/lysosomal pathways.","authors":"Zhanna Lipatova, Nava Segev","doi":"10.4161/21592780.2014.954870","DOIUrl":"https://doi.org/10.4161/21592780.2014.954870","url":null,"abstract":"A prevailing question in the Ypt/Rab field is whether these conserved GTPases are specific to cellular compartments. The established role for Ypt1 and its human homolog Rab1 is in endoplasmic reticulum (ER)-to-Golgi transport. More recently these regulators were implicated also in autophagy. Two different TRAPP complexes, I and III, were identified as the guanine-nucleotide-exchange factors (GEFs) of Ypt1 in ER-to-Golgi transport and autophagy, respectively. Confusingly, Ypt1 and TRAPP III were also suggested to regulate endosome-to-Golgi transport, implying that they function at multiple cellular compartments, and bringing into question the nature of Ypt/Rab specificity. Recently, we showed that the role of TRAPP III and Ypt1 in autophagy occurs at the ER and that they do not regulate endosome-to-Golgi transport. Here, we discuss the significance of this conclusion to the idea that Ypt/Rabs are specific to cellular compartments. We postulate that Ypt1 regulates 2 alternative routes emanating from the ER toward the Golgi and the lysosome/vacuole. We further propose that the secretory and endocytic/lysosomal pathways intersect in 2 junctures, and 2 Ypts, Ypt1 and Ypt31, coordinate transport in the 2 intersections: Ypt1 links ER-to-Golgi and ER-to-autophagy transport, whereas Ypt31 links Golgi-to-plasma membrane (PM) transport with PM-to-Golgi recycling through endosomes.","PeriodicalId":72547,"journal":{"name":"Cellular logistics","volume":"4 3","pages":"e954870"},"PeriodicalIF":0.0,"publicationDate":"2014-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/21592780.2014.954870","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32994247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-07-03eCollection Date: 2014-07-01DOI: 10.4161/21592780.2014.943597
Twila A Mason, James R Goldenring, Elena Kolobova
Mitochondria regulate metabolism and homeostasis within cells. Mitochondria are also very dynamic organelles, constantly undergoing fission and fusion. The importance of maintaining proper mitochondrial dynamics is evident in the various diseases associated with defects in these processes. Protein kinase A (PKA) is a key regulator of mitochondrial dynamics. PKA is spatially regulated by A-Kinase Anchoring Proteins (AKAPs). We completed cloning of a novel AKAP350 isoform, AKAP350C. Immunostaining for endogenous AKAP350C showed localization to mitochondria. The carboxyl-terminal 54-amino acid sequence unique to AKAP350C contains a novel amphipathic alpha helical mitochondrial-targeting domain. AKAP350C co-localizes with Mff (mitochondrial fission protein) and mitofusins 1 and 2 (mitochondrial fusion proteins), and likely regulates mitochondrial dynamics by scaffolding PKA and mitochondrial fission and fusion proteins.
{"title":"AKAP350C targets to mitochondria via a novel amphipathic alpha helical domain.","authors":"Twila A Mason, James R Goldenring, Elena Kolobova","doi":"10.4161/21592780.2014.943597","DOIUrl":"https://doi.org/10.4161/21592780.2014.943597","url":null,"abstract":"<p><p>Mitochondria regulate metabolism and homeostasis within cells. Mitochondria are also very dynamic organelles, constantly undergoing fission and fusion. The importance of maintaining proper mitochondrial dynamics is evident in the various diseases associated with defects in these processes. Protein kinase A (PKA) is a key regulator of mitochondrial dynamics. PKA is spatially regulated by A-Kinase Anchoring Proteins (AKAPs). We completed cloning of a novel AKAP350 isoform, AKAP350C. Immunostaining for endogenous AKAP350C showed localization to mitochondria. The carboxyl-terminal 54-amino acid sequence unique to AKAP350C contains a novel amphipathic alpha helical mitochondrial-targeting domain. AKAP350C co-localizes with Mff (mitochondrial fission protein) and mitofusins 1 and 2 (mitochondrial fusion proteins), and likely regulates mitochondrial dynamics by scaffolding PKA and mitochondrial fission and fusion proteins.</p>","PeriodicalId":72547,"journal":{"name":"Cellular logistics","volume":"4 3","pages":"e943597"},"PeriodicalIF":0.0,"publicationDate":"2014-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/21592780.2014.943597","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32994248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-06-04eCollection Date: 2014-01-01DOI: 10.4161/cl.29389
Paul A Liebman
Aspects of our discovery of lateral diffusion of the G protein coupled receptor (GPCR) rhodopsin and that a single activated rhodopsin can non-covalently catalyze GTP binding to thousands of GTPases per second on rod disk membranes via this diffusion are summarized herein. Rapid GTPase coupling to membrane-bound phosphodiesterase (PDE) further amplifies the signal via cGMP hydrolysis, essential to visual transduction. Important generalizations from this work are that biomembranes can uniquely concentrate, orient for reaction and provide a solvent appropriate to rapid, powerful and appropriately controlled sequential interaction of signaling proteins. Of equal importance to function is timely control and termination of such powerful amplification via receptor phosphorylation (quenching) and arrestin binding. Downstream kinetic modulation by GTPase activating proteins (GAPs) and regulators of G protein signaling (RGS) and related mechanisms as well as limitations set by membrane domain fencing, structural protein binding etc. can be essential in relevant systems.
{"title":"A historical perspective on the lateral diffusion model of GTPase activation and related coupling of membrane signaling proteins.","authors":"Paul A Liebman","doi":"10.4161/cl.29389","DOIUrl":"https://doi.org/10.4161/cl.29389","url":null,"abstract":"<p><p>Aspects of our discovery of lateral diffusion of the G protein coupled receptor (GPCR) rhodopsin and that a single activated rhodopsin can non-covalently catalyze GTP binding to thousands of GTPases per second on rod disk membranes via this diffusion are summarized herein. Rapid GTPase coupling to membrane-bound phosphodiesterase (PDE) further amplifies the signal via cGMP hydrolysis, essential to visual transduction. Important generalizations from this work are that biomembranes can uniquely concentrate, orient for reaction and provide a solvent appropriate to rapid, powerful and appropriately controlled sequential interaction of signaling proteins. Of equal importance to function is timely control and termination of such powerful amplification via receptor phosphorylation (quenching) and arrestin binding. Downstream kinetic modulation by GTPase activating proteins (GAPs) and regulators of G protein signaling (RGS) and related mechanisms as well as limitations set by membrane domain fencing, structural protein binding etc. can be essential in relevant systems.</p>","PeriodicalId":72547,"journal":{"name":"Cellular logistics","volume":"4 ","pages":"e29389"},"PeriodicalIF":0.0,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/cl.29389","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32716509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-06-04eCollection Date: 2014-01-01DOI: 10.4161/cl.29390
Vadim Y Arshavsky, Marie E Burns
The studies of visual signal transduction, or phototransduction, have played a pivotal role in elucidating the most general principles of G protein signaling, particularly in regards to the concept of signal amplification, i.e., the process by which activation of a relatively small number of G protein coupled receptors is transformed into a robust downstream signaling event. In this essay, we summarize our current quantitative understanding of this process in living rods of lower and higher vertebrate animals. An integration of biochemical experiments in vitro with electrophysiological recordings from intact rod photoreceptors indicates that the total number of G protein molecules activated in the course of a light response to a single photon is ~16 in the mouse and ~60 in the frog. This further translates into hydrolysis of ~2000 and ~72 000 molecules of cGMP downstream of G protein, respectively, which represents the total degree of biochemical amplification in the phototransduction cascade.
{"title":"Current understanding of signal amplification in phototransduction.","authors":"Vadim Y Arshavsky, Marie E Burns","doi":"10.4161/cl.29390","DOIUrl":"https://doi.org/10.4161/cl.29390","url":null,"abstract":"<p><p>The studies of visual signal transduction, or phototransduction, have played a pivotal role in elucidating the most general principles of G protein signaling, particularly in regards to the concept of signal amplification, i.e., the process by which activation of a relatively small number of G protein coupled receptors is transformed into a robust downstream signaling event. In this essay, we summarize our current quantitative understanding of this process in living rods of lower and higher vertebrate animals. An integration of biochemical experiments in vitro with electrophysiological recordings from intact rod photoreceptors indicates that the total number of G protein molecules activated in the course of a light response to a single photon is ~16 in the mouse and ~60 in the frog. This further translates into hydrolysis of ~2000 and ~72 000 molecules of cGMP downstream of G protein, respectively, which represents the total degree of biochemical amplification in the phototransduction cascade.</p>","PeriodicalId":72547,"journal":{"name":"Cellular logistics","volume":"4 ","pages":"e29390"},"PeriodicalIF":0.0,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/cl.29390","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32717020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-06-04eCollection Date: 2014-01-01DOI: 10.4161/cl.29391
Elliott M Ross
G protein-coupled receptors and heterotrimeric G proteins can diffuse laterally in the plasma membrane such that one receptor can catalyze the activation (GDP/GTP exchange) of multiple G proteins. In some cases, these processes are fast enough to support molecular signal amplification, where a single receptor maintains the activation of multiple G proteins at steady-state. Amplification in cells is probably highly regulated. It depends upon the identities of the G receptor and G protein - some do and some don't - and upon the activities of GTPase-activating proteins, membrane scaffolds, and other regulatory partners.
{"title":"G Protein-coupled receptors: Multi-turnover GDP/GTP exchange catalysis on heterotrimeric G proteins.","authors":"Elliott M Ross","doi":"10.4161/cl.29391","DOIUrl":"https://doi.org/10.4161/cl.29391","url":null,"abstract":"<p><p>G protein-coupled receptors and heterotrimeric G proteins can diffuse laterally in the plasma membrane such that one receptor can catalyze the activation (GDP/GTP exchange) of multiple G proteins. In some cases, these processes are fast enough to support molecular signal amplification, where a single receptor maintains the activation of multiple G proteins at steady-state. Amplification in cells is probably highly regulated. It depends upon the identities of the G receptor and G protein - some do and some don't - and upon the activities of GTPase-activating proteins, membrane scaffolds, and other regulatory partners.</p>","PeriodicalId":72547,"journal":{"name":"Cellular logistics","volume":"4 ","pages":"e29391"},"PeriodicalIF":0.0,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/cl.29391","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32717021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-06-04eCollection Date: 2014-01-01DOI: 10.4161/cl.29392
John R Hepler
Classical models of receptor (GPCR) and G protein (Gαβγ) signaling based on biochemical studies have proposed that receptor stimulation results in G protein activation (Gα-GTP) and dissociation of the heterotrimer (Gα-GTP + Gβγ) to regulate downstream signaling events. Unclear is whether or not there exists freely diffusible, activated Gα-GTP on cellular membranes capable of catalytic signal amplification. Recent studies in live cells indicate that GPCRs serve as platforms for the assembly of macromolecular signaling complexes that include G proteins to support a highly efficient and spatially restricted signaling event, with no requirement for full Gα-GTP and Gβγ dissociation and lateral diffusion within the plasma membrane.
基于生化研究的受体(GPCR)和 G 蛋白(Gαβγ)信号传导经典模型提出,受体刺激导致 G 蛋白活化(Gα-GTP)和异源三聚体(Gα-GTP + Gβγ)解离,从而调节下游信号传导事件。目前尚不清楚细胞膜上是否存在可自由扩散的活化 Gα-GTP,能够催化信号放大。最近在活细胞中进行的研究表明,GPCR 是组装大分子信号复合体的平台,其中包括支持高效和空间受限信号事件的 G 蛋白,而不需要 Gα-GTP 和 Gβγ 在质膜内完全解离和横向扩散。
{"title":"G protein coupled receptor signaling complexes in live cells.","authors":"John R Hepler","doi":"10.4161/cl.29392","DOIUrl":"10.4161/cl.29392","url":null,"abstract":"<p><p>Classical models of receptor (GPCR) and G protein (Gαβγ) signaling based on biochemical studies have proposed that receptor stimulation results in G protein activation (Gα-GTP) and dissociation of the heterotrimer (Gα-GTP + Gβγ) to regulate downstream signaling events. Unclear is whether or not there exists freely diffusible, activated Gα-GTP on cellular membranes capable of catalytic signal amplification. Recent studies in live cells indicate that GPCRs serve as platforms for the assembly of macromolecular signaling complexes that include G proteins to support a highly efficient and spatially restricted signaling event, with no requirement for full Gα-GTP and Gβγ dissociation and lateral diffusion within the plasma membrane.</p>","PeriodicalId":72547,"journal":{"name":"Cellular logistics","volume":"4 ","pages":"e29392"},"PeriodicalIF":0.0,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ae/3e/cl-4-e29392.PMC4160338.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32717022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-05-12eCollection Date: 2014-01-01DOI: 10.4161/cl.29191
Kathrin Auffarth, Henning Arlt, Jens Lachmann, Margarita Cabrera, Christian Ungermann
Endosomal and vacuole fusion depends on the two homologous tethering complexes CORVET and HOPS. HOPS binds the activated Rab GTPase Ypt7 via two distinct subunits, Vps39 and Vps41. To understand the participation and possible polarity of Vps41 and Vps39 during tethering, we used an in vivo approach. For this, we established the ligand-induced relocalization to the plasma membrane, using the Mon1-Ccz1 GEF complex that activates Ypt7 on endosomes. We then employed slight overexpression to compare the mobility of the HOPS-specific Vps41 and Vps39 subunits during this process. Our data indicate an asymmetry in the Rab-specific interaction of the two HOPS subunits: Vps39 is more tightly bound to the vacuole, and relocalizes the entire vacuole to the plasma membrane, whereas Vps41 behaved like the more mobile subunit. This is due to their specific Rab binding, as the mobility of both subunits was similar in ypt7∆ cells. In contrast, both HOPS subunits were far less mobile if tagged endogenously, suggesting that the entire HOPS complex is tightly bound to the vacuole in vivo. Similar results were obtained for the endosomal association of CORVET, when we followed its Rab-specific subunit Vps8. Our data provide in vivo evidence for distinct Rab specificity within HOPS, which may explain its function during tethering, and indicate that these tethering complexes are less mobile within the cell than previously anticipated.
{"title":"Tracking of the dynamic localization of the Rab-specific HOPS subunits reveal their distinct interaction with Ypt7 and vacuoles.","authors":"Kathrin Auffarth, Henning Arlt, Jens Lachmann, Margarita Cabrera, Christian Ungermann","doi":"10.4161/cl.29191","DOIUrl":"https://doi.org/10.4161/cl.29191","url":null,"abstract":"<p><p>Endosomal and vacuole fusion depends on the two homologous tethering complexes CORVET and HOPS. HOPS binds the activated Rab GTPase Ypt7 via two distinct subunits, Vps39 and Vps41. To understand the participation and possible polarity of Vps41 and Vps39 during tethering, we used an in vivo approach. For this, we established the ligand-induced relocalization to the plasma membrane, using the Mon1-Ccz1 GEF complex that activates Ypt7 on endosomes. We then employed slight overexpression to compare the mobility of the HOPS-specific Vps41 and Vps39 subunits during this process. Our data indicate an asymmetry in the Rab-specific interaction of the two HOPS subunits: Vps39 is more tightly bound to the vacuole, and relocalizes the entire vacuole to the plasma membrane, whereas Vps41 behaved like the more mobile subunit. This is due to their specific Rab binding, as the mobility of both subunits was similar in <i>ypt7</i>∆ cells. In contrast, both HOPS subunits were far less mobile if tagged endogenously, suggesting that the entire HOPS complex is tightly bound to the vacuole in vivo. Similar results were obtained for the endosomal association of CORVET, when we followed its Rab-specific subunit Vps8. Our data provide in vivo evidence for distinct Rab specificity within HOPS, which may explain its function during tethering, and indicate that these tethering complexes are less mobile within the cell than previously anticipated.</p>","PeriodicalId":72547,"journal":{"name":"Cellular logistics","volume":"4 ","pages":"e29191"},"PeriodicalIF":0.0,"publicationDate":"2014-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/cl.29191","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32659382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-05-06eCollection Date: 2014-01-01DOI: 10.4161/cl.29087
Matteo Fossati, Bruno Goud, Nica Borgese, Jean-Baptiste Manneville
Sorting of membrane proteins within the secretory pathway of eukaryotic cells is a complex process involving discrete sorting signals as well as physico-chemical properties of the transmembrane domain (TMD). Previous work demonstrated that tail-anchored (TA) protein sorting at the interface between the Endoplasmic Reticulum (ER) and the Golgi complex is exquisitely dependent on the length and hydrophobicity of the transmembrane domain, and suggested that an imbalance between TMD length and bilayer thickness (hydrophobic mismatch) could drive long TMD-containing proteins into curved membrane domains, including ER exit sites, with consequent export of the mismatched protein out of the ER. Here, we tested a possible role of curvature in TMD-dependent sorting in a model system consisting of Giant Unilamellar Vesicles (GUVs) from which narrow membrane tubes were pulled by micromanipulation. Fluorescent TA proteins differing in TMD length were incorporated into GUVs of uniform lipid composition or made of total ER lipids, and TMD-dependent sorting and diffusion, as well as the bending rigidity of bilayers made of microsomal lipids, were investigated. Long and short TMD-containing constructs were inserted with similar orientation, diffused equally rapidly in GUVs and in tubes pulled from GUVs, and no difference in their final distribution between planar and curved regions was detected. These results indicate that curvature alone is not sufficient to drive TMD-dependent sorting at the ER-Golgi interface, and set the basis for the investigation of the additional factors that must be required.
{"title":"An investigation of the effect of membrane curvature on transmembrane-domain dependent protein sorting in lipid bilayers.","authors":"Matteo Fossati, Bruno Goud, Nica Borgese, Jean-Baptiste Manneville","doi":"10.4161/cl.29087","DOIUrl":"https://doi.org/10.4161/cl.29087","url":null,"abstract":"Sorting of membrane proteins within the secretory pathway of eukaryotic cells is a complex process involving discrete sorting signals as well as physico-chemical properties of the transmembrane domain (TMD). Previous work demonstrated that tail-anchored (TA) protein sorting at the interface between the Endoplasmic Reticulum (ER) and the Golgi complex is exquisitely dependent on the length and hydrophobicity of the transmembrane domain, and suggested that an imbalance between TMD length and bilayer thickness (hydrophobic mismatch) could drive long TMD-containing proteins into curved membrane domains, including ER exit sites, with consequent export of the mismatched protein out of the ER. Here, we tested a possible role of curvature in TMD-dependent sorting in a model system consisting of Giant Unilamellar Vesicles (GUVs) from which narrow membrane tubes were pulled by micromanipulation. Fluorescent TA proteins differing in TMD length were incorporated into GUVs of uniform lipid composition or made of total ER lipids, and TMD-dependent sorting and diffusion, as well as the bending rigidity of bilayers made of microsomal lipids, were investigated. Long and short TMD-containing constructs were inserted with similar orientation, diffused equally rapidly in GUVs and in tubes pulled from GUVs, and no difference in their final distribution between planar and curved regions was detected. These results indicate that curvature alone is not sufficient to drive TMD-dependent sorting at the ER-Golgi interface, and set the basis for the investigation of the additional factors that must be required.","PeriodicalId":72547,"journal":{"name":"Cellular logistics","volume":"4 ","pages":"e29087"},"PeriodicalIF":0.0,"publicationDate":"2014-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/cl.29087","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32659381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}