The task of bridging the pressure gap between ideal ultrahigh vacuum conditions and more realistic reaction conditions involving gas and liquid phases is crucial in surface and interfacial chemistry. Scanning tunneling microscopy (STM) has played a key role in addressing this challenge by enabling atomic-scale probing of the interface. STM enabled us to study surface structure, electronic structure, atomic manipulation, dynamics of molecules and atoms, and chemical properties of the surface at the atomic scale. Over the past four decades, the field of STM has undergone explosive growth. This review article focuses on recent advances in operando STM, specifically in the study of solid–liquid and solid–gas interfaces. It highlights the latest works in ambient-pressure STM, which has enabled the observation of atomic features under various gas and reaction conditions. This information sheds light on the surface mobility of adsorbates and atomic structures of reaction intermediates. The review also addresses research on electrochemical STM, which investigates the evolution of surface morphology under electrochemical processes and provides insights into atomic-scale reaction mechanisms. Finally, the article outlines future challenges and perspectives for operando STM techniques.
{"title":"Scanning tunneling microscopy under chemical reaction at solid–liquid and solid–gas interfaces","authors":"Yongman Kim, Young Jae Kim, Jeong Y. Park","doi":"10.1063/5.0157597","DOIUrl":"https://doi.org/10.1063/5.0157597","url":null,"abstract":"The task of bridging the pressure gap between ideal ultrahigh vacuum conditions and more realistic reaction conditions involving gas and liquid phases is crucial in surface and interfacial chemistry. Scanning tunneling microscopy (STM) has played a key role in addressing this challenge by enabling atomic-scale probing of the interface. STM enabled us to study surface structure, electronic structure, atomic manipulation, dynamics of molecules and atoms, and chemical properties of the surface at the atomic scale. Over the past four decades, the field of STM has undergone explosive growth. This review article focuses on recent advances in operando STM, specifically in the study of solid–liquid and solid–gas interfaces. It highlights the latest works in ambient-pressure STM, which has enabled the observation of atomic features under various gas and reaction conditions. This information sheds light on the surface mobility of adsorbates and atomic structures of reaction intermediates. The review also addresses research on electrochemical STM, which investigates the evolution of surface morphology under electrochemical processes and provides insights into atomic-scale reaction mechanisms. Finally, the article outlines future challenges and perspectives for operando STM techniques.","PeriodicalId":72559,"journal":{"name":"Chemical physics reviews","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44353717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, broadband photo-luminescence phenomena arising from self-trapped exciton (STE) in metal halides, including perovskites and various low-dimensional derivatives and variants, have attracted increasing attention for their potential diverse optoelectronic applications like lighting, display, radiation detection, and sensing. Despite great success in experimental discovery of many efficient STE emitters, the current understanding of the STE emission mechanism in metal halides is still immature, and often controversial, which calls for help urgently from predictive first-principles theoretical calculation. Although density-functional theory (DFT) based calculations are routinely used to provide electronic band structure of materials and have contributed greatly to qualitative analysis of luminescence mechanism, more in-depth and quantitative information is highly needed to provide guidelines for rational design of new luminescent materials with desirable features. However, due to the complicated nature of STE emission, involving in particular electron–phonon coupling in both ground and excited states, the usage of DFT is no longer a routine job as for ground state properties. While more sophisticated methods formulated in the framework of many-body perturbation theory like GW-Bethe–Salpeter equation are available and provide theoretically rigorous and accurate description of electronic transitions in extended systems, their application to real STE systems is still severely limited due to highly demanding computational cost. In practice, approximated DFT methods are employed, which have their own strengths and limitations. In this review, we focus on the theoretical approaches that have been heavily used in interpreting STE luminescence mechanism, with a particular emphasis on theoretical methods for exciton self-trapping structural optimization. It is hoped that this review, by summarizing the current status and limitations of theoretical research in the STE emission, will motivate more methodological development efforts in this important field, and push forward the frontiers of excited state electronic structure theory of materials in general.
{"title":"Toward first-principles approaches for mechanistic study of self-trapped exciton luminescence","authors":"Huai-Yang Sun, Lin Xiong, Hong Jiang","doi":"10.1063/5.0147710","DOIUrl":"https://doi.org/10.1063/5.0147710","url":null,"abstract":"In recent years, broadband photo-luminescence phenomena arising from self-trapped exciton (STE) in metal halides, including perovskites and various low-dimensional derivatives and variants, have attracted increasing attention for their potential diverse optoelectronic applications like lighting, display, radiation detection, and sensing. Despite great success in experimental discovery of many efficient STE emitters, the current understanding of the STE emission mechanism in metal halides is still immature, and often controversial, which calls for help urgently from predictive first-principles theoretical calculation. Although density-functional theory (DFT) based calculations are routinely used to provide electronic band structure of materials and have contributed greatly to qualitative analysis of luminescence mechanism, more in-depth and quantitative information is highly needed to provide guidelines for rational design of new luminescent materials with desirable features. However, due to the complicated nature of STE emission, involving in particular electron–phonon coupling in both ground and excited states, the usage of DFT is no longer a routine job as for ground state properties. While more sophisticated methods formulated in the framework of many-body perturbation theory like GW-Bethe–Salpeter equation are available and provide theoretically rigorous and accurate description of electronic transitions in extended systems, their application to real STE systems is still severely limited due to highly demanding computational cost. In practice, approximated DFT methods are employed, which have their own strengths and limitations. In this review, we focus on the theoretical approaches that have been heavily used in interpreting STE luminescence mechanism, with a particular emphasis on theoretical methods for exciton self-trapping structural optimization. It is hoped that this review, by summarizing the current status and limitations of theoretical research in the STE emission, will motivate more methodological development efforts in this important field, and push forward the frontiers of excited state electronic structure theory of materials in general.","PeriodicalId":72559,"journal":{"name":"Chemical physics reviews","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49402707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuta Ito, Jiayuan Ni, Changhee Lee, Xinli Gao, Yuto Miyahara, K. Miyazaki, T. Abe
With the growing interest in promising energy sources for high-energy-demand devices, the development of materials for use in rechargeable batteries based on electrochemical charge carrier storage, such as Li and Na, has attracted intensive attention. Among them, carbon materials (e.g., graphene, graphite, and disordered carbons) have been extensively used as electrode materials for battery systems because of their critical advantages, namely, relatively good charge carrier storage capability, low cost, abundant resources, and simple manufacturing process. In particular, various types of defects are indispensably formed in the carbon structure during the manufacturing processes, which significantly influence their electrochemical charge carrier storage mechanisms and thus determine the electrochemical properties of the carbon-based rechargeable battery systems. This comprehensive review summarizes the correlation between the fundamental properties of carbon defects and electrochemical Li and Na storage mechanisms for Li- and Na-based rechargeable batteries, representative cations using battery systems, with a special focus on atomic-scale science and technology, which have a notable role in investigating and understanding the interaction between the defect phases and charge carriers in carbon structures. First, various carbon defects are categorized for the purpose of this work; then, computational/experimental methods for analyzing them and their critical properties (especially electronic structure) are introduced because identifying defect types is critical. Next, the roles and influences of carbon defects on electrochemical charge carrier storage mechanisms (especially adsorption and intercalation [insertion], diffusion, and formation of metal clusters) are described for Li- and Na-based rechargeable batteries. This study focuses on the physicochemical and electrochemical properties, which are key characteristics of carbon defects that determine their optimal utilization in rechargeable battery systems.
{"title":"Correlation between properties of various carbon defects and electrochemical charge carrier storage mechanisms for use in Li- and Na-based rechargeable batteries","authors":"Yuta Ito, Jiayuan Ni, Changhee Lee, Xinli Gao, Yuto Miyahara, K. Miyazaki, T. Abe","doi":"10.1063/5.0144995","DOIUrl":"https://doi.org/10.1063/5.0144995","url":null,"abstract":"With the growing interest in promising energy sources for high-energy-demand devices, the development of materials for use in rechargeable batteries based on electrochemical charge carrier storage, such as Li and Na, has attracted intensive attention. Among them, carbon materials (e.g., graphene, graphite, and disordered carbons) have been extensively used as electrode materials for battery systems because of their critical advantages, namely, relatively good charge carrier storage capability, low cost, abundant resources, and simple manufacturing process. In particular, various types of defects are indispensably formed in the carbon structure during the manufacturing processes, which significantly influence their electrochemical charge carrier storage mechanisms and thus determine the electrochemical properties of the carbon-based rechargeable battery systems. This comprehensive review summarizes the correlation between the fundamental properties of carbon defects and electrochemical Li and Na storage mechanisms for Li- and Na-based rechargeable batteries, representative cations using battery systems, with a special focus on atomic-scale science and technology, which have a notable role in investigating and understanding the interaction between the defect phases and charge carriers in carbon structures. First, various carbon defects are categorized for the purpose of this work; then, computational/experimental methods for analyzing them and their critical properties (especially electronic structure) are introduced because identifying defect types is critical. Next, the roles and influences of carbon defects on electrochemical charge carrier storage mechanisms (especially adsorption and intercalation [insertion], diffusion, and formation of metal clusters) are described for Li- and Na-based rechargeable batteries. This study focuses on the physicochemical and electrochemical properties, which are key characteristics of carbon defects that determine their optimal utilization in rechargeable battery systems.","PeriodicalId":72559,"journal":{"name":"Chemical physics reviews","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44850014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Young-ae Whang, Yongmin Kwon, H. Ahn, J. Hong, S. Han
Since the clean energy industry emerged, developing efficient nanocrystal catalysts has attracted ever-increasing attention. Recently, the utilization of metal nanocrystals as catalysts for electrochemical reactions is entering a new era with the development of theories and techniques that help incorporate surface chemistry into nanoscale materials. Current approaches in the field of nanocrystal catalysts include detailed analyses and modifications of the surface atoms of nanocrystals, with which optimal structures and compositions for target electrochemical reactions could be realized. This review presents two major strategies to engineer the surface structure of nanocrystals: control over the atomic arrangement and composition of nanocrystal surfaces. The first section mainly covers the modification of surface atom arrangements with various methods, including the induction of various facets, strains, and defects. The generation of anomalous crystal structures of nanocrystals is also discussed. The second section encompasses recent advances in controlling the composition of nanocrystal surfaces by bringing high entropy or periodicity to the metal elements in nanocrystals to attain high electrocatalytic activity and stability.
{"title":"Surface engineering of metallic nanocrystals via atomic structure and composition control for boosting electrocatalysis","authors":"Young-ae Whang, Yongmin Kwon, H. Ahn, J. Hong, S. Han","doi":"10.1063/5.0140691","DOIUrl":"https://doi.org/10.1063/5.0140691","url":null,"abstract":"Since the clean energy industry emerged, developing efficient nanocrystal catalysts has attracted ever-increasing attention. Recently, the utilization of metal nanocrystals as catalysts for electrochemical reactions is entering a new era with the development of theories and techniques that help incorporate surface chemistry into nanoscale materials. Current approaches in the field of nanocrystal catalysts include detailed analyses and modifications of the surface atoms of nanocrystals, with which optimal structures and compositions for target electrochemical reactions could be realized. This review presents two major strategies to engineer the surface structure of nanocrystals: control over the atomic arrangement and composition of nanocrystal surfaces. The first section mainly covers the modification of surface atom arrangements with various methods, including the induction of various facets, strains, and defects. The generation of anomalous crystal structures of nanocrystals is also discussed. The second section encompasses recent advances in controlling the composition of nanocrystal surfaces by bringing high entropy or periodicity to the metal elements in nanocrystals to attain high electrocatalytic activity and stability.","PeriodicalId":72559,"journal":{"name":"Chemical physics reviews","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45173252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The rational design of cutting-edge materials for an efficient solar energy conversion process is a challenging task, which demands a fundamental understanding of the mechanisms operative during the photoinduced physical and chemical reactions. In response to these issues, progress in the field has steered attention toward the use of time-resolved spectroscopic techniques to resolve the multiple intermediate species involved in these photoinduced reactions. Thanks to the advent of pump–probe technique, which leads to the development of various time-resolved spectroscopic methods, significant progress has been made in understanding the photophysical and photochemical properties (e.g., excited state dynamics, charge transfer mechanism, charge separation dynamics, etc.) of energy materials. Synchrotron-based x-ray transient absorption (XTA) spectroscopy is one of the most important time-resolved techniques to unravel the direct correlation of the material structure with their photophysical properties owing to its unique capability in directly observing electronic and structural evolution simultaneously. The aim of this work is to provide a systematic overview of the recent progress in using XTA for capturing the structural dynamics associated with excited state and charge separation dynamics in emerging solid-state energy materials.
{"title":"Synchrotron based transient x-ray absorption spectroscopy for emerging solid-state energy materials","authors":"","doi":"10.1063/5.0133227","DOIUrl":"https://doi.org/10.1063/5.0133227","url":null,"abstract":"The rational design of cutting-edge materials for an efficient solar energy conversion process is a challenging task, which demands a fundamental understanding of the mechanisms operative during the photoinduced physical and chemical reactions. In response to these issues, progress in the field has steered attention toward the use of time-resolved spectroscopic techniques to resolve the multiple intermediate species involved in these photoinduced reactions. Thanks to the advent of pump–probe technique, which leads to the development of various time-resolved spectroscopic methods, significant progress has been made in understanding the photophysical and photochemical properties (e.g., excited state dynamics, charge transfer mechanism, charge separation dynamics, etc.) of energy materials. Synchrotron-based x-ray transient absorption (XTA) spectroscopy is one of the most important time-resolved techniques to unravel the direct correlation of the material structure with their photophysical properties owing to its unique capability in directly observing electronic and structural evolution simultaneously. The aim of this work is to provide a systematic overview of the recent progress in using XTA for capturing the structural dynamics associated with excited state and charge separation dynamics in emerging solid-state energy materials.","PeriodicalId":72559,"journal":{"name":"Chemical physics reviews","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44098946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sayantan Mahapatra, Dairong Liu, Chamath Siribaddana, Kai Wang, Linfei Li, Nan Jiang
Gaining valuable insight into chemistry-related fields, such as molecular and catalytic systems, surface science, and biochemistry, requires probing physical and chemical processes at the sub-nanoscale level. Recent progress and advancements in nano-optics and nano-photonics, particularly in scanning near-field optical microscopy, have enabled the coupling of light with nano-objects using surface plasmons with sub-nanoscale precision, providing access to photophysical and photochemical processes. Herein, this review highlights the basic concepts of surface plasmons and recent experimental findings of tip-assisted plasmon-induced research works and offers a glimpse into future perspectives.
{"title":"Localized surface plasmon controlled chemistry at and beyond the nanoscale","authors":"Sayantan Mahapatra, Dairong Liu, Chamath Siribaddana, Kai Wang, Linfei Li, Nan Jiang","doi":"10.1063/5.0143947","DOIUrl":"https://doi.org/10.1063/5.0143947","url":null,"abstract":"Gaining valuable insight into chemistry-related fields, such as molecular and catalytic systems, surface science, and biochemistry, requires probing physical and chemical processes at the sub-nanoscale level. Recent progress and advancements in nano-optics and nano-photonics, particularly in scanning near-field optical microscopy, have enabled the coupling of light with nano-objects using surface plasmons with sub-nanoscale precision, providing access to photophysical and photochemical processes. Herein, this review highlights the basic concepts of surface plasmons and recent experimental findings of tip-assisted plasmon-induced research works and offers a glimpse into future perspectives.","PeriodicalId":72559,"journal":{"name":"Chemical physics reviews","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43422340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Wen, Xinzhi Ma, Lu Li, Xitian Zhang, Bin Wang
Because of the increasing demand, high-power, high-rate energy storage devices based on electrode materials have attracted immense attention. However, challenges remain to be addressed to improve the concentration-dependent kinetics of ionic diffusion and understand phase transformation, interfacial reactions, and capacitive behaviors that vary with particle morphology and scanning rates. It is valuable to understand the microscopic origins of ion transport in electrode materials. In this review, we discuss the microscopic transport phenomena and their dependence on ion concentration in the cathode materials, by comparing dozens of well-studied transition metal oxides, sulfides, and phosphates, and in the anode materials, including several carbon species and carbides. We generalize the kinetic effects on the microscopic ionic transport processes from the phenomenological points of view based on the well-studied systems. The dominant kinetic effects on ion diffusion varied with ion concentration, and the pathway- and morphology-dependent diffusion and capacitive behaviors affected by the sizes and boundaries of particles are demonstrated. The important kinetic effects on ion transport by phase transformation, transferred electrons, and water molecules are discussed. The results are expected to shed light on the microscopic limiting factors of charging/discharging rates for developing new intercalation and conversion reaction systems.
{"title":"Ion transport phenomena in electrode materials","authors":"Jing Wen, Xinzhi Ma, Lu Li, Xitian Zhang, Bin Wang","doi":"10.1063/5.0138282","DOIUrl":"https://doi.org/10.1063/5.0138282","url":null,"abstract":"Because of the increasing demand, high-power, high-rate energy storage devices based on electrode materials have attracted immense attention. However, challenges remain to be addressed to improve the concentration-dependent kinetics of ionic diffusion and understand phase transformation, interfacial reactions, and capacitive behaviors that vary with particle morphology and scanning rates. It is valuable to understand the microscopic origins of ion transport in electrode materials. In this review, we discuss the microscopic transport phenomena and their dependence on ion concentration in the cathode materials, by comparing dozens of well-studied transition metal oxides, sulfides, and phosphates, and in the anode materials, including several carbon species and carbides. We generalize the kinetic effects on the microscopic ionic transport processes from the phenomenological points of view based on the well-studied systems. The dominant kinetic effects on ion diffusion varied with ion concentration, and the pathway- and morphology-dependent diffusion and capacitive behaviors affected by the sizes and boundaries of particles are demonstrated. The important kinetic effects on ion transport by phase transformation, transferred electrons, and water molecules are discussed. The results are expected to shed light on the microscopic limiting factors of charging/discharging rates for developing new intercalation and conversion reaction systems.","PeriodicalId":72559,"journal":{"name":"Chemical physics reviews","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42037909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Relativistic effects are usually taken into account in heavy-element-containing species, bringing to the scientific community stimulating cases of study. Scalar and spin–orbit effects are required to properly evaluate both the geometrical and electronic structures of such species, where, generally, scalar corrections are included. In order to take into account the spin–orbit term resulting from the interaction between the spatial and spin coordinates, double-valued point groups of symmetry are required, leading to total angular momenta (j) functions and atomic or molecular spinors, instead of pure orbital-angular momenta (l) and atomic or molecular orbitals. Here, we reviewed the role of spin–orbit coupling in bare and ligand-protected metallic clusters, from early to current works, leading to a more comprehensive relativistic quantum chemistry framework. As a result, the electronic structure is modified, leading to a variation in the calculated molecular properties, which usually improves the agreement between theory and experiment, allowing furthering rationalize of experimental results unexpected from a classical inorganic chemistry point of view. This review summarizes part of the modern application of spin–orbit coupling in heavy-elements cluster chemistry, where further treatment on an equal footing basis along with the periodic table is encouraged in order to incorporate such term in the general use vocabulary of both experimental and theoretical chemist and material scientist.
{"title":"Spin–orbit effects in cluster chemistry: Considerations and applications for rationalization of their properties","authors":"À. Muñoz-Castro, R. Arratia‐Pérez","doi":"10.1063/5.0145779","DOIUrl":"https://doi.org/10.1063/5.0145779","url":null,"abstract":"Relativistic effects are usually taken into account in heavy-element-containing species, bringing to the scientific community stimulating cases of study. Scalar and spin–orbit effects are required to properly evaluate both the geometrical and electronic structures of such species, where, generally, scalar corrections are included. In order to take into account the spin–orbit term resulting from the interaction between the spatial and spin coordinates, double-valued point groups of symmetry are required, leading to total angular momenta (j) functions and atomic or molecular spinors, instead of pure orbital-angular momenta (l) and atomic or molecular orbitals. Here, we reviewed the role of spin–orbit coupling in bare and ligand-protected metallic clusters, from early to current works, leading to a more comprehensive relativistic quantum chemistry framework. As a result, the electronic structure is modified, leading to a variation in the calculated molecular properties, which usually improves the agreement between theory and experiment, allowing furthering rationalize of experimental results unexpected from a classical inorganic chemistry point of view. This review summarizes part of the modern application of spin–orbit coupling in heavy-elements cluster chemistry, where further treatment on an equal footing basis along with the periodic table is encouraged in order to incorporate such term in the general use vocabulary of both experimental and theoretical chemist and material scientist.","PeriodicalId":72559,"journal":{"name":"Chemical physics reviews","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48561811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ultrafast spectroscopy is a valuable tool for monitoring the timescales of interactions between systems and their environments, resulting in pure dephasing. The superposition of ground and excited states of a molecule in a condensed phase, created by field–matter interactions, loses its coherence due to fluctuations from surrounding molecules that interact differently with the ground and excited states. Recently, quantum decoherence has become an intense area of research due to its relevance to the quantum-to-classical transition and its critical role in developing quantum technologies, such as quantum computers and cryptography. Although both pure dephasing and quantum decoherence result from the same process of environmental monitoring of systems through quantum entanglement between the system and its environment, they have been studied and discussed in very different contexts with seemingly disparate terminologies. In this work, we present a detailed theoretical description of pure dephasing and quantum decoherence in bosonic environments coupled to a two-level system, compare them directly, and demonstrate their connections to the wave–particle duality of isolated systems and the wave-particle-entanglement triality of composite systems consisting of systems and their environments. It is believed that the present review will be helpful for gaining a deeper understanding of ultrafast spectroscopy from a quantum mechanical perspective and the wave–particle duality of quantum objects interacting with their surrounding environments.
{"title":"Pure dephasing, quantum decoherence, and wave–particle duality","authors":"M. Cho","doi":"10.1063/5.0149363","DOIUrl":"https://doi.org/10.1063/5.0149363","url":null,"abstract":"Ultrafast spectroscopy is a valuable tool for monitoring the timescales of interactions between systems and their environments, resulting in pure dephasing. The superposition of ground and excited states of a molecule in a condensed phase, created by field–matter interactions, loses its coherence due to fluctuations from surrounding molecules that interact differently with the ground and excited states. Recently, quantum decoherence has become an intense area of research due to its relevance to the quantum-to-classical transition and its critical role in developing quantum technologies, such as quantum computers and cryptography. Although both pure dephasing and quantum decoherence result from the same process of environmental monitoring of systems through quantum entanglement between the system and its environment, they have been studied and discussed in very different contexts with seemingly disparate terminologies. In this work, we present a detailed theoretical description of pure dephasing and quantum decoherence in bosonic environments coupled to a two-level system, compare them directly, and demonstrate their connections to the wave–particle duality of isolated systems and the wave-particle-entanglement triality of composite systems consisting of systems and their environments. It is believed that the present review will be helpful for gaining a deeper understanding of ultrafast spectroscopy from a quantum mechanical perspective and the wave–particle duality of quantum objects interacting with their surrounding environments.","PeriodicalId":72559,"journal":{"name":"Chemical physics reviews","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46062339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Theoretical and experimental studies since the 1980s have pointed to the existence of organic molecules that violate Hund's rule of maximum multiplicity, with the lowest singlet excited state having lower energy than the lowest triplet excited state. With the rising prevalence of organic light-emitting diodes (OLEDs) in display technology, these types of molecules are being investigated as a new class of organic emitters. The singlet–triplet inversion implies that thermal activation is not necessary to achieve fast triplet harvesting, providing potential benefits over conventional thermally activated delayed fluorescence emitters. Here, we overview prominent studies regarding inverted singlet and triplet excited states in the context of OLEDs.
{"title":"Inverted singlet–triplet emitters for organic light-emitting diodes","authors":"Taehyun Won, K. Nakayama, Naoya Aizawa","doi":"10.1063/5.0152834","DOIUrl":"https://doi.org/10.1063/5.0152834","url":null,"abstract":"Theoretical and experimental studies since the 1980s have pointed to the existence of organic molecules that violate Hund's rule of maximum multiplicity, with the lowest singlet excited state having lower energy than the lowest triplet excited state. With the rising prevalence of organic light-emitting diodes (OLEDs) in display technology, these types of molecules are being investigated as a new class of organic emitters. The singlet–triplet inversion implies that thermal activation is not necessary to achieve fast triplet harvesting, providing potential benefits over conventional thermally activated delayed fluorescence emitters. Here, we overview prominent studies regarding inverted singlet and triplet excited states in the context of OLEDs.","PeriodicalId":72559,"journal":{"name":"Chemical physics reviews","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47402233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}